High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA

Size: px
Start display at page:

Download "High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA"

Transcription

1 High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA Ahmad Al Badawi National University of Singapore (NUS) Sept 10 th 2018 CHES 2018

2 FHE The holy grail of Cryptography FHE enables computing on encrypted data without decryption [GB2009] Challenge: requires enormous computation Encryption/Decryption Homomorphic evaluation of f Enc(x) Enc(f(x)) Client Cloud Server Ahmad Al Badawi - ahmad@u.nus.edu 2

3 How the problem is being tackled? Algorithmic methods: New FHE schemes Plaintext packing (1D, 2D, ) Encoding schemes Approximated computing Squashing the target function DAG optimizations for the target circuit Acceleration methods: Speedup FHE basic primitives (KeyGen, Enc, Dec, Add, Mul) Modular Algorithms Parallel Implementations Hardware implementations: GPUs, FPGAs and probably ASICs Ahmad Al Badawi - ahmad@u.nus.edu 3

4 Our Contributions 1. Implementation of FV RNS on GPUs 2. Introducing a set of CUDA optimizations 3. Benchmarking with state-of-the-art implementations Ahmad Al Badawi - ahmad@u.nus.edu 4

5 Why GPUs for FHE? GPU + Naturally available many computing cores Developer friendly (FPGA, ASIC) FHE + Huge level of parallelism If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens? Seymour Cray Ahmad Al Badawi - ahmad@u.nus.edu 5

6 Textbook FV Basic mathematical structure is R: Z x /(x n + 1) Plaintext space: R t : Z t x /(x n + 1) Ciphertext space: R q : Z q x /(x n + 1) Public key: pk 0, pk 1 R q Secret key: sk R q c = Enc(m): ( q t m + pk 0u + e 0 q, pk 1 u + e 1 q ) m = Dec c : t q c 0 + c 1 sk q t c + = Add c 0, c 1 : ( c 00 + c 10 q, c 01 + c 11 q ) Ahmad Al Badawi - ahmad@u.nus.edu 6

7 c = Mul c 0, c 1, evk : 1. Tensor product: Textbook FV (cont.) v 0 = t q c 00c 10 q, v 2 = t q c 01c 11 q v 1 = t q (c 00c 11 + c 01 c 10 ) 2. Base decomposition: 2. Relinearization: l (i) v 2 = v 2 w i, l = i=0 l c (i) = v j + evk ij v 2, j {0,1} i=0 q Ahmad Al Badawi - ahmad@u.nus.edu 7 q

8 Implementation Requirements Polynomial arithmetic in cyclotomic rings Large polynomial degree (a few thousands) Power-of-2 cyclotomic Addition/Subtraction: O(n) Multiplication: O(n log n) Large coefficients Z q (a few hundreds of bits) Modular algorithms (RNS) Extra non-trivial operations: Scaling-and-round t x q Base decomposition Ahmad Al Badawi - ahmad@u.nus.edu 8

9 Polynomial Arithmetic CRT: q = k 1 p i i=0, where p i is a prime log 2 p-bit number RNS / CRT k = log 2 q log 2 p.... n... p 0 p 1 p k 1 Addition/Subtraction: component-wise add/sub modulo p i Ahmad Al Badawi - ahmad@u.nus.edu 9

10 Polynomial Arithmetic (cont.) 32-bit number RNS / CRT NTT NTT (DGT) n... p 0 n... p 0 k = log 2 q log 2 p... p p 1 p k 1 p k 1 NTT 1 Addition/Subtraction/Multiplication: component-wise add/sub/mul modulo p i Ahmad Al Badawi - ahmad@u.nus.edu 10

11 DFT, NTT, DWT, DGT? DFT Pros - Well-established - Several efficient libraries to use Cons - Floating point errors increase as (n & p i s) increase - Reduce precision (smaller p i s) => longer RNS matrix => more DFTs NTT - Exact - Transform length (2n) DWT - Exact - Only power-of-2 cyclotomics - Transform length (n) DGT - Exact - Transform length ( n 2 ) - 50% Less interaction with memory - Only power-of-2 cyclotomics - Gaussian Arithmetic (larger number of multiplications ~(30% - 40%) We use DGT in our implementation Ahmad Al Badawi - ahmad@u.nus.edu 11

12 Efficient DGT/NTT/DWT on GPU? Better to store w ji in lookup table. LUT can be stored in GPU texture memory (which is limited on GPU) DWT LUT are O(n) DGT LUT are O( n ) 2 A = NTT(a) s.t. n 1 A j = a i w ji mod q i=0 a = NTT 1 (A) s.t. n 1 a i = n 1 A j w ij mod q j=0 Compute in GF(p ) or in GF(p i )? We found it is better to do it GF(p i ). Why? (see next) Ahmad Al Badawi - ahmad@u.nus.edu 12

13 Compute in GF(p ) or in GF(p i )? k = log 2 q log 2 p.... n... p 0 p 1 p k 1 GF(p) GF(p i ) p : 64-bit prime (should fit in one word) p p 2n (one multiplication) n log 2 p p: word-size prime (can be 64-bit) - Shorter RNS matrix => Less NTTs - No size doubling - Supports unlimited number of operations in NTT domain - Longer RNS matrix => more NTTs - Size double (32-bit => 64-bit) - Supports limited number of operations in NTT domain Ahmad Al Badawi - ahmad@u.nus.edu 13

14 But, is NTT/DWT/DGT performance-critical? Breakdown of homomorphic multiplication (AND) in the BFV FHE scheme Toy Settings Medium Settings NTT RNS Base Extension RNS Scaling others NTT RNS Base Extension RNS Scaling others Large Settings NTT RNS Base Extension RNS Scaling others Halevi, Shai, Yuriy Polyakov, and Victor Shoup. "An Improved RNS Variant of the BFV Homomorphic Encryption Scheme." (2018). Ahmad Al Badawi - ahmad@u.nus.edu 14

15 Computing CRT on GPU? At least two methods: Classic algorithm - CRT a, {p i } : (a 0,, a k 1 ) = a mod p i - CRT 1 (a 0,, a k 1 ) = a s.t. Garner s algorithm a = k 1 q p i i=0 q p i 1 a i (mod p i ) (mod q) where q = k 1 i=0 p i Classic Garners LUT k 2 k k 1 2 Thread Divergence Non tractable Nil Is CRT critical to performance? No! Ahmad Al Badawi - ahmad@u.nus.edu 15

16 RNS tools Useful to: Remain in RNS representation No costly multi-precision arithmetic Two basic operations: Scale-and-round Base decomposition Adopted from (BEHZ2016 * ) scheme Are RNS tools critical to performance? Extremely critical * Bajard, Jean-Claude, et al. "A full RNS variant of FV like somewhat homomorphic encryption schemes." International Conference on Selected Areas in Cryptography. Springer, Cham, Ahmad Al Badawi - ahmad@u.nus.edu 16

17 FV_RNS Homomorphic Multiplication Ahmad Al Badawi - ahmad@u.nus.edu 17

18 Time (ms) Time (ms) Time (ms) Time (ms) Benchmarking Results Key Generation Dec GPU-FV SEAL NFLlib-FV GPU-FV SEAL NFLlib-FV (11,62) (12,186) (13,372) (14,744) (11,62) (12,186) (13,372) (14,744) Enc HomoMul + Relinearization GPU-FV SEAL GPU-FV SEAL NFLlib-FV NFLlib-FV (11,62) (12,186) (13,372) (14,744) (11,62) (12,186) (13,372) (14,744) Ahmad Al Badawi - ahmad@u.nus.edu 18

19 Which FV RNS variant to Implement? Two RNS variants of FV BEHZ HPS Answer can be found in: Al Badawi, Ahmad, et al. "Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme." IACR Cryptology eprint Archive 2018 (2018): 589. Ahmad Al Badawi - ahmad@u.nus.edu 20

20 Thank You Questions? Ahmad Al Badawi 21

Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme

Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj Veeravalli, and Kurt Rohloff DECEMBER 5, 018

More information

Shai Halevi IBM August 2013

Shai Halevi IBM August 2013 Shai Halevi IBM August 2013 I want to delegate processing of my data, without giving away access to it. I want to delegate the computation to the cloud, I want but the to delegate cloud the shouldn t computation

More information

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme

An Improved RNS Variant of the BFV Homomorphic Encryption Scheme An Improved RNS Variant of the BFV Homomorphic Encryption Scheme Shai Halevi 1, Yuriy Polyakov 2, and Victor Shoup 3 1 IBM Research 2 NJIT Cybersecurity Research Center 3 NYU Abstract. We present an optimized

More information

A Full RNS Implementation of Fan and Vercauteren Somewhat Homomorphic Encryption Scheme

A Full RNS Implementation of Fan and Vercauteren Somewhat Homomorphic Encryption Scheme A Full RNS Implementation of Fan and Vercauteren Somewhat Homomorphic Encryption Scheme Presented by: Vincent Zucca 1 Joint work with: Jean-Claude Bajard 1, Julien Eynard 2 and Anwar Hasan 2 1 Sorbonne

More information

The Distributed Decryption Schemes for Somewhat Homomorphic Encryption

The Distributed Decryption Schemes for Somewhat Homomorphic Encryption Copyright c The Institute of Electronics, Information and Communication Engineers SCIS 2012 The 29th Symposium on Cryptography and Information Security Kanazawa, Japan, Jan. 30 - Feb. 2, 2012 The Institute

More information

Practical Bootstrapping in Quasilinear Time

Practical Bootstrapping in Quasilinear Time Practical Bootstrapping in Quasilinear Time Jacob Alperin-Sheriff Chris Peikert School of Computer Science Georgia Tech UC San Diego 29 April 2013 1 / 21 Fully Homomorphic Encryption [RAD 78,Gen 09] FHE

More information

Optimizing Fully Homomorphic Encryption

Optimizing Fully Homomorphic Encryption Optimizing Fully Homomorphic Encryption By Kevin C. King B.S., C.S. M.I.T., 2015 September 30, 2016 Submitted to the Department of Electrical Engineering and Computer Science In Partial Fulfillment of

More information

Gentry s SWHE Scheme

Gentry s SWHE Scheme Homomorphic Encryption and Lattices, Spring 011 Instructor: Shai Halevi May 19, 011 Gentry s SWHE Scheme Scribe: Ran Cohen In this lecture we review Gentry s somewhat homomorphic encryption (SWHE) scheme.

More information

Homomorphic Evaluation of the AES Circuit

Homomorphic Evaluation of the AES Circuit Homomorphic Evaluation of the AES Circuit IBM Research and University Of Bristol. August 22, 2012 Homomorphic Evaluation of the AES Circuit Slide 1 Executive Summary We present a working implementation

More information

Parameter selection in Ring-LWE-based cryptography

Parameter selection in Ring-LWE-based cryptography Parameter selection in Ring-LWE-based cryptography Rachel Player Information Security Group, Royal Holloway, University of London based on joint works with Martin R. Albrecht, Hao Chen, Kim Laine, and

More information

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 Private Comparison Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 1 École Normale Supérieure, CNRS, PSL University 2 IRIT 3 Chair of Naval Cyber Defense, IMT

More information

Fully Homomorphic Encryption over the Integers

Fully Homomorphic Encryption over the Integers Fully Homomorphic Encryption over the Integers Many slides borrowed from Craig Marten van Dijk 1, Craig Gentry 2, Shai Halevi 2, Vinod Vaikuntanathan 2 1 MIT, 2 IBM Research Computing on Encrypted Data

More information

Computing with Encrypted Data Lecture 26

Computing with Encrypted Data Lecture 26 Computing with Encrypted Data 6.857 Lecture 26 Encryption for Secure Communication M Message M All-or-nothing Have Private Key, Can Decrypt No Private Key, No Go cf. Non-malleable Encryption Encryption

More information

Multikey Homomorphic Encryption from NTRU

Multikey Homomorphic Encryption from NTRU Multikey Homomorphic Encryption from NTRU Li Chen lichen.xd at gmail.com Xidian University January 12, 2014 Multikey Homomorphic Encryption from NTRU Outline 1 Variant of NTRU Encryption 2 Somewhat homomorphic

More information

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi University of Luxembourg & ENS & NTT EUROCRYPT, 2012-04-18

More information

Some security bounds for the DGHV scheme

Some security bounds for the DGHV scheme Some security bounds for the DGHV scheme Franca Marinelli f.marinelli@studenti.unitn.it) Department of Mathematics, University of Trento, Italy Riccardo Aragona riccardo.aragona@unitn.it) Department of

More information

Gentry s Fully Homomorphic Encryption Scheme

Gentry s Fully Homomorphic Encryption Scheme Gentry s Fully Homomorphic Encryption Scheme Under Guidance of Prof. Manindra Agrawal Rishabh Gupta Email: rishabh@cse.iitk.ac.in Sanjari Srivastava Email: sanjari@cse.iitk.ac.in Abstract This report presents

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption Fully Homomorphic Encryption Thomas PLANTARD Universiy of Wollongong - thomaspl@uow.edu.au Plantard (UoW) FHE 1 / 24 Outline 1 Introduction Privacy Homomorphism Applications Timeline 2 Gentry Framework

More information

Fully Homomorphic Encryption. Zvika Brakerski Weizmann Institute of Science

Fully Homomorphic Encryption. Zvika Brakerski Weizmann Institute of Science Fully Homomorphic Encryption Zvika Brakerski Weizmann Institute of Science AWSCS, March 2015 Outsourcing Computation x x f f(x) Email, web-search, navigation, social networking What if x is private? Search

More information

Fully Homomorphic Encryption from LWE

Fully Homomorphic Encryption from LWE Fully Homomorphic Encryption from LWE Based on joint works with: Zvika Brakerski (Stanford) Vinod Vaikuntanathan (University of Toronto) Craig Gentry (IBM) Post-Quantum Webinar, November 2011 Outsourcing

More information

General Impossibility of Group Homomorphic Encryption in the Quantum World

General Impossibility of Group Homomorphic Encryption in the Quantum World General Impossibility of Group Homomorphic Encryption in the Quantum World Frederik Armknecht Tommaso Gagliardoni Stefan Katzenbeisser Andreas Peter PKC 2014, March 28th Buenos Aires, Argentina 1 An example

More information

Compact Ring LWE Cryptoprocessor

Compact Ring LWE Cryptoprocessor 1 Compact Ring LWE Cryptoprocessor CHES 2014 Sujoy Sinha Roy 1, Frederik Vercauteren 1, Nele Mentens 1, Donald Donglong Chen 2 and Ingrid Verbauwhede 1 1 ESAT/COSIC and iminds, KU Leuven 2 Electronic Engineering,

More information

Fully Homomorphic Encryption and Bootstrapping

Fully Homomorphic Encryption and Bootstrapping Fully Homomorphic Encryption and Bootstrapping Craig Gentry and Shai Halevi June 3, 2014 China Summer School on Lattices and Cryptography Fully Homomorphic Encryption (FHE) A FHE scheme can evaluate unbounded

More information

Packing Messages and Optimizing Bootstrapping in GSW-FHE

Packing Messages and Optimizing Bootstrapping in GSW-FHE Packing Messages and Optimizing Bootstrapping in GSW-FHE Ryo Hiromasa Masayuki Abe Tatsuaki Okamoto Kyoto University NTT PKC 15 April 1, 2015 1 / 13 Fully Homomorphic Encryption (FHE) c Enc(m) f, c ĉ Eval(

More information

Bootstrapping for Approximate Homomorphic Encryption

Bootstrapping for Approximate Homomorphic Encryption Bootstrapping for Approximate Homomorphic Encryption Jung Hee Cheon, Kyoohyung Han, Andrey Kim (Seoul National University) Miran Kim, Yongsoo Song (University of California, San Diego) Landscape of Homomorphic

More information

Multi-key fully homomorphic encryption report

Multi-key fully homomorphic encryption report Multi-key fully homomorphic encryption report Elena Fuentes Bongenaar July 12, 2016 1 Introduction Since Gentry s first Fully Homomorphic Encryption (FHE) scheme in 2009 [6] multiple new schemes have been

More information

Manual for Using Homomorphic Encryption for Bioinformatics

Manual for Using Homomorphic Encryption for Bioinformatics 1 Manual for Using Homomorphic Encryption for Bioinformatics Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing Abstract Biological Data Science is an emerging

More information

Implementing Ring-LWE cryptosystems

Implementing Ring-LWE cryptosystems Implementing Ring-LWE cryptosystems Tore Vincent Carstens December 16, 2016 Contents 1 Introduction 1 1.1 Motivation............................................ 1 2 Lattice Based Crypto 2 2.1 General Idea...........................................

More information

Faster Homomorphic Evaluation of Discrete Fourier Transforms

Faster Homomorphic Evaluation of Discrete Fourier Transforms Faster Homomorphic Evaluation of Discrete Fourier Transforms Anamaria Costache, Nigel P. Smart, and Srinivas Vivek University of Bristol, Bristol, UK Abstract. We present a methodology to achieve low latency

More information

Report Fully Homomorphic Encryption

Report Fully Homomorphic Encryption Report Fully Homomorphic Encryption Elena Fuentes Bongenaar July 28, 2016 1 Introduction Outsourcing computations can be interesting in many settings, ranging from a client that is not powerful enough

More information

On Homomorphic Encryption and Secure Computation

On Homomorphic Encryption and Secure Computation On Homomorphic Encryption and Secure Computation challenge response Shai Halevi IBM NYU Columbia Theory Day, May 7, 2010 Computing on Encrypted Data Wouldn t it be nice to be able to o Encrypt my data

More information

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Jean-Sébastien Coron 1, David Naccache 2, and Mehdi Tibouchi 3 1 Université du Luxembourg jean-sebastien.coron@uni.lu

More information

Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems

Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 3-31-2016 Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems Peizhao Hu Rochester

More information

Bootstrapping for HElib

Bootstrapping for HElib Bootstrapping for HElib Shai Halevi 1 and Victor Shoup 1,2 1 IBM Research 2 New York University Abstract. Gentry s bootstrapping technique is still the only known method of obtaining fully homomorphic

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption 6.889: New Developments in Cryptography February 8, 2011 Instructor: Boaz Barak Fully Homomorphic Encryption Scribe: Alessandro Chiesa Achieving fully-homomorphic encryption, under any kind of reasonable

More information

HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY 1 / 51

HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY 1 / 51 HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY Abderrahmane Nitaj Laboratoire de Mathe matiques Nicolas Oresme Universite de Caen Normandie, France Nouakchott, February 15-26, 2016 Abderrahmane

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption Fully Homomorphic Encryption Boaz Barak February 9, 2011 Achieving fully homomorphic encryption, under any kind of reasonable computational assumptions (and under any reasonable definition of reasonable..),

More information

An RNS variant of fully homomorphic encryption over integers

An RNS variant of fully homomorphic encryption over integers An RNS variant of fully homomorphic encryption over integers by Ahmed Zawia A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied

More information

A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme

A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme Eduardo Morais Ricardo Dahab October 2014 Abstract In this paper we present a key recovery attack to the scale-invariant

More information

Sieving for Shortest Vectors in Ideal Lattices:

Sieving for Shortest Vectors in Ideal Lattices: Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective Joppe W. Bos Microsoft Research LACAL@RISC Seminar on Cryptologic Algorithms CWI, Amsterdam, Netherlands Joint work with Michael

More information

Cryptographic Multilinear Maps. Craig Gentry and Shai Halevi

Cryptographic Multilinear Maps. Craig Gentry and Shai Halevi Cryptographic Multilinear Maps Craig Gentry and Shai Halevi China Summer School on Lattices and Cryptography, June 2014 Multilinear Maps (MMAPs) A Technical Tool A primitive for building applications,

More information

Multiparty Computation from Somewhat Homomorphic Encryption. November 9, 2011

Multiparty Computation from Somewhat Homomorphic Encryption. November 9, 2011 Multiparty Computation from Somewhat Homomorphic Encryption Ivan Damgård 1 Valerio Pastro 1 Nigel Smart 2 Sarah Zakarias 1 1 Aarhus University 2 Bristol University CTIC 交互计算 November 9, 2011 Damgård, Pastro,

More information

Design and Implementation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture

Design and Implementation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture Design and Implementation of a Fast and Scalable NTT-Based Polynomial Multiplier Architecture Ahmet Can Mert 1, Erdinc Ozturk 1, and Erkay Savas 1 Sabanci University Orta Mahalle, 34956 Tuzla, Istanbul,

More information

Simple Encrypted Arithmetic Library - SEAL

Simple Encrypted Arithmetic Library - SEAL Simple Encrypted Arithmetic Library - SEAL Hao Chen 1, Kim Laine 2, and Rachel Player 3 1 Microsoft Research, USA haoche@microsoft.com 2 Microsoft Research, USA kim.laine@microsoft.com 3 Royal Holloway,

More information

Homomorphic Encryption for Arithmetic of Approximate Numbers

Homomorphic Encryption for Arithmetic of Approximate Numbers Homomorphic Encryption for Arithmetic of Approximate Numbers Jung Hee Cheon 1, Andrey Kim 1, Miran Kim 2, and Yongsoo Song 1 1 Seoul National University, Republic of Korea {jhcheon, kimandrik, lucius05}@snu.ac.kr

More information

Practical Fully Homomorphic Encryption without Noise Reduction

Practical Fully Homomorphic Encryption without Noise Reduction Practical Fully Homomorphic Encryption without Noise Reduction Dongxi Liu CSIRO, Marsfield, NSW 2122, Australia dongxi.liu@csiro.au Abstract. We present a new fully homomorphic encryption (FHE) scheme

More information

FULLY HOMOMORPHIC ENCRYPTION: Craig Gentry, IBM Research

FULLY HOMOMORPHIC ENCRYPTION: Craig Gentry, IBM Research FULLY HOMOMORPHIC ENCRYPTION: CURRENT STATE OF THE ART Craig Gentry, IBM Research Africacrypt 2012 Homomorphic Encryption The special sauce! For security parameter k, Eval s running should be Time(f) poly(k)

More information

Keywords Homomorphic encryption, pairing-based cryptography, elliptic curves, low depth circuits.

Keywords Homomorphic encryption, pairing-based cryptography, elliptic curves, low depth circuits. Abstract Homomorphic Encryption is a recent promising tool in modern cryptography, that allows to carry out operations on encrypted data. In this paper we focus on the design of a scheme based on pairings

More information

Better Bootstrapping in Fully Homomorphic Encryption

Better Bootstrapping in Fully Homomorphic Encryption Better Bootstrapping in Fully Homomorphic Encryption Craig Gentry 1, Shai Halevi 1, and Nigel P. Smart 2 1 IBM T.J. Watson Research Center 2 Dept. Computer Science, University of Bristol Abstract. Gentry

More information

Implementation and Evaluation of a Lattice-Based Key-Policy ABE Scheme

Implementation and Evaluation of a Lattice-Based Key-Policy ABE Scheme 1 Implementation and Evaluation of a Lattice-Based Key-Policy ABE Scheme Wei Dai, Yarkın Doröz, Yuriy Polyakov, Kurt Rohloff, Hadi Sajjadpour, Erkay Savaş and Berk Sunar Worcester Polytechnic Institute,

More information

High-Precision Arithmetic in Homomorphic Encryption

High-Precision Arithmetic in Homomorphic Encryption High-Precision Arithmetic in Homomorphic Encryption Hao Chen 1, Kim Laine 2, Rachel Player 3, and Yuhou Xia 4 1 Microsoft Research, USA haoche@microsoft.com 2 Microsoft Research, USA kim.laine@microsoft.com

More information

Diophantine equations via weighted LLL algorithm

Diophantine equations via weighted LLL algorithm Cryptanalysis of a public key cryptosystem based on Diophantine equations via weighted LLL algorithm Momonari Kudo Graduate School of Mathematics, Kyushu University, JAPAN Kyushu University Number Theory

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Ali El Kaafarani 1 Mathematical Institute 2 PQShield Ltd. 1 of 44 Outline 1 Public Key Encryption: security notions 2 RSA Encryption Scheme 2 of 44 Course main reference 3 of 44

More information

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds I. Chillotti 1 N. Gama 2,1 M. Georgieva 3 M. Izabachène 4 1 2 3 4 Séminaire GTBAC Télécom ParisTech April 6, 2017 1 / 43 Table

More information

Bootstrapping for Approximate Homomorphic Encryption

Bootstrapping for Approximate Homomorphic Encryption Bootstrapping for Approximate Homomorphic Encryption Jung Hee Cheon 1, Kyoohyung Han 1, Andrey Kim 1, Miran Kim 2, and Yongsoo Song 1,2 1 Seoul National University, Seoul, Republic of Korea {jhcheon, satanigh,

More information

A Custom Accelerator for Homomorphic Encryption Applications

A Custom Accelerator for Homomorphic Encryption Applications A Custom Accelerator for Homomorphic Encryption Applications Erdinç Öztürk, Yarkın Doröz, Erkay Savaş and Berk Sunar Abstract After the introduction of first fully homomorphic encryption scheme in 2009,

More information

Fully homomorphic encryption scheme using ideal lattices. Gentry s STOC 09 paper - Part II

Fully homomorphic encryption scheme using ideal lattices. Gentry s STOC 09 paper - Part II Fully homomorphic encryption scheme using ideal lattices Gentry s STOC 09 paper - Part GGH cryptosystem Gentry s scheme is a GGH-like scheme. GGH: Goldreich, Goldwasser, Halevi. ased on the hardness of

More information

A Comment on Gu Map-1

A Comment on Gu Map-1 A Comment on Gu Map-1 Yupu Hu and Huiwen Jia ISN Laboratory, Xidian University, 710071 Xi an, China yphu@mail.xidian.edu.cn Abstract. Gu map-1 is a modified version of GGH map. It uses same ideal lattices

More information

Subring Homomorphic Encryption

Subring Homomorphic Encryption Subring Homomorphic Encryption Seiko Arita Sari Handa June 7, 2017 Abstract In this paper, we construct subring homomorphic encryption scheme that is a homomorphic encryption scheme built on the decomposition

More information

Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware

Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware Yarkın Doröz 1, Erdinç Öztürk2, Erkay Savaş 3, and Berk Sunar 1 1 Worcester Polytechnic Institute {ydoroz,sunar}@wpi.edu 2 Istanbul

More information

Public-Key Encryption: ElGamal, RSA, Rabin

Public-Key Encryption: ElGamal, RSA, Rabin Public-Key Encryption: ElGamal, RSA, Rabin Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Public-Key Encryption Syntax Encryption algorithm: E. Decryption

More information

Fully Homomorphic Encryption over the Integers

Fully Homomorphic Encryption over the Integers Fully Homomorphic Encryption over the Integers Many slides borrowed from Craig Marten van Dijk 1, Craig Gentry 2, Shai Halevi 2, Vinod Vaikuntanathan 2 1 MIT, 2 IBM Research The Goal I want to delegate

More information

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces (Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces Koji Nuida Kaoru Kurosawa National Institute of Advanced Industrial Science and Technology (AIST), Japan, k.nuida@aist.go.jp

More information

FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes

FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes FPGA-based Niederreiter Cryptosystem using Binary Goppa Codes Wen Wang 1, Jakub Szefer 1, and Ruben Niederhagen 2 1. Yale University, USA 2. Fraunhofer Institute SIT, Germany April 9, 2018 PQCrypto 2018

More information

COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION

COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION #RSAC SESSION ID: CRYP-W02 COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION Rachel Player PhD Student // Postdoc Royal Holloway, University of London, UK // LIP6, Sorbonne

More information

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt NTRUReEncrypt An Efficient Proxy Re-Encryption Scheme based on NTRU David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain

More information

S XMP LIBRARY INTERNALS. Niall Emmart University of Massachusetts. Follow on to S6151 XMP: An NVIDIA CUDA Accelerated Big Integer Library

S XMP LIBRARY INTERNALS. Niall Emmart University of Massachusetts. Follow on to S6151 XMP: An NVIDIA CUDA Accelerated Big Integer Library S6349 - XMP LIBRARY INTERNALS Niall Emmart University of Massachusetts Follow on to S6151 XMP: An NVIDIA CUDA Accelerated Big Integer Library High Performance Modular Exponentiation A^K mod P Where A,

More information

Fixed-Point Arithmetic in SHE Schemes

Fixed-Point Arithmetic in SHE Schemes Fixed-Point Arithmetic in SHE Schemes Anamaria Costache 1, Nigel P. Smart 1, Srinivas Vivek 1, Adrian Waller 2 1 University of Bristol 2 Thales UK Research & Technology July 6, 2016 Outline Motivation

More information

Mathematics of Cryptography

Mathematics of Cryptography UNIT - III Mathematics of Cryptography Part III: Primes and Related Congruence Equations 1 Objectives To introduce prime numbers and their applications in cryptography. To discuss some primality test algorithms

More information

Faster Fully Homomorphic Encryption

Faster Fully Homomorphic Encryption Faster Fully Homomorphic Encryption Damien Stehlé Joint work with Ron Steinfeld CNRS ENS de Lyon / Macquarie University Singapore, December 2010 Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010

More information

Introduction to Public-Key Cryptosystems:

Introduction to Public-Key Cryptosystems: Introduction to Public-Key Cryptosystems: Technical Underpinnings: RSA and Primality Testing Modes of Encryption for RSA Digital Signatures for RSA 1 RSA Block Encryption / Decryption and Signing Each

More information

Homomorphic Evaluation of Lattice-Based Symmetric Encryption Schemes

Homomorphic Evaluation of Lattice-Based Symmetric Encryption Schemes An extended abstract of this paper appears in the proceedings of COCOON 2016. This is the full version. Homomorphic Evaluation of Lattice-Based Symmetric Encryption Schemes Pierre-Alain Fouque 1,3, Benjamin

More information

CRT-based Fully Homomorphic Encryption over the Integers

CRT-based Fully Homomorphic Encryption over the Integers CRT-based Fully Homomorphic Encryption over the Integers Jinsu Kim 1, Moon Sung Lee 1, Aaram Yun 2 and Jung Hee Cheon 1 1 Seoul National University (SNU), Republic of Korea 2 Ulsan National Institute of

More information

Better Bootstrapping in Fully Homomorphic Encryption

Better Bootstrapping in Fully Homomorphic Encryption Better Bootstrapping in Fully Homomorphic Encryption Craig Gentry IBM Shai Halevi IBM Nigel P. Smart University of Bristol December 15, 2011 Abstract Gentry s bootstrapping technique is currently the only

More information

COMP4109 : Applied Cryptography

COMP4109 : Applied Cryptography COMP409 : Applied Cryptography Fall 203 M. Jason Hinek Carleton University Applied Cryptography Day 3 public-key encryption schemes some attacks on RSA factoring small private exponent 2 RSA cryptosystem

More information

Craig Gentry. IBM Watson. Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel 19/2/ /2/2012

Craig Gentry. IBM Watson. Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel 19/2/ /2/2012 Winter School on Lattice-Based Cryptography and Applications Bar-Ilan University, Israel 19/2/2012-22/2/2012 Bar-Ilan University Craig Gentry IBM Watson Optimizations of Somewhat Homomorphic Encryption

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption Fully Homomorphic Encryption Mitchell Harper June 2, 2014 1 Contents 1 Introduction 3 2 Cryptography Primer 3 2.1 Definitions............................. 3 2.2 Using a Public-key Scheme....................

More information

Bandwidth Efficient PIR from NTRU

Bandwidth Efficient PIR from NTRU Bandwidth Efficient PIR from NTRU Yarkın Doröz 1, Berk Sunar 1 and Ghaith Hammouri 2 1 Worcester Polytechnic Institute 2 Crags Inc. Abstract. We present a private information retrieval (PIR) scheme based

More information

Manipulating Data while It Is Encrypted

Manipulating Data while It Is Encrypted Manipulating Data while It Is Encrypted Craig Gentry IBM Watson ACISP 2010 The Goal A way to delegate processing of my data, without giving away access to it. Application: Private Google Search I want

More information

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks

Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks 1 Cosc 412: Cryptography and complexity Lecture 7 (22/8/2018) Knapsacks and attacks Michael Albert michael.albert@cs.otago.ac.nz 2 This week Arithmetic Knapsack cryptosystems Attacks on knapsacks Some

More information

Fully Key-Homomorphic Encryption and its Applications

Fully Key-Homomorphic Encryption and its Applications Fully Key-Homomorphic Encryption and its Applications D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, Valeria Nikolaenko, G. Segev, V. Vaikuntanathan, D. Vinayagamurthy Outline Background on PKE and IBE Functionality

More information

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces

(Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces (Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces Koji Nuida 12 and Kaoru Kurosawa 3 1 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki

More information

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix

A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix A Large Block Cipher using an Iterative Method and the Modular Arithmetic Inverse of a key Matrix S. Udaya Kumar V. U. K. Sastry A. Vinaya babu Abstract In this paper, we have developed a block cipher

More information

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael

Outline. 1 Arithmetic on Bytes and 4-Byte Vectors. 2 The Rijndael Algorithm. 3 AES Key Schedule and Decryption. 4 Strengths and Weaknesses of Rijndael Outline CPSC 418/MATH 318 Introduction to Cryptography Advanced Encryption Standard Renate Scheidler Department of Mathematics & Statistics Department of Computer Science University of Calgary Based in

More information

Fully Homomorphic Encryption - Part II

Fully Homomorphic Encryption - Part II 6.889: New Developments in Cryptography February 15, 2011 Instructor: Boaz Barak Fully Homomorphic Encryption - Part II Scribe: Elette Boyle 1 Overview We continue our discussion on the fully homomorphic

More information

Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography

Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography Selçuk Baktır, Berk Sunar {selcuk,sunar}@wpi.edu Department of Electrical & Computer Engineering Worcester Polytechnic Institute

More information

Cryptology. Scribe: Fabrice Mouhartem M2IF

Cryptology. Scribe: Fabrice Mouhartem M2IF Cryptology Scribe: Fabrice Mouhartem M2IF Chapter 1 Identity Based Encryption from Learning With Errors In the following we will use this two tools which existence is not proved here. The first tool description

More information

Hardware Acceleration of the Tate Pairing in Characteristic Three

Hardware Acceleration of the Tate Pairing in Characteristic Three Hardware Acceleration of the Tate Pairing in Characteristic Three CHES 2005 Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 1 Introduction Pairing based cryptography is a (fairly)

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 7

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 7 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 7 Lecture date: Monday, 28 February, 2005 Scribe: M.Chov, K.Leung, J.Salomone 1 Oneway Trapdoor Permutations Recall that a

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION.

AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION. AES-VCM, AN AES-GCM CONSTRUCTION USING AN INTEGER-BASED UNIVERSAL HASH FUNCTION. ED KNAPP Abstract. We give a framework for construction and composition of universal hash functions. Using this framework,

More information

Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics

Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics Jung Hee Cheon 1, Andrey Kim 1, Donggeon Yhee 1 Seoul National University, Republic of Korea {jhcheon, kimandrik, dark0926}@snu.ac.kr

More information

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange

Public-Key Cryptography. Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Public-Key Cryptography Lecture 9 Public-Key Encryption Diffie-Hellman Key-Exchange Shared/Symmetric-Key Encryption (a.k.a. private-key encryption) SKE: Syntax KeyGen outputs K K E scheme E Syntax a.k.a.

More information

A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes

A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes Jean-Claude Bajard 1, Julien Eynard 2, M. Anwar Hasan 2, and Vincent Zucca 1 1 Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France.

More information

Introduction to Modern Cryptography. (1) Finite Groups, Rings and Fields. (2) AES - Advanced Encryption Standard

Introduction to Modern Cryptography. (1) Finite Groups, Rings and Fields. (2) AES - Advanced Encryption Standard Introduction to Modern Cryptography Lecture 3 (1) Finite Groups, Rings and Fields (2) AES - Advanced Encryption Standard +,0, and -a are only notations! Review - Groups Def (group): A set G with a binary

More information

Somewhat Practical Fully Homomorphic Encryption

Somewhat Practical Fully Homomorphic Encryption Somewhat Practical Fully Homomorphic Encryption Junfeng Fan and Frederik Vercauteren Katholieke Universiteit Leuven, COSIC & IBBT Kasteelpark Arenberg 10 B-3001 Leuven-Heverlee, Belgium firstname.lastname@esat.kuleuven.be

More information

Efficient and Secure Delegation of Linear Algebra

Efficient and Secure Delegation of Linear Algebra Efficient and Secure Delegation of Linear Algebra Payman Mohassel University of Calgary pmohasse@cpsc.ucalgary.ca Abstract We consider secure delegation of linear algebra computation, wherein a client,

More information

Ideal Lattices and NTRU

Ideal Lattices and NTRU Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin April 23-30, 2013 Ideal Lattices and NTRU Scribe: Kina Winoto 1 Algebraic Background (Reminders) Definition 1. A commutative

More information