Multikey Homomorphic Encryption from NTRU

Size: px
Start display at page:

Download "Multikey Homomorphic Encryption from NTRU"

Transcription

1 Multikey Homomorphic Encryption from NTRU Li Chen lichen.xd at gmail.com Xidian University January 12, 2014

2 Multikey Homomorphic Encryption from NTRU Outline 1 Variant of NTRU Encryption 2 Somewhat homomorphic from NTRU 3 Optimized Scheme 4 More Optimize & Application Scenario Li Chen Xidian University 2/13

3 Multikey Homomorphic Encryption from NTRU References [1] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems over ideal lattices. In Advances in Cryptology EUROCRYPT 2011, pages Springer, [2] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In Proceedings of the 44th symposium on Theory of Computing, pages ACM, [3] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In Automata, Languages and Programming, pages Springer, Claim: Our slides are based on reference [1], [2] Li Chen Xidian University 3/13

4 1 Variant of NTRU Encryption Notations & Public Parameters: security parameter κ. a prime q = q(κ). a ring R Z[x]/ x n + 1, and a ring R q R/qR = Z q[x]/ x n + 1. B-bounded polynomial, f R, if f B. a B-bounded distribution χ over the ring R, i.e. Pr[ f B : f χ] = 1 ε, where ε is negligible. Li Chen Xidian University 4/13

5 KenGen(1 κ ) : sample bounded polynomials f, g χ, and set f = 2f + 1 (so that f 1 (mod 2)). Set h = 2gf 1 R q, then public key pk={h}, secrete key sk={f} (if f is not invertible over R q, resample f ). Enc(m, pk) : Suppose the plaintext m {0, 1}, sample bounded polynomials s, e χ. Output ciphertext c hs + 2e + m R q. Dec(c, sk) : Let µ = cf R q, output m µ mod 2. Correctness: µ = cf = (hs + 2e + m)f = 2gf 1 sf + 2ef + mf = 2gs + 2ef + mf Since 2gs + 2ef + mf < q 2, µ mod 2 = mf mod 2 = m. Where µ means the L norm of µ mod x n + 1. Li Chen Xidian University 5/13

6 Lemma 1.1 ([3]) Let n N, φ(x) = x n +1, and R Z[x]/ φ(x). For arbitrary s, t R, s t (mod φ(x)) n s t s t (mod φ(x)) n s t Parameter Setting: Since g, s, f, e are all bounded by 2B + 1, then gs (mod ()x n + 1) and fe (mod ()x n + 1) are bounded by n(2b + 1) 2, thus 2gs + 2ef + mf (mod ()x n + 1) is bounded by 4n(2B + 1) 2 + 2B + 1 < 40nB 2. So, for a fresh ciphertext to be decrypted correctly, we only to set q > 80nB 2. Li Chen Xidian University 6/13

7 2 Somewhat homomorphic from NTRU Initiation: Let (h 1, f 1), (h 2, f 2) be two public-secret key pairs. Given two plaintext bits m 1, m 2, let c 1 = Enc(m 1, h 1), c 2 = Enc(m 2, h 2), i.e. c 1 = h 1s 1 + 2e 1 + m 1, c 2 = h 2s 2 + 2e 2 + m 2. f 1f 2(c 1 + c 2) = 2[gs(f 1 + f 2) + f 1f 2(e 1 + e 2)] + f 1f 2(m 1 + m 2) f 1f 2(c 1c 2) = 2[2g 1s 1g 2s 2 + 2g 1s 1f 2e 2 + 2g 2s 2f 1e 1 +g 1s 1f 2m 2 + g 2s 2f 1m 2 + e 1f 1f 2m 2 + e 2f 1f 2m 1] +f 1f 2m 1m 2 Thus by setting a proper q such that there is no wrap-around modulo q, then, m 1 + m 2 Dec(c 1 + c 2, f 1f 2)) m 1m 2 Dec(c 1c 2, f 1f 2) Li Chen Xidian University 7/13

8 Notation: Let (h i, f i ), i = 1,, N be N public-secret key pairs, m 1, m 2,, m N be N plaintext bits, c 1, c 2,, c N be the ciphertexts respectively encrypted using public key h 1, h 2,, h N, i.e. c i = h i s i + 2e i + m i, i = 1,, N. To decrypt c 1 + c c N and c 1c 2 c N, the minimum joint key need is N i=1 f i. Let c = c 1c 2 and c = c 2c 3, to decrypt c we need joint key f 1f 2, to decrypt c we need joint key f 2f 3. To decrypt c + c we need joint key f 1f 2f 3, to decrypt c c we need joint key f 1f 2 2 f 3. Let D be the degree of the evaluated circuit, N be the number of parties involved, The size of the joint key need to decrypt an evaluated ciphertext grows exponentially both with D and N. The exponential grow dependant on N can not be eliminate, but that dependant on D can be eliminate. Li Chen Xidian University 8/13

9 3 Optimized Scheme KenGen(1 κ ) : Sample bounded polynomials f, g χ, and set f = 2f + 1. Set pk h = 2gf 1 R q, sk f For all τ [0,, log q ], sample s τ, e τ χ, and compute γ τ = hs τ + 2e τ + 2 τ f R q. Set ek = (γ 0,, γ log q ) Enc(m, pk) : Suppose the plaintext m {0, 1}, sample bounded polynomials s, e χ. Output ciphertext c hs + 2e + m R q. Dec(c, sk 1,,, sk N ) : sk i = f i, compute µ = cf 1 f N R q, output m µ mod 2. Li Chen Xidian University 9/13

10 Add(c 1, K 1, c 2, K 2, ) : Output c add c 1 + c 2 and K add = K 1 K2. Mult(c 1, K 1, c 2, K 2, ) : Compute c 0 = c 1c 2 R q, and let K 1 K2 = {pk i1, pk i2,, pk ir }. If K 1 K2 =, c mult c 0. Otherwise, for j [r] and τ [0, log q ], define c j 1,τ, such that c j 1 = log q c j 1,τ 2 τ is the binary representation of c j 1. For each pk ij = f ij, let ek ij = (γ ij,0,, γ ij, log q ), where γ ij,τ = hs τ + 2e τ + 2 τ f ij. Then let c j = log q Finally, output c mult = c r, and K mult = K 1 K2. c j 1,τ γ ij,τ Li Chen Xidian University 10/13

11 Correctness: Let f K1 = f i K i, f K2 = 1 f i K i, and F 0 = f K1 f K2, F j = F j 1 f 1 2 i j, for j = 1, 2,, r. Obviously, F r = f i K i. Just need to show F mult r c r = F 0 c 0 (mod 2). F j c j = f ij F j (f ij ) 2 (f ij c j ) = F j 1 (f ij ) 2 (f ij c j ) = F j 1 (f ij ) 2 ( log q ) c j 1,τ (γ ij,τ f ij ) Since γ ij,τ f ij = 2(g ij s ij,τ + f ij e ij,τ ) + 2 τ f 2 i j = 2E τ + 2 τ f 2 i j, we have, F j c j = F j 1 (f ij ) 2 ( log q ) c j 1,τ (2E τ + 2 τ fi 2 j ) log q ) log q = 2 (F j 1 (f ij ) 2 c j 1,τ E τ + F j 1 c j 1,τ 2 τ log q ) = 2 (F j 1 (f ij ) 2 c j 1,τ E τ + F j 1 c j 1 Li Chen Xidian University 11/13

12 4 More Optimize & Application Scenario Internal Discussed... Li Chen Xidian University 12/13

13 Thanks! & Questions?

Lattice Based Crypto: Answering Questions You Don't Understand

Lattice Based Crypto: Answering Questions You Don't Understand Lattice Based Crypto: Answering Questions You Don't Understand Vadim Lyubashevsky INRIA / ENS, Paris Cryptography Secure communication in the presence of adversaries Symmetric-Key Cryptography Secret key

More information

Ideal Lattices and NTRU

Ideal Lattices and NTRU Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin April 23-30, 2013 Ideal Lattices and NTRU Scribe: Kina Winoto 1 Algebraic Background (Reminders) Definition 1. A commutative

More information

Multi-key fully homomorphic encryption report

Multi-key fully homomorphic encryption report Multi-key fully homomorphic encryption report Elena Fuentes Bongenaar July 12, 2016 1 Introduction Since Gentry s first Fully Homomorphic Encryption (FHE) scheme in 2009 [6] multiple new schemes have been

More information

Computing with Encrypted Data Lecture 26

Computing with Encrypted Data Lecture 26 Computing with Encrypted Data 6.857 Lecture 26 Encryption for Secure Communication M Message M All-or-nothing Have Private Key, Can Decrypt No Private Key, No Go cf. Non-malleable Encryption Encryption

More information

The LTV Homomorphic Encryption Scheme and Implementation in Sage

The LTV Homomorphic Encryption Scheme and Implementation in Sage The LTV Homomorphic Encryption Scheme and Implementation in Sage A Major Qualifying Project submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the

More information

The Distributed Decryption Schemes for Somewhat Homomorphic Encryption

The Distributed Decryption Schemes for Somewhat Homomorphic Encryption Copyright c The Institute of Electronics, Information and Communication Engineers SCIS 2012 The 29th Symposium on Cryptography and Information Security Kanazawa, Japan, Jan. 30 - Feb. 2, 2012 The Institute

More information

Faster Fully Homomorphic Encryption

Faster Fully Homomorphic Encryption Faster Fully Homomorphic Encryption Damien Stehlé Joint work with Ron Steinfeld CNRS ENS de Lyon / Macquarie University Singapore, December 2010 Damien Stehlé Faster Fully Homomorphic Encryption 08/12/2010

More information

Public-Key Encryption Based on LPN

Public-Key Encryption Based on LPN Public-Key Encryption Based on LPN Li Chen lichen.xd at gmail.com Xidian University November 3, 013 Public-Key Encryption Based on LPN Outline 1 Basic LPN cryptosystem Multi-bit LPN cryptosystem 3 Ring-LPN

More information

Report Fully Homomorphic Encryption

Report Fully Homomorphic Encryption Report Fully Homomorphic Encryption Elena Fuentes Bongenaar July 28, 2016 1 Introduction Outsourcing computations can be interesting in many settings, ranging from a client that is not powerful enough

More information

Cryptology. Scribe: Fabrice Mouhartem M2IF

Cryptology. Scribe: Fabrice Mouhartem M2IF Cryptology Scribe: Fabrice Mouhartem M2IF Chapter 1 Identity Based Encryption from Learning With Errors In the following we will use this two tools which existence is not proved here. The first tool description

More information

Gentry s SWHE Scheme

Gentry s SWHE Scheme Homomorphic Encryption and Lattices, Spring 011 Instructor: Shai Halevi May 19, 011 Gentry s SWHE Scheme Scribe: Ran Cohen In this lecture we review Gentry s somewhat homomorphic encryption (SWHE) scheme.

More information

Some security bounds for the DGHV scheme

Some security bounds for the DGHV scheme Some security bounds for the DGHV scheme Franca Marinelli f.marinelli@studenti.unitn.it) Department of Mathematics, University of Trento, Italy Riccardo Aragona riccardo.aragona@unitn.it) Department of

More information

Open problems in lattice-based cryptography

Open problems in lattice-based cryptography University of Auckland, New Zealand Plan Goal: Highlight some hot topics in cryptography, and good targets for mathematical cryptanalysis. Approximate GCD Homomorphic encryption NTRU and Ring-LWE Multi-linear

More information

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt

Outline Proxy Re-Encryption NTRU NTRUReEncrypt PS-NTRUReEncrypt Experimental results Conclusions. NTRUReEncrypt NTRUReEncrypt An Efficient Proxy Re-Encryption Scheme based on NTRU David Nuñez, Isaac Agudo, and Javier Lopez Network, Information and Computer Security Laboratory (NICS Lab) Universidad de Málaga, Spain

More information

Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems

Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 3-31-2016 Evaluation of Homomorphic Primitives for Computations on Encrypted Data for CPS systems Peizhao Hu Rochester

More information

A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme

A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme Eduardo Morais Ricardo Dahab October 2014 Abstract In this paper we present a key recovery attack to the scale-invariant

More information

6.892 Computing on Encrypted Data September 16, Lecture 2

6.892 Computing on Encrypted Data September 16, Lecture 2 6.89 Computing on Encrypted Data September 16, 013 Lecture Lecturer: Vinod Vaikuntanathan Scribe: Britt Cyr In this lecture, we will define the learning with errors (LWE) problem, show an euivalence between

More information

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi University of Luxembourg & ENS & NTT EUROCRYPT, 2012-04-18

More information

Multiparty Computation from Somewhat Homomorphic Encryption. November 9, 2011

Multiparty Computation from Somewhat Homomorphic Encryption. November 9, 2011 Multiparty Computation from Somewhat Homomorphic Encryption Ivan Damgård 1 Valerio Pastro 1 Nigel Smart 2 Sarah Zakarias 1 1 Aarhus University 2 Bristol University CTIC 交互计算 November 9, 2011 Damgård, Pastro,

More information

Classical hardness of the Learning with Errors problem

Classical hardness of the Learning with Errors problem Classical hardness of the Learning with Errors problem Adeline Langlois Aric Team, LIP, ENS Lyon Joint work with Z. Brakerski, C. Peikert, O. Regev and D. Stehlé August 12, 2013 Adeline Langlois Hardness

More information

Shai Halevi IBM August 2013

Shai Halevi IBM August 2013 Shai Halevi IBM August 2013 I want to delegate processing of my data, without giving away access to it. I want to delegate the computation to the cloud, I want but the to delegate cloud the shouldn t computation

More information

Classical hardness of Learning with Errors

Classical hardness of Learning with Errors Classical hardness of Learning with Errors Adeline Langlois Aric Team, LIP, ENS Lyon Joint work with Z. Brakerski, C. Peikert, O. Regev and D. Stehlé Adeline Langlois Classical Hardness of LWE 1/ 13 Our

More information

A Comment on Gu Map-1

A Comment on Gu Map-1 A Comment on Gu Map-1 Yupu Hu and Huiwen Jia ISN Laboratory, Xidian University, 710071 Xi an, China yphu@mail.xidian.edu.cn Abstract. Gu map-1 is a modified version of GGH map. It uses same ideal lattices

More information

Homomorphic AES Evaluation Using the Modified LTV Scheme

Homomorphic AES Evaluation Using the Modified LTV Scheme Noname manuscript No. (will be inserted by the editor) Homomorphic AES Evaluation Using the Modified LTV Scheme Yarkın Doröz Yin Hu Berk Sunar the date of receipt and acceptance should be inserted later

More information

On Two Round Rerunnable MPC Protocols

On Two Round Rerunnable MPC Protocols On Two Round Rerunnable MPC Protocols Paul Laird Dublin Institute of Technology, Dublin, Ireland email: {paul.laird}@dit.ie Abstract. Two-rounds are minimal for all MPC protocols in the absence of a trusted

More information

How to Use Linear Homomorphic Signature in Network Coding

How to Use Linear Homomorphic Signature in Network Coding How to Use Linear Homomorphic Signature in Network Coding Li Chen lichen.xd at gmail.com Xidian University September 28, 2013 How to Use Linear Homomorphic Signature in Network Coding Outline 1 Linear

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption Fully Homomorphic Encryption Thomas PLANTARD Universiy of Wollongong - thomaspl@uow.edu.au Plantard (UoW) FHE 1 / 24 Outline 1 Introduction Privacy Homomorphism Applications Timeline 2 Gentry Framework

More information

Fully Homomorphic Encryption over the Integers

Fully Homomorphic Encryption over the Integers Fully Homomorphic Encryption over the Integers Many slides borrowed from Craig Marten van Dijk 1, Craig Gentry 2, Shai Halevi 2, Vinod Vaikuntanathan 2 1 MIT, 2 IBM Research Computing on Encrypted Data

More information

Revisiting Lattice Attacks on overstretched NTRU parameters

Revisiting Lattice Attacks on overstretched NTRU parameters Revisiting Lattice Attacks on overstretched NTRU parameters P. Kirchner & P-A. Fouque Université de Rennes 1, France EUROCRYPT 2017 05/01/17 1 Plan 1. Background on NTRU and Previous Attacks 2. A New Subring

More information

Implementing Ring-LWE cryptosystems

Implementing Ring-LWE cryptosystems Implementing Ring-LWE cryptosystems Tore Vincent Carstens December 16, 2016 Contents 1 Introduction 1 1.1 Motivation............................................ 1 2 Lattice Based Crypto 2 2.1 General Idea...........................................

More information

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers Jean-Sébastien Coron 1, David Naccache 2, and Mehdi Tibouchi 3 1 Université du Luxembourg jean-sebastien.coron@uni.lu

More information

Homomorphic Encryption for Approximate Matrix Arithmetic

Homomorphic Encryption for Approximate Matrix Arithmetic Homomorphic Encryption for Approximate Matrix Arithmetic Jung Hee Cheon 1, Andrey Kim 1 Seoul National University, Republic of Korea {jhcheon, kimandrik}@snu.ac.kr Abstract. Homomorphic Encryption for

More information

Fully Homomorphic Encryption over the Integers with Shorter Public Keys

Fully Homomorphic Encryption over the Integers with Shorter Public Keys Fully Homomorphic Encryption over the Integers with Shorter Public Keys Jean-Sébastien Coron, Avradip Mandal, David Naccache 2, and Mehdi Tibouchi,2 Université du Luxembourg {jean-sebastien.coron, avradip.mandal}@uni.lu

More information

General Impossibility of Group Homomorphic Encryption in the Quantum World

General Impossibility of Group Homomorphic Encryption in the Quantum World General Impossibility of Group Homomorphic Encryption in the Quantum World Frederik Armknecht Tommaso Gagliardoni Stefan Katzenbeisser Andreas Peter PKC 2014, March 28th Buenos Aires, Argentina 1 An example

More information

Lattice Cryptography

Lattice Cryptography CSE 06A: Lattice Algorithms and Applications Winter 01 Instructor: Daniele Micciancio Lattice Cryptography UCSD CSE Many problems on point lattices are computationally hard. One of the most important hard

More information

HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY 1 / 51

HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY 1 / 51 HOMOMORPHIC ENCRYPTION AND LATTICE BASED CRYPTOGRAPHY Abderrahmane Nitaj Laboratoire de Mathe matiques Nicolas Oresme Universite de Caen Normandie, France Nouakchott, February 15-26, 2016 Abderrahmane

More information

Gentry s Fully Homomorphic Encryption Scheme

Gentry s Fully Homomorphic Encryption Scheme Gentry s Fully Homomorphic Encryption Scheme Under Guidance of Prof. Manindra Agrawal Rishabh Gupta Email: rishabh@cse.iitk.ac.in Sanjari Srivastava Email: sanjari@cse.iitk.ac.in Abstract This report presents

More information

Fully homomorphic encryption scheme using ideal lattices. Gentry s STOC 09 paper - Part II

Fully homomorphic encryption scheme using ideal lattices. Gentry s STOC 09 paper - Part II Fully homomorphic encryption scheme using ideal lattices Gentry s STOC 09 paper - Part GGH cryptosystem Gentry s scheme is a GGH-like scheme. GGH: Goldreich, Goldwasser, Halevi. ased on the hardness of

More information

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds I. Chillotti 1 N. Gama 2,1 M. Georgieva 3 M. Izabachène 4 1 2 3 4 Séminaire GTBAC Télécom ParisTech April 6, 2017 1 / 43 Table

More information

Somewhat Practical Fully Homomorphic Encryption

Somewhat Practical Fully Homomorphic Encryption Somewhat Practical Fully Homomorphic Encryption Junfeng Fan and Frederik Vercauteren Katholieke Universiteit Leuven, COSIC & IBBT Kasteelpark Arenberg 10 B-3001 Leuven-Heverlee, Belgium firstname.lastname@esat.kuleuven.be

More information

Cryptographic Multilinear Maps. Craig Gentry and Shai Halevi

Cryptographic Multilinear Maps. Craig Gentry and Shai Halevi Cryptographic Multilinear Maps Craig Gentry and Shai Halevi China Summer School on Lattices and Cryptography, June 2014 Multilinear Maps (MMAPs) A Technical Tool A primitive for building applications,

More information

Density of Ideal Lattices

Density of Ideal Lattices Density of Ideal Lattices - Preliminary Draft - Johannes Buchmann and Richard Lindner Technische Universität Darmstadt, Department of Computer Science Hochschulstraße 10, 64289 Darmstadt, Germany buchmann,rlindner@cdc.informatik.tu-darmstadt.de

More information

Fully Homomorphic Encryption over the Integers with Shorter Public Keys

Fully Homomorphic Encryption over the Integers with Shorter Public Keys Fully Homomorphic Encryption over the Integers with Shorter Public Keys Jean-Sébastien Coron, Avradip Mandal, David Naccache 2, and Mehdi Tibouchi,2 Université du Luxembourg 6, rue Richard Coudenhove-Kalergi

More information

High-Precision Arithmetic in Homomorphic Encryption

High-Precision Arithmetic in Homomorphic Encryption High-Precision Arithmetic in Homomorphic Encryption Hao Chen 1, Kim Laine 2, Rachel Player 3, and Yuhou Xia 4 1 Microsoft Research, USA haoche@microsoft.com 2 Microsoft Research, USA kim.laine@microsoft.com

More information

Better Bootstrapping in Fully Homomorphic Encryption

Better Bootstrapping in Fully Homomorphic Encryption Better Bootstrapping in Fully Homomorphic Encryption Craig Gentry 1, Shai Halevi 1, and Nigel P. Smart 2 1 IBM T.J. Watson Research Center 2 Dept. Computer Science, University of Bristol Abstract. Gentry

More information

Fixed-Point Arithmetic in SHE Schemes

Fixed-Point Arithmetic in SHE Schemes Fixed-Point Arithmetic in SHE Schemes Anamaria Costache 1, Nigel P. Smart 1, Srinivas Vivek 1, Adrian Waller 2 1 University of Bristol 2 Thales UK Research & Technology July 6, 2016 Outline Motivation

More information

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions

How to Use Short Basis : Trapdoors for Hard Lattices and new Cryptographic Constructions Presentation Article presentation, for the ENS Lattice Based Crypto Workgroup http://www.di.ens.fr/~pnguyen/lbc.html, 30 September 2009 How to Use Short Basis : Trapdoors for http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

More information

Fully Homomorphic Encryption and Bootstrapping

Fully Homomorphic Encryption and Bootstrapping Fully Homomorphic Encryption and Bootstrapping Craig Gentry and Shai Halevi June 3, 2014 China Summer School on Lattices and Cryptography Fully Homomorphic Encryption (FHE) A FHE scheme can evaluate unbounded

More information

Fully Homomorphic Encryption - Part II

Fully Homomorphic Encryption - Part II 6.889: New Developments in Cryptography February 15, 2011 Instructor: Boaz Barak Fully Homomorphic Encryption - Part II Scribe: Elette Boyle 1 Overview We continue our discussion on the fully homomorphic

More information

Field Switching in BGV-Style Homomorphic Encryption

Field Switching in BGV-Style Homomorphic Encryption Field Switching in BGV-Style Homomorphic Encryption Craig Gentry IBM Research Shai Halevi IBM Research Nigel P. Smart University of Bristol Chris Peikert Georgia Institute of Technology September 13, 2013

More information

Cryptographic Algorithms for the Secure Delegation of Multiparty Computation

Cryptographic Algorithms for the Secure Delegation of Multiparty Computation Cryptographic Algorithms for the Secure Delegation of Multiparty Computation by Adriana López-Alt A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

Homomorphic Encryption. Liam Morris

Homomorphic Encryption. Liam Morris Homomorphic Encryption Liam Morris Topics What Is Homomorphic Encryption? Partially Homomorphic Cryptosystems Fully Homomorphic Cryptosystems Benefits of Homomorphism Drawbacks of Homomorphism What Is

More information

Bootstrapping for HElib

Bootstrapping for HElib Bootstrapping for HElib Shai Halevi 1 and Victor Shoup 1,2 1 IBM Research 2 New York University Abstract. Gentry s bootstrapping technique is still the only known method of obtaining fully homomorphic

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Hardness and advantages of Module-SIS and Module-LWE

Hardness and advantages of Module-SIS and Module-LWE Hardness and advantages of Module-SIS and Module-LWE Adeline Roux-Langlois EMSEC: Univ Rennes, CNRS, IRISA April 24, 2018 Adeline Roux-Langlois Hardness and advantages of Module-SIS and LWE April 24, 2018

More information

High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA

High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA High-Performance FV Somewhat Homomorphic Encryption on GPUs: An Implementation using CUDA Ahmad Al Badawi ahmad@u.nus.edu National University of Singapore (NUS) Sept 10 th 2018 CHES 2018 FHE The holy grail

More information

CRYPTANALYSIS OF COMPACT-LWE

CRYPTANALYSIS OF COMPACT-LWE SESSION ID: CRYP-T10 CRYPTANALYSIS OF COMPACT-LWE Jonathan Bootle, Mehdi Tibouchi, Keita Xagawa Background Information Lattice-based cryptographic assumption Based on the learning-with-errors (LWE) assumption

More information

An Overview of Homomorphic Encryption

An Overview of Homomorphic Encryption An Overview of Homomorphic Encryption Alexander Lange Department of Computer Science Rochester Institute of Technology Rochester, NY 14623 May 9, 2011 Alexander Lange (RIT) Homomorphic Encryption May 9,

More information

Introduction to Cybersecurity Cryptography (Part 4)

Introduction to Cybersecurity Cryptography (Part 4) Introduction to Cybersecurity Cryptography (Part 4) Review of Last Lecture Blockciphers Review of DES Attacks on Blockciphers Advanced Encryption Standard (AES) Modes of Operation MACs and Hashes Message

More information

Parameter selection in Ring-LWE-based cryptography

Parameter selection in Ring-LWE-based cryptography Parameter selection in Ring-LWE-based cryptography Rachel Player Information Security Group, Royal Holloway, University of London based on joint works with Martin R. Albrecht, Hao Chen, Kim Laine, and

More information

Homomorphic Evaluation of the AES Circuit

Homomorphic Evaluation of the AES Circuit Homomorphic Evaluation of the AES Circuit IBM Research and University Of Bristol. August 22, 2012 Homomorphic Evaluation of the AES Circuit Slide 1 Executive Summary We present a working implementation

More information

Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP

Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP Zvika Brakerski Stanford University zvika@stanford.edu Abstract. We present a new tensoring techniue for LWE-based fully homomorphic

More information

Weak Instances of PLWE

Weak Instances of PLWE Weak Instances of PLWE Kirsten Eisenträger 1, Sean Hallgren 2, and Kristin Lauter 3 1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA, and Harvard University.

More information

Towards Round-Optimal Secure Multiparty Computations: Multikey FHE without a CRS

Towards Round-Optimal Secure Multiparty Computations: Multikey FHE without a CRS Towards Round-Optimal Secure Multiparty Computations: Multikey FHE without a CRS Eunkyung Kim 1, Hyang-Sook Lee( ) 2, and Jeongeun Park 2 1 Security Research Team, Samsung SDS E tower, Seongchongil 56,

More information

Fully Homomorphic Encryption from LWE

Fully Homomorphic Encryption from LWE Fully Homomorphic Encryption from LWE Based on joint works with: Zvika Brakerski (Stanford) Vinod Vaikuntanathan (University of Toronto) Craig Gentry (IBM) Post-Quantum Webinar, November 2011 Outsourcing

More information

SIS-based Signatures

SIS-based Signatures Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin February 26, 2013 Basics We will use the following parameters: n, the security parameter. =poly(n). m 2n log s 2 n

More information

Recovering Short Generators of Principal Ideals in Cyclotomic Rings

Recovering Short Generators of Principal Ideals in Cyclotomic Rings Recovering Short Generators of Principal Ideals in Cyclotomic Rings Ronald Cramer, Léo Ducas, Chris Peikert, Oded Regev 9 July 205 Simons Institute Workshop on Math of Modern Crypto / 5 Short Generators

More information

6.892 Computing on Encrypted Data October 28, Lecture 7

6.892 Computing on Encrypted Data October 28, Lecture 7 6.892 Computing on Encrypted Data October 28, 2013 Lecture 7 Lecturer: Vinod Vaikuntanathan Scribe: Prashant Vasudevan 1 Garbled Circuits Picking up from the previous lecture, we start by defining a garbling

More information

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices Making NTRU as Secure as Worst-Case Problems over Ideal Lattices Damien Stehlé 1 and Ron Steinfeld 2 1 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d Italie, 69364 Lyon Cedex

More information

Multi-Key FHE from LWE, Revisited

Multi-Key FHE from LWE, Revisited Multi-Key FHE from LWE, Revisited Chris Peikert Sina Shiehian August 24, 2016 Abstract Traditional fully homomorphic encryption (FHE) schemes only allow computation on data encrypted under a single key.

More information

GGHLite: More Efficient Multilinear Maps from Ideal Lattices

GGHLite: More Efficient Multilinear Maps from Ideal Lattices GGHLite: More Efficient Multilinear Maps from Ideal Lattices Adeline Langlois, Damien Stehlé and Ron Steinfeld Aric Team, LIP, ENS de Lyon May, 4 Adeline Langlois GGHLite May, 4 / 9 Our main result Decrease

More information

Report on Learning with Errors over Rings-based HILA5 and its CCA Security

Report on Learning with Errors over Rings-based HILA5 and its CCA Security Report on Learning with Errors over Rings-based HILA5 and its CCA Security Jesús Antonio Soto Velázquez January 24, 2018 Abstract HILA5 is a cryptographic primitive based on lattices that was submitted

More information

COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION

COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION #RSAC SESSION ID: CRYP-W02 COMPUTING ON ENCRYPTED DATA: HIGH-PRECISION ARITHMETIC IN HOMOMORPHIC ENCRYPTION Rachel Player PhD Student // Postdoc Royal Holloway, University of London, UK // LIP6, Sorbonne

More information

Classical hardness of Learning with Errors

Classical hardness of Learning with Errors Classical hardness of Learning with Errors Zvika Brakerski 1 Adeline Langlois 2 Chris Peikert 3 Oded Regev 4 Damien Stehlé 2 1 Stanford University 2 ENS de Lyon 3 Georgia Tech 4 New York University Our

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018

Basics in Cryptology. Outline. II Distributed Cryptography. Key Management. Outline. David Pointcheval. ENS Paris 2018 Basics in Cryptology II Distributed Cryptography David Pointcheval Ecole normale supérieure, CNRS & INRIA ENS Paris 2018 NS/CNRS/INRIA Cascade David Pointcheval 1/26ENS/CNRS/INRIA Cascade David Pointcheval

More information

Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts

Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts Bounded-Collusion IBE from Semantically-Secure PKE: Generic Constructions with Short Ciphertexts Stefano Tessaro (UC Santa Barbara) David A. Wilson (MIT) Bounded-Collusion IBE from Semantically-Secure

More information

Fully Homomorphic Encryption over the Integers

Fully Homomorphic Encryption over the Integers Fully Homomorphic Encryption over the Integers Many slides borrowed from Craig Marten van Dijk 1, Craig Gentry 2, Shai Halevi 2, Vinod Vaikuntanathan 2 1 MIT, 2 IBM Research The Goal I want to delegate

More information

Short Exponent Diffie-Hellman Problems

Short Exponent Diffie-Hellman Problems Short Exponent Diffie-Hellman Problems Takeshi Koshiba 12 and Kaoru Kurosawa 3 1 Secure Computing Lab., Fujitsu Laboratories Ltd. 2 ERATO Quantum Computation and Information Project, Japan Science and

More information

Ideal Lattices and Ring-LWE: Overview and Open Problems. Chris Peikert Georgia Institute of Technology. ICERM 23 April 2015

Ideal Lattices and Ring-LWE: Overview and Open Problems. Chris Peikert Georgia Institute of Technology. ICERM 23 April 2015 Ideal Lattices and Ring-LWE: Overview and Open Problems Chris Peikert Georgia Institute of Technology ICERM 23 April 2015 1 / 16 Agenda 1 Ring-LWE and its hardness from ideal lattices 2 Open questions

More information

RSA RSA public key cryptosystem

RSA RSA public key cryptosystem RSA 1 RSA As we have seen, the security of most cipher systems rests on the users keeping secret a special key, for anyone possessing the key can encrypt and/or decrypt the messages sent between them.

More information

Lattice Cryptography

Lattice Cryptography CSE 206A: Lattice Algorithms and Applications Winter 2016 Lattice Cryptography Instructor: Daniele Micciancio UCSD CSE Lattice cryptography studies the construction of cryptographic functions whose security

More information

Practical Fully Homomorphic Encryption without Noise Reduction

Practical Fully Homomorphic Encryption without Noise Reduction Practical Fully Homomorphic Encryption without Noise Reduction Dongxi Liu CSIRO, Marsfield, NSW 2122, Australia dongxi.liu@csiro.au Abstract. We present a new fully homomorphic encryption (FHE) scheme

More information

Middle-Product Learning With Errors

Middle-Product Learning With Errors Middle-Product Learning With Errors Miruna Roşca, Amin Sakzad, Damien Stehlé and Ron Steinfeld CRYPTO 2017 Miruna Roşca Middle-Product Learning With Errors 23/08/2017 1 / 24 Preview We define an LWE variant

More information

Master of Logic Project Report: Lattice Based Cryptography and Fully Homomorphic Encryption

Master of Logic Project Report: Lattice Based Cryptography and Fully Homomorphic Encryption Master of Logic Project Report: Lattice Based Cryptography and Fully Homomorphic Encryption Maximilian Fillinger August 18, 01 1 Preliminaries 1.1 Notation Vectors and matrices are denoted by bold lowercase

More information

Blending FHE-NTRU keys The Excalibur Property

Blending FHE-NTRU keys The Excalibur Property Blending FHE-NTRU keys The Excalibur Property Louis Goubin and Francisco José Vial Prado Laboratoire de Mathématiques de Versailles UVSQ, CNRS, Université Paris-Saclay 78035 Versailles, France May 2, 2017

More information

Bandwidth Efficient PIR from NTRU

Bandwidth Efficient PIR from NTRU Bandwidth Efficient PIR from NTRU Yarkın Doröz 1, Berk Sunar 1 and Ghaith Hammouri 2 1 Worcester Polytechnic Institute 2 Crags Inc. Abstract. We present a private information retrieval (PIR) scheme based

More information

Vadim Lyubashevsky 1 Chris Peikert 2 Oded Regev 3

Vadim Lyubashevsky 1 Chris Peikert 2 Oded Regev 3 A Tooλκit for Riνγ-ΛΩE κρyπτ oγραφ Vadim Lyubashevsky 1 Chris Peikert 2 Oded Regev 3 1 INRIA & ENS Paris 2 Georgia Tech 3 Courant Institute, NYU Eurocrypt 2013 27 May 1 / 12 A Toolkit for Ring-LWE Cryptography

More information

Recovering Short Generators of Principal Ideals in Cyclotomic Rings

Recovering Short Generators of Principal Ideals in Cyclotomic Rings Recovering Short Generators of Principal Ideals in Cyclotomic Rings Ronald Cramer Chris Peikert Léo Ducas Oded Regev University of Leiden, The Netherlands CWI, Amsterdam, The Netherlands University of

More information

On Homomorphic Encryption and Secure Computation

On Homomorphic Encryption and Secure Computation On Homomorphic Encryption and Secure Computation challenge response Shai Halevi IBM NYU Columbia Theory Day, May 7, 2010 Computing on Encrypted Data Wouldn t it be nice to be able to o Encrypt my data

More information

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5

Private Comparison. Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 Private Comparison Chloé Hébant 1, Cedric Lefebvre 2, Étienne Louboutin3, Elie Noumon Allini 4, Ida Tucker 5 1 École Normale Supérieure, CNRS, PSL University 2 IRIT 3 Chair of Naval Cyber Defense, IMT

More information

On Ideal Lattices and Learning with Errors Over Rings

On Ideal Lattices and Learning with Errors Over Rings On Ideal Lattices and Learning with Errors Over Rings Vadim Lyubashevsky Chris Peikert Oded Regev June 25, 2013 Abstract The learning with errors (LWE) problem is to distinguish random linear equations,

More information

Fully Homomorphic Encryption

Fully Homomorphic Encryption Fully Homomorphic Encryption Boaz Barak February 9, 2011 Achieving fully homomorphic encryption, under any kind of reasonable computational assumptions (and under any reasonable definition of reasonable..),

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

Homomorphic Encryption without Gaussian Noise

Homomorphic Encryption without Gaussian Noise Homomorphic Encryption without Gaussian Noise Anamaria Costache and Nigel P. Smart Dept. Computer Science, University of Bristol, United Kingdom. Abstract. We propose a Somewhat Homomorphic Encryption

More information

Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics

Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics Multi-dimensional Packing for HEAAN for Approximate Matrix Arithmetics Jung Hee Cheon 1, Andrey Kim 1, Donggeon Yhee 1 Seoul National University, Republic of Korea {jhcheon, kimandrik, dark0926}@snu.ac.kr

More information

Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP

Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP Zvika Brakerski Abstract We present a new tensoring techniue for LWE-based fully homomorphic encryption. While in all previous

More information

Solving LWE with BKW

Solving LWE with BKW Martin R. Albrecht 1 Jean-Charles Faugére 2,3 1,4 Ludovic Perret 2,3 ISG, Royal Holloway, University of London INRIA CNRS IIS, Academia Sinica, Taipei, Taiwan PKC 2014, Buenos Aires, Argentina, 28th March

More information

Lecture 5, CPA Secure Encryption from PRFs

Lecture 5, CPA Secure Encryption from PRFs CS 4501-6501 Topics in Cryptography 16 Feb 2018 Lecture 5, CPA Secure Encryption from PRFs Lecturer: Mohammad Mahmoody Scribe: J. Fu, D. Anderson, W. Chao, and Y. Yu 1 Review Ralling: CPA Security and

More information

Identifying Ideal Lattices

Identifying Ideal Lattices Identifying Ideal Lattices Jintai Ding 1 and Richard Lindner 2 1 University of Cincinnati, Department of Mathematical Sciences PO Box 2125, Cincinnati, OH 45221-25, USA jintaiding@ucedu 2 Technische Universität

More information