Some temporal and spectral properties of femtosecond supercontinuum important in pump probe spectroscopy

Size: px
Start display at page:

Download "Some temporal and spectral properties of femtosecond supercontinuum important in pump probe spectroscopy"

Transcription

1 Optics Communications xxx (2004) xxx xxx Some temporal and spectral properties of femtosecond supercontinuum important in pump probe spectroscopy M. Ziolek a, *, R. Naskrecki b, *, J. Karolczak a,b a Center for Ultrafast Laser Spectroscopy, Adam Mickiewicz University, Poznan, Poland b Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland 1 Received 20 January 2004; received in revised form 11 June 2004; accepted 30 June 2004 Abstract We present an investigation into the femtosecond supercontinuum properties, generated with 100 fs laser pulses in a condensed phase. The influence of different generation conditions on spectral and temporal properties of the supercontinuum is presented. Particularly, various media (water, fused silica, calcium fluoride), laser wavelength (800 and 400 nm), pulse energy, and focusing lens displacement are used. The experimental results are analyzed in view of current theories, with the focus on the role of multiphoton ionization in the generation process. A semi-quantitative explanation of the frequency broadening is proposed. Finally, the implications of the results for pump probe spectroscopy are also discussed. Ó 2004 Elsevier B.V. All rights reserved. PACS: J; J; J Keywords: Supercontinuum; Femtosecond; Pump probe 1. Introduction Many models have been introduced over the years in an attempt to explain the supercontinuum (SC) generation. In the femtosecond time regime, the self-phase modulation (SPM), enhanced by * Corresponding authors. Tel.: ; fax: addresses: marziol@amu.edu.pl (M. Ziolek), (R. Naskrecki). self-focusing, played a prominent role in the past theoretical assumption [1]. The frequency change Dx of the pulse is given by: Dx ¼ oð/ nl Þ=ot; ð1þ where the nonlinear phase / nl accumulated during propagation over a distance L, may be written as: / nl ¼ Dnx 0 L=c: ð2þ In Eq. (2), c is the velocity of light in vacuum, x 0 is the central frequency of the pulse, and Dn is the /$ - see front matter Ó 2004 Elsevier B.V. All rights reserved. doi: /j.optcom

2 2 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx change of refractive index due to nonlinear processes. If Dn depends on the distance L, a proper calculus to Eq. (2) has to be added. The change of the refractive index in the case of Kerr nonlinear effect is proportional to pulse intensity I: Dn Kerr ¼ n 2 I; ð3þ where n 2 is called the nonlinear refractive index. Thus, in the leading part of the laser pulse the refractive index increases with time, which causes the generation of lower frequencies (negative Dx), called Stokes broadening. The opposite situation is in the trailing part of the pulse, which becomes blue-shifted (anti-stokes broadening). When the laser pulse power exceeds the critical power for self-focusing, the beam diameter can be decreased to or even less than 10 lm. This results in an even 100 times larger intensity than that with normal focusing (by lenses) and causes larger broadening. The Stokes anti-stokes asymmetry of the SC spectrum was believed to be a result of a self-steepening [2,3]. The back of the pulse travels faster than its central part (due to different refractive index) so that the intensity slope becomes steeper at the back. In this way, the decrease of Dn at the back of the pulse (anti-stokes broadening) is more rapid than its increase in front of the pulse (Stokes broadening). However, the experimentally observed asymmetry is larger than calculated. Furthermore, the anti-stokes frequency broadening increases with decreasing of n 2, and is independent of the initial pulse intensity. These observations are contrary to the predictions of usual SPM theory [1]. Recent reports suggest that the supercontinuum generation is much more complicated and many other processes should be considered. One of them is the plasma formation caused by the multiphoton absorption [4 6]. During the selffocusing and filament formation the pulse intensity as well as Dn increase relatively slowly, which brings about relatively small Stokes broadening. When the intensity reaches the critical value for the multiphoton ionization, free electrons are generated in a very short time (single femtoseconds). The free electrons induce a negative change of the refractive index, which can be approximated by [6]: Dn e ¼ 2pe2 N e ; ð4þ m e x 2 0 where N e is electron density and e and m e are the charge and mass of the electron in CGS units, respectively. The electron density is proportional to Kth power of light intensity, N e µi K [4 6], where K is the order of multiphoton process. This number of photons required to ionize the medium can be calculated when its energy bandgap, E g,is known: K ¼ Intð1 þ E g =hx 0 Þ; ð5þ where Int(x) denotes the integer part of x. As a result of multiphoton ionization, the rapid drop in Dn causes defocusing and large anti-stokes broadening. This mechanism explains the observed increase of SC spectral width together with the increase mediumõs energy bandgap. Larger bandgap requires higher order of multiphoton ionization, which means larger critical intensity and larger maximal Dn. In media with energy bandgap lower than the bandgap threshold, self-focusing is stopped by free electron defocusing before an intensity sufficient for SC generation is achieved. In such media only small broadening of the pulse spectrum due to the SPM is observed [7]. Another important process in the SC generation is the group velocity dispersion, which may cause pulse splitting [8,9] and a new coalescence [10]. Very recently, it has been shown that the linear chromatic dispersion plays an important role in the achievable spectral extent of the SC [11]. It is worth noticing that Raman processes and four-wave mixing are the dominant mechanisms in SC generation in longer time scales, for pico [12,13] and nanosecond [14] laser pulses. Moreover, ultrashort pulses might be significantly spectrally broadened by the SPM effect alone in optical fibers due to the relatively long propagation distances [15]. In this paper, we do not consider these two cases of the SC generation. 2. Experimental results A series of experiments with femtosecond supercontinuum generated under different conditions

3 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx 3 were performed. Time-resolved studies (SC chirp measurements) were made with the transient absorption experimental setup, described in detail before [16]. In order to collect the SC spectra, a CCD camera from the same experimental setup was used. The output of the laser system (femtosecond titanium sapphire) was set at 1 khz repetition rate providing pulses of about 100 fs duration, with the energy up to 1 mj. The probe beam passed through an optical delay line consisting of a retroreflector mounted on a computer-controlled motorised translation stage, and then converted to SC, which diameter was 2 5 times smaller than that of the pump. Both pump and probe pulses intersect at an angle of 2 3 and spatially overlap into a sample (0.3 mm BK7 plate for pump wavelength 400 nm or 2 mm cell filled with methanol for pump wavelength 266 nm) with slight focusing of pump beam and no focusing of probe beam. A grating polichromator was used in conjunction with thermoelectrically cooled CCD camera to record the spectra. In order to improve the signal-to-noise ratio the transient absorption measurements were performed in two-beam geometry (probe and reference) with two synchronized choppers in the pump and probe paths, respectively. This allowed the substantial elimination of the influence of the laser beam fluctuations and, consequently, the measurements of the very small values of optical density changes, DOD < SC was generated either in 10 mm quartz cuvette filled with water or in rotating (with frequency of a few Hz) fused silica or calcium fluoride plates of 2 mm thickness. The spatial distribution of generated SC has a radial structure it contains a number of colored rings around a common white center. A diaphragm with a variable aperture shapes the white light continuum beam and fixes the beam diameter between 0.2 and 0.4 mm. The vertical and horizontal translation of this aperture allows to cut out from the spatial distribution of the generated SC the central most homogenous part. It is worth mentioning that several mechanisms for the conical emission accompanying the SC have been proposed [17 20], but its investigation is beyond the interest of our paper. The geometry for SC generation in water is shown schematically in the inset of Fig. 1(a). The displacement Dx between the lens of focal length 10 cm and the medium for SC generation causes the change of the focus position in the medium by the amount of Dx/n 0, where n 0 is the linear refractive index of the medium [4]. The SC spectra generated with 800 nm, 100 fs laser pulses in 10 mm long cuvette filled with water, for different displacements are presented in Fig. 1(a). Long- Fig. 1. (a) The spectrum of the supercontinuum generated with 800 nm, 100 fs laser pulses in 10 mm cuvette filled with water, measured for different displacements Dx of focusing lens; longwavelength part of the spectrum is modified by optical filters; (a) inset: experimental scheme for the supercontinuum generation. (b) The chirp of the supercontinuum generated with 800 nm, 100 fs laser pulses in 10 mm cuvette filled with water, measured for different displacements Dx of focusing lens; inset: the change of the measured supercontinuum chirp compared to the calculated group velocity dispersion.

4 4 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx Fig. 2. The dependence of the temporal duration (FWHM) of the pump probe cross-correlation function (CCF) on the displacements Dx of focusing lens. The probe supercontinuum pulse was generated with 800 nm, 100 fs laser pulses in 10 mm cuvette filled with water. The linear fit to the data points is indicated by the dotted line. wavelength part of the spectrum is modified by optical filters, which remove from the SC the rest of the fundamental beam (the conversion efficiency was approximately 20 30%). The anti-stokes edge of the spectrum is constant and equals about 370 nm (in spite of early stages: Dx=0.5, where the light is blue, and Dx=0.9, where the light is green by eye). Similar results are obtained for the SC generation in calcium fluoride plate, but the cutoff wavelength is shorter and equals 300 nm. Fig. 1(b) shows the variation of SC chirp generated with 800 nm pulses in water as a function of the lens displacements. The chirp is determined by the fitting of Gaussian curve to the kinetics of pump probe cross-correlation function (CCF) measured using the two-photon absorption signal (in 0.3 mm BK7 glass plate, pumping 400 nm) in the spectral range nm. The measured chirp is also affected by the optics between the cuvette filled with water and BK7 plate (back window of the cuvette and lens behind the cuvette). In the inset of Fig. 1(b), the average change of the measured SC chirp (caused by the displacement of the lens by an amount Dx =1 mm) is compared to the calculated values. The squares with error bars are calculated from the data in Fig. 1(b) (the average of 6 differences between 2 time delays of adjacent lens displacements). The solid line represents the calculated group velocity dispersion assuming propagation of the laser pulse in 1 mm/1.33 water (1.33 is the linear refractive index of water at 800 nm). Besides the chirp, the duration of SC pulses also changes with Dx since the CCF duration (the mean of 70 fitted wavelength results) varies from 110±4 fs for Dx=0 to 128±4 fs for Dx =6 mm, see Fig. 2. As can be seen from this figure, the CCF duration changes linearly with Dx (with the increase of about 3 fs per 1 mm lens displacement). It should be noted that, within the experimental error, the CCF temporal broadening is independent of probing wavelength. The SC properties dependence on wavelength is presented in Fig. 3(a) (spectral properties) and Fig. 3(b) (temporal properties). The spectral range of the anti-stokes part of the spectrum (Fig. 3(a)) is about 2 times narrower when 400 nm instead of 800 nm wavelength pulses are used in 2 mm calcium fluoride or fused silica plates. In both cases, the range of the spectrum is broader for calcium fluoride than for fused silica plate. The chirp (Fig. 3(b)) was measured applying the two photon absorption signal in 2 mm sample cell filled with methanol at excitation wavelength 266 nm. It was possibly to determine precisely the time zero for each wavelength of the supercontinuum (in spite of broadening of the signal due to significant pump probe velocity mismatch and thickness of the sample) with the help of formula presented in [21]. The measured chirp is also affected by the optics between the calcium fluoride plate and sample cell (methanol). As seen in Fig. 3(b), the chirp of SC is slightly smaller for SC generation with 400 nm pulses (50 fs difference in spectral range nm for generation in 2 mm calcium fluoride plate). The influence of pulse energy on the SC spectrum generated with 800 nm laser pulses in 10 mm cuvette filled with water was also experimentally measured. Similarly to the displacement dependence, the anti-stokes edge of the spectrum stays constant for pulse energy ranging from 4 to 17 lj, while relative intensities change in different parts of the spectrum. Furthermore, the change of pulse energy from 6 to 9 lj causes the increase

5 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx 5 Fig. 3. (a) The intensity of the anti-stokes part of the supercontinuum spectrum generated with 100 fs laser pulses of two different wavelengths (400 and 800 nm) in 2 mm calcium fluoride or 2 mm fused silica plate. (b) The chirp of the supercontinuum generated with 100 fs laser pulses of two different wavelengths (400 and 800 nm) in 2 mm calcium fluoride plate. of the measured SC chirp by the amount of 90 fs at 380 nm (related to 800 nm), which is equivalent to the dispersion of 0.4 mm of water. 3. Discussion Our results appear to be consistent with the multiphoton ionization model [4]. One of the most important predictions from this model is that the anti-stokes part of the spectrum is generated over a very small distance in the medium, about 200 lm. Thus, the spectrum width is independent of the position of the beam focus in the medium (Fig. 1(a)). By increasing the distance between lens and medium, SC is generated at the position closer to the medium entrance, and the remaining part of the medium contributes only to additional chirp of SC (due to the group velocity dispersion effect). The different spectrum at early stages (Dx <1 mm) might be explained by the stimulated Raman scattering, which contributes to the generation before the filament is formed, as has been recently observed [22]. Displacing the lens by Dx is equivalent to moving the focus by Dx/n 0 in the medium, where n 0 is the linear refractive index [4]. In other words, such displacement changes the chirp of SC by the amount of dispersion in the medium of Dx/n 0 thickness, which is confirmed in Fig. 1(b). Similar results were reported before [23], but under slightly different geometrical conditions (geometrical focus was in front of the sample so that the position of the generation volume was moving towards the end of the sample while the displacement Dx was increasing), which are less often used in the pump probe spectroscopy. Moreover, the changes of the chirp are also in agreement with the changes in the duration of the pump probe CCF since additional dispersion causes temporal broadening of the SC pulses (Fig. 2). To our knowledge, this is the first report on such dependence of CCF duration. The increase of CCF duration (from 110 to 128 fs for lens displacement of 6 mm) with its independence of the probe wavelength in the range nm reveals yet another interesting property of SC, important in the pump probe spectroscopy. Both these facts together cannot be explained under the assumption that the duration of a part of SC pulse at particular wavelength changes in similar fashion to that of the normal pulse duration. The duration pffiffiffiffiffiffiffiffiffiffiffiffiffiffiof CCF of two Gaussian pulses is equal s 2 1 þ s2 2, where s 1 and s 2 are the durations of pump and probe pulses. In our experiment the pump pulse duration is not precisely known, so, to satisfy the initial 110 fs value of CCF duration both the pump and SC probe pulses might be 78 fs as well as, for example, the pump pulse might be 105 fs and probe pulse much shorter 30 fs. A temporal duration increase of the unchirped, transform limited Gaussian pulse due to

6 6 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx the group velocity dispersion in the medium of a given thickness can be easily calculated (for example, with the help of formula (12) from [24]). Although, if we take the probe pulse duration as 78 fs, the change of CCF after passage of 6 mm of water is nearly independent of probe wavelength, but it is too small (113 fs for 370 nm) compared to the experimental value 128 fs. Otherwise, if we take shorter probe pulse duration (30 fs), the CCF broadening is more significant, but strongly dependent on the wavelength (for example, 128 fs for 370 nm but only 112 fs for 700 nm). Thus, because of unusual nature of wavelength components of SC pulses, their temporal duration have to be treated differently from the duration of other pulses in pump probe spectroscopy. In the ionization model, the anti-stokes spectrum width is independent of the pulse energy (if the pulse power exceeds the critical power for self-focusing), which was experimentally verified in line with the results of other groups [6,25,26]. However, increasing the energy causes earlier focusing (and greater chirp) since the self-focusing of the beam acts faster. Such behaviour of the chirp of SC pulse has not been explicitly reported so far. The precise absolute value of the distance between the lens and medium for SC generation is not determined in our experiment, so we can only perform a very rough calculation. The self-focusing distance in the continuous beam and paraxial approximation can be written as [27]: rffiffiffiffiffiffiffiffiffiffiffi n 0 z sf ¼ r 0 ; ð6þ 2n 2 I 0 where r 0 is the initial beam radius and I 0 is the initial intensity. Assuming that r 0 equals 50 lm at the entrance of the medium due to external focusing, the self-focusing distance for 100 fs pulses in water (n 0 =1.33, n 2 = m 2 /W) is equal 4.7 and 3.8 mm for the pulse energy 6 and 9 lj, respectively. Thus, the difference of self-focusing distances is 0.9 mm, which is not far away from the experimentally determined value 0.4 mm (see Section 2) and confirms the fact that anti-stokes broadening of SC occurs near the self-focus point. Next, doubling the pulse frequency (from 800 to 400 nm wavelength) means that the multiphoton ionization occurs for the lower order of multiphoton process. Thus, the lower intensity is sufficient for the free electron defocusing, and the anti- Stokes spectrum is narrower. This is in agreement with the results presented in Fig. 3(a), where the anti-stokes broadening becomes about twice smaller when changing the wavelength from 800 to 400 nm in both fused silica and calcium fluoride plates. On the contrary, in the usual SPM theory the SC spectrum should broaden with increasing pulse intensity I, pulse frequency x 0, and propagation distance L in the medium. The results are consistent with the observation that the ratio of the mediumõs bandgap energy to the photon energy of the incident wavelength determines the amount of anti-stokes broadening [28]. The spectrum comparison between 400 and 800 nm generated SC was also theoretically studied in [25], but, to our knowledge, the comparison of the chirp (Fig. 3(b)) has not been reported so far. So far, many theoretical models and simulations including numerous physical processes have been proposed to explain the SC spectrum [4,5,11,22,25,26,29]. However, there is still no satisfactory agreement between the theory and the experiment. Also, different authors focus their attention at the role of different factors and processes, which, taking into account the complex dependence of the numerical solutions on the initial parameters, makes their conclusions difficult to compare. Thus, we want to propose a simple, semi-quantitative analysis of SC generation with the explanation of the frequency broadening. After [4] we assume that during the self-focusing of the pulse its intensity (as well as the refractive index change in Eq. (3)) grows linearly within the propagation distance. The nonlinear positive phase accumulation stops when the intensity reaches the threshold intensity I th for multiphoton ionization, and rapid drop in Dn occurs due to the free electrons generation (Eq. (4)). Assuming that the initial intensity is much lower than I th, the maximum anti-stokes frequency broadening (Eqs. (1) and (2)) is proportional to n 2 I th (maximum refractive index change). In order to verify our estimation the analytical expression for I th is needed for calculations. In the absence of avalanche ionization contribution (in the femtosecond time regime it can be often neglected because the

7 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx 7 ionization requires time to build up from the collisions of electrons in the case of avalanche process), the intensity threshold for multiphoton ionization in condensed phase may be written in the following analytical way [30] (in MKS units): 1=K I th ¼ B 1 q cr ; ð7þ Að0:5sÞ where q cr is the critical free carrier density, s is the pulse duration, K is defined by Eq. (5) and A and B coefficients are given by: A ¼ 2 9p x m 0 3=2 K x 0 0 e 2K 1 UðzÞ ; h 16 B ¼ e 2 m 0 E g x 2 0 ce 0n 0 : In the above expressions, 1/m 0 =1/m e +1/m h, with m e and m h denoting electron and hole masses, respectively, and both the function U(z) and its argument z are defined as: z ¼ 2K 2E 1=2 g ; hx 0 Z z UðzÞ ¼e z2 e y2 dy: 0 To verify the proportionality of the SC anti-stokes broadening to the n 2 I th term, we performed the calculations of the ionization threshold intensities with Eq. (7) and compared the results to our experimental data of SC broadening. The pulse duration was taken as s=100 fs, the standard value of critical free carrier density q cr =10 18 cm 3 was used, and it was assumed that the m e equals m h [31]. Table 1 presents the calculated values of I th for two materials of different energy bandgap (E g ) at two different wavelengths of the pulse that generates the SC. The table also contains the nonlinear refractive index values of these materials and the experimentally measured maximum anti- Stokes broadening (Dx max ), from the data of Fig. 3(a). As can be seen from the values presented in the last column of Table 1, the ratio n 2 I th /Dx max is similar under different SC generating conditions, except for one slightly larger value for 400 nm generation in calcium fluoride. This confirms the fact that the term n 2 I th is really proportional to the anti-stokes broadening, which should be the general property of SC generation. The dependence of intensity threshold I th on the order of multiphoton process K is plotted in Fig. 4. The two curves (for 800 and 400 nm generating wavelength) are calculated for the parameters of fused silica (E g =7.5 ev, n 0 =1.45 for 800 nm or n 0 =1.51 for 400 nm). However, they can be easily used for the estimation of I th for other media since, according to Eq. (7), the I th value has to be multiplied by energy bandgap ratio and refractive index ratio. In principle, the values of function U(z) changes for different materials as well, but for most of the E g and x 0 combinations they are in the range of Taking into account that the U(z) is raised to the power of (1/K), such changes are of minor importance. Therefore, we took the mean value U(z) = 0.5 for the plots in Fig. 4. As can be seen from Fig. 4 for both 800 and 400 nm wavelength, the intensity threshold grows linearly with K for the values K P 3, but Table 1 Different parameters of supercontinuum generation and multiphoton ionization for calcium fluoride and fused silica: wavelength (k), energy bandgap (E g, from [4]), order of multiphoton process (K, calculated from Eq. (5)), maximum anti-stokes broadening (Dx max, from experimental results in Fig. 3(a)), intensity threshold for multiphoton process (I th, calculated from Eq. (7)), nonlinear refractive index (n 2 ) and the ratio n 2 I th /Dx max Material k (nm) E g (ev) K Dx max (cm 1 ) I th (10 12 W/cm 2 ) n 2 (10 16 cm 2 /W) n 2 I th /Dx max (10 7 cm) Calcium fluoride , , Fused silica ,

8 8 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx Fig. 4. The dependence of intensity threshold I th on the order of multiphoton process K for the optical parameters of fused silica material (E g =7.5 ev, n 0 =1.45 for 800 nm or n 0 =1.51 for 400 nm), calculated from Eq. (7). The filled circles show the intensity thresholds in fused silica for 800 and 400 nm pulses. for smaller values of K it drops rapidly. For example, I th (K=3) is about 10 times greater than I th (K = 2). This explains why the SC generation is not observed in the materials of small energy bandgap [4] and is consistent with the observation of the threshold for SC generation for E g /hx 0 =2 [28]. Thus, although many other things that we didnõt take into account in our consideration (for example, the moving focus model which describes the self-focusing process for ultrashort pulses) might also contribute to the broadening value, we believe that intensity threshold for multiphoton ionization process multiplied by nonlinear refractive index plays a major role in the SC broadening. One of the most important applications of the femtosecond SC pulses are probing pulses in various pump probe methods. It is desired to have the probe pulse spectrum as wide as possible to get more information about the studied samples in such experimental techniques. Thus, in view of the above analysis, the best choice is the use of longer wavelength pulses since they give better anti-stokes broadening. Particularly, it is better to use 800 nm from Ti:Sapphire laser rather than its second harmonic unless probing wavelength below 300 nm are needed [28]. What is more, the chirp of SC in pump probe methods should be precisely determined to make proper zero time correction [32]. Optimum conditions for SC generation require careful adjusting of incoming pulse energy, beam diameter, and focal point relative to the generating material. Only then is the white light sufficiently stable for transient absorption experiments. However, usually the absolute values of these parameters are not verified, and only the stability of SC is controlled. The above results indicate that the chirp (as well as the temporal duration of pump probe cross-correlation function) depends on pulse intensity and distance (between the lens and the material for SC generation), which has been neglected so far. Thus, in principle, the chirp of probe pulses and the temporal duration of pump probe cross-correlation function should be measured whenever these parameters are changed. It is especially important when relatively thick media for SC generation are used. 4. Conclusions The investigations into temporal and spectral properties of the femtosecond supercontinuum were presented. The spectral range of the anti- Stokes part of the supercontinuum depends on the laser wavelength and the optical properties (energy bandgap, refractive index) of medium in which the supercontinuum is generated. The spectral range does not depend on the generating pulse energy and focusing lens displacement but varying both of them may strongly influence the chirp and temporal duration of the supercontinuum pulse. The results are consistent with the multiphoton ionization model of the supercontinuum generation process and are contrary to the predictions of simply self-phase modulation model. A semi quantitative calculations revealed that the frequency broadening is proportional to intensity threshold for multiphoton ionization process multiplied by nonlinear refractive index of the generating medium. The variations of the spectral range, the chirp and temporal duration of the supercontinuum pulse investigated in the paper are of significant importance in the pump probe spectroscopy.

9 M. Ziolek et al. / Optics Communications xxx (2004) xxx xxx 9 Acknowledgements This work was partially supported by the national Committee for Scientific Research (KBN), Grants No. 2 P03B and 2 P03B M.Z. was a holder of the grant from the Foundation for Polish Science (FNP) in the years 2002 and The experiments were performed at the Center for Ultrafast Laser Spectroscopy, Adam Mickiewicz University, Poznan, Poland. References [1] R.R. Alfano (Ed.), The Supercontinuum Laser Source, Springer-Verlag, [2] G. Yang, Y.R. Shen, Opt. Lett. 9 (1984) 510. [3] S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses, A.I.P., [4] A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B 16 (1999) 637. [5] M.R. Junnarkar, Opt. Commun. 195 (2001) 273. [6] W. Liu, S. Petit, A. Becker, N. Aközbek, C.M. Bowden, S.L. Chin, Opt. Commun. 202 (2002) 189. [7] G.S. He, G.C. Xu, Y. Cui, P.N. Prasad, Appl. Opt. 32 (1993) [8] J.E. Rothenberg, Opt. Lett. 17 (1992) 583. [9] J.K. Ranka, R.W. Schirmer, A.L. Gaeta, Phys. Rev. Lett. 77 (1996) [10] A.A. Zozulya, S.A. Diddams, A.G. Van Engen, T.S. Clement, Phys. Rev. Lett. 82 (1999) [11] M. Kolesik, G. Katona, J.V. Moloney, E.M. Wright, Phys. Rev. Lett. 91 (2003) [12] S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, P.S.J. Russel, J. Opt. Soc. Am. B 19 (2002) 753. [13] M. Seefeldt, A. Heuer, R. Menzel, Opt. Commun. 216 (2003) 199. [14] J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen, J. Opt. Soc. Am. B 19 (2002) 765. [15] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, [16] A. Maciejewski, R. Naskrecki, M. Lorenc, M. Ziolek, J. Karolczak, J. Kubicki, M. Matysiak, M. Szymanski, J. Mol. Struct. 555 (2000) 1. [17] Q. Xing, K.M. Yoo, R.R. Alfano, Appl. Opt. 32 (1993) [18] I. Golub, Opt. Lett. 15 (1990) 305. [19] O.G. Kosareva, V.P. Kandidov, A. Brodeur, C.Y. Chien, S.L. Chin, Opt. Lett. 22 (1997) [20] A. Brodeur, F.A. Ilkov, S.L. Chin, Opt. Commun. 129 (1996) 193. [21] M. Ziolek, M. Lorenc, R. Naskrecki, Appl. Phys. B 72 (2001) 843. [22] H.-J. Fang, T. Kobayashi, Appl. Phys. B 77 (2003) 167. [23] J. Zeller, J. Jasapara, W. Rudolph, M. Sheik-Bahae, Opt. Commun. 185 (2000) 133. [24] M. Ziolek, R. Naskrecki, M. Lorenc, J. Karolczak, J. Kubicki, A. Maciejewski, Opt. Commun. 197 (2001) 467. [25] M. Kolesik, G. Katona, J.V. Moloney, E.M. Wright, Appl. Phys. B 77 (2003) 185. [26] V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Aközbek, C.M. Bowden, S.L. Chin, Appl. Phys. B 77 (2003) 149. [27] R.W. Boyd, Nonlinear Optics, Academic Press, [28] Ch. Nagura, A. Suda, H. Kawano, M. Obara, K. Midorikawa, Appl. Opt. 41 (2002) [29] A.L. Gaeta, Phys. Rev. Lett. 84 (2000) [30] P.K. Kennedy, IEEE J. Quantum Electron. 31 (1995) [31] P.K. Kennedy, S. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W.P. Roach, IEEE J. Quantum Electron. 31 (1995) [32] S.A. Kovalenko, A.L. Dobryakov, J. Ruthmann, N.P. Ernsting, Phys. Rev. A 59 (1999) 2369.

Generation of supercontinuum light in photonic crystal bers

Generation of supercontinuum light in photonic crystal bers Generation of supercontinuum light in photonic crystal bers Koji Masuda Nonlinear Optics, Fall 2008 Abstract. I summarize the recent studies on the supercontinuum generation (SC) in photonic crystal fibers

More information

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct Vol 12 No 9, September 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(09)/0986-06 Chinese Physics and IOP Publishing Ltd Experimental study on the chirped structure of the white-light continuum generation

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Control of the filamentation distance and pattern in long-range atmospheric propagation

Control of the filamentation distance and pattern in long-range atmospheric propagation Control of the filamentation distance and pattern in long-range atmospheric propagation Shmuel Eisenmann, Einat Louzon, Yiftach Katzir, Tala Palchan, and Arie Zigler Racah Institute of Physics, Hebrew

More information

Dynamics of filament formation in a Kerr medium (with Erratum)

Dynamics of filament formation in a Kerr medium (with Erratum) University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Martin Centurion Publications Research Papers in Physics and Astronomy 2005 Dynamics of filament formation in a Kerr medium

More information

DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM

DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM Chapter 4 63 DYNAMICS OF FILAMENT FORMATION IN A KERR MEDIUM 4.1. INTRODUCTION In this chapter we present a study of the large scale beam break up and filamentation of femtosecond pulses in a Kerr medium.

More information

Femtosecond laser-tissue interactions. G. Fibich. University of California, Los Angeles, Department of Mathematics ABSTRACT

Femtosecond laser-tissue interactions. G. Fibich. University of California, Los Angeles, Department of Mathematics ABSTRACT Femtosecond laser-tissue interactions G. Fibich University of California, Los Angeles, Department of Mathematics Los-Angeles, CA 90095 ABSTRACT Time dispersion plays an important role in the propagation

More information

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses G. Genty, M. Lehtonen, and H. Ludvigsen Fiber-Optics Group, Department of Electrical and Communications

More information

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media PHYSICAL REVIEW A VOLUME 57, NUMBER 6 JUNE 1998 Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media Marek Trippenbach and Y. B. Band Departments

More information

Plasma Formation and Self-focusing in Continuum Generation

Plasma Formation and Self-focusing in Continuum Generation Plasma Formation and Self-focusing in Continuum Generation Paper by Andrew Parkes Advisors: Jennifer Tate, Douglass Schumacher The Ohio State University REU 2003 Supported by NSF I. Abstract This summer

More information

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects and pulse propagation in PCFs Nonlinear effects and pulse propagation in PCFs --Examples of nonlinear effects in small glass core photonic crystal fibers --Physics of nonlinear effects in fibers --Theoretical framework --Solitons and

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

On the interferometric coherent structures in femtosecond supercontinuum generation

On the interferometric coherent structures in femtosecond supercontinuum generation Appl. Phys. B (216) 122:148 DOI 1.17/s34-16-6432-x On the interferometric coherent structures in femtosecond supercontinuum generation Sirshendu Dinda 1 Soumendra Nath Bandyopadhyay 1 Debabrata Goswami

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

Experimental studies of the coherence of microstructure-fiber supercontinuum

Experimental studies of the coherence of microstructure-fiber supercontinuum Experimental studies of the coherence of microstructure-fiber supercontinuum Xun Gu, Mark Kimmel, Aparna P. Shreenath and Rick Trebino School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430,

More information

Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol)

Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol) Optics Communications 225 (2003) 193 209 www.elsevier.com/locate/optcom Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol) W. Liu a, *, S.L. Chin a, O. Kosareva b, I.S.

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy

Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Supporting information Implementation and evaluation of data analysis strategies for time-resolved optical spectroscopy Chavdar Slavov, Helvi Hartmann, Josef Wachtveitl Institute of Physical and Theoretical

More information

Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water B. Hafizi, J.P. Palastro*, J.R. Peñano, D.F. Gordon, T.G. Jones, M.H. Helle and D. Kaganovich Naval Research

More information

Breakdown threshold and plasma formation in femtosecond laser solid interaction

Breakdown threshold and plasma formation in femtosecond laser solid interaction 216 J. Opt. Soc. Am. B/Vol. 13, No. 1/January 1996 D. von der Linde and H. Schüler Breakdown threshold and plasma formation in femtosecond laser solid interaction D. von der Linde and H. Schüler Institut

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

White-light continuum Z-scan technique for nonlinear materials characterization

White-light continuum Z-scan technique for nonlinear materials characterization White-light continuum Z-scan technique for nonlinear materials characterization Mihaela Balu, Joel Hales, David J. Hagan*, Eric W. Van Stryland* College of Optics & Photonics: CREO & FPCE University of

More information

Some Fundamental Concepts of Femtosecond Laser Filamentation

Some Fundamental Concepts of Femtosecond Laser Filamentation Journal of the Korean Physical Society, Vol. 49, No. 1, July 26, pp. 281 285 Some Fundamental Concepts of Femtosecond Laser Filamentation S. L. Chin Center for Optics, Photonics and Lasers & Department

More information

Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)

Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) Appl. Phys. B 77, 149 165 (2003) DOI: 10.1007/s00340-003-1214-7 Applied Physics B Lasers and Optics v.p. kandidov 1 o.g. kosareva 1, i.s. golubtsov 1 w. liu 2 a. becker 3 n. akozbek 4 c.m. bowden 5 s.l.

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Black hole in a waveguide: Hawking radiation or selfphase

Black hole in a waveguide: Hawking radiation or selfphase 1 Black hole in a waveguide: Hawking radiation or selfphase modulation? Igor I. Smolyaninov Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 07, USA Recently

More information

The comparison study of diagnostics of light filaments in air

The comparison study of diagnostics of light filaments in air 228 Science in China: Series G Physics, Mechanics & Astronomy 2006 Vol.49 No.2 228 235 DOI: 10.1007/s11433-006-0228-7 The comparison study of diagnostics of light filaments in air HAO Zuoqiang 1, ZHANG

More information

Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials

Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials 824 J. Opt. Soc. Am. B/Vol. 6, No. 4/April 1989 Alfano et al. Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials R. R. Alfano, P. L. Baldeck,

More information

Transverse modulation instability of copropagating optical beams in nonlinear Kerr media

Transverse modulation instability of copropagating optical beams in nonlinear Kerr media 172 J. Opt. Soc. Am. B/Vol. 7, No. 6/June 199 Transverse modulation instability of copropagating optical beams in nonlinear Kerr media The Institute of Optics, University of Rochester, Rochester, New York

More information

arxiv: v1 [physics.optics] 8 Apr 2013

arxiv: v1 [physics.optics] 8 Apr 2013 Spectral characterization of third-order harmonic generation assisted by two-dimensional plasma grating in air P.J. Ding, Z.Y. Liu, Y.C. Shi, S.H. Sun, X.L. Liu, X.SH. Wang, Z.Q. Guo, Q.C. Liu, Y.H. Li,

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

χ (3) Microscopic Techniques

χ (3) Microscopic Techniques χ (3) Microscopic Techniques Quan Wang Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 Microscopic techniques that utilize the third order non-linearality (χ (3) ) of the

More information

Time Dispersion Sign and Magnitude 1 1 t r z The propagation of a laser pulse through an aqueous media is described by the nonlinear Schrodinger equat

Time Dispersion Sign and Magnitude 1 1 t r z The propagation of a laser pulse through an aqueous media is described by the nonlinear Schrodinger equat TIME DISPERSIVE EFFECTS IN ULTRASHORT LASER-TISSUE INTERACTIONS G. Fibich Department of Mathematics UCLA Los Angeles, CA Abstract The relative magnitude of time-dispersion in laser-tissue interactions

More information

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Numerical modelling the ultra-broadband mid-infrared supercontinuum generation in the As2Se3 photonic crystal

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals

Color Center Production by Femtosecond-Pulse Laser Irradiation in Fluoride Crystals ISSN 154-66X, Laser Physics, 26, Vol. 16, No. 2, pp. 331 335. MAIK Nauka /Interperiodica (Russia), 26. Original Text Astro, Ltd., 26. NONLINEAR OPTICS AND SPECTROSCOPY Color Center Production by Femtosecond-Pulse

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES

MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES MODELLING PLASMA FLUORESCENCE INDUCED BY FEMTOSECOND PULSE PROPAGATION IN IONIZING GASES V. TOSA 1,, A. BENDE 1, T. D. SILIPAS 1, H. T. KIM, C. H. NAM 1 National Institute for R&D of Isotopic and Molecular

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Generation and control of extreme blueshifted continuum peaks in optical Kerr media

Generation and control of extreme blueshifted continuum peaks in optical Kerr media PHYSICAL REVIEW A 78, 85 8 Generation and control of extreme blueshifted continuum peaks in optical Kerr media D. Faccio,,5 A. Averchi,,5 A. Lotti,,5 M. Kolesik, J. V. Moloney, A. Couairon,,5 and P. Di

More information

Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)

Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) Appl. Phys. B 77, 149 165 (2003) DOI: 10.1007/s00340-003-1214-7 Applied Physics B Lasers and Optics v.p. kandidov 1 o.g. kosareva 1, i.s. golubtsov 1 w. liu 2 a. becker 3 n. akozbek 4 c.m. bowden 5 s.l.

More information

Suppression of thermal lensing effects in intra-cavity coherent combining of lasers

Suppression of thermal lensing effects in intra-cavity coherent combining of lasers Optics Communications 276 (27) 39 44 www.elsevier.com/locate/optcom Suppression of thermal lensing effects in intra-cavity coherent combining of lasers Sharona Sedghani *, Vardit Eckhouse, Asher A. Friesem,

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Unique ultrafast energy transfer in a series of phenylenebridged

More information

Dispersion and how to control it

Dispersion and how to control it Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening

More information

Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air

Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air Appl. Phys. B 77, 177 183 (2003) DOI: 10.1007/s00340-003-1199-2 Applied Physics B Lasers and Optics n. aközbek 1, a. becker 2 m. scalora 3 s.l. chin 4 c.m. bowden 3 Continuum generation of the third-harmonic

More information

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres J. Opt. A: Pure Appl. Opt. 1 (1999) 725 729. Printed in the UK PII: S1464-4258(99)00367-0 Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres Nikolai Minkovski, Ivan Divliansky, Ivan

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states

Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states Stable UV to IR supercontinuum generation in calcium fluoride with conserved circular polarization states Philip J. M. Johnson, Valentyn I. Prokhorenko, and R. J. Dwayne Miller Institute for Optical Sciences

More information

Supercontinuum generation in bulk and photonic crystal fibers

Supercontinuum generation in bulk and photonic crystal fibers Supercontinuum generation in bulk and photonic crystal fibers Denis Seletskiy May 5, 2005 Abstract In this paper we overview the concept of supercontinuum generation (SCG) and take a brief look at several

More information

Improving the stability of longitudinal and transverse laser modes

Improving the stability of longitudinal and transverse laser modes Optics Communications 239 (24) 147 151 www.elsevier.com/locate/optcom Improving the stability of longitudinal and transverse laser modes G. Machavariani *, N. Davidson, A.A. Ishaaya, A.A. Friesem Department

More information

Four-wave mixing in PCF s and tapered fibers

Four-wave mixing in PCF s and tapered fibers Chapter 4 Four-wave mixing in PCF s and tapered fibers The dramatically increased nonlinear response in PCF s in combination with single-mode behavior over almost the entire transmission range and the

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Coherent Raman imaging with fibers: From sources to endoscopes

Coherent Raman imaging with fibers: From sources to endoscopes Coherent Raman imaging with fibers: From sources to endoscopes Esben Ravn Andresen Institut Fresnel, CNRS, École Centrale, Aix-Marseille University, France Journées d'imagerie vibrationelle 1 Jul, 2014

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Research Article Nonlinear Phenomena of Ultra-Wide-Band Radiation in a Photonic Crystal Fibre

Research Article Nonlinear Phenomena of Ultra-Wide-Band Radiation in a Photonic Crystal Fibre International Optics Volume 2, Article ID 3748, 6 pages doi:./2/3748 Research Article Nonlinear Phenomena of Ultra-Wide-Band Radiation in a Photonic Crystal Fibre Rim Cherif and Mourad Zghal Cirta Com

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

Sources supercontinuum visibles à base de fibres optiques microstructurées

Sources supercontinuum visibles à base de fibres optiques microstructurées Sources supercontinuum visibles à base de fibres optiques microstructurées P. Leproux XLIM - Université de Limoges Journées Thématiques CMDO+, Palaiseau, 24-25 nov. 2008 Palaiseau, 25/11/2008 - P. Leproux

More information

Laser-induced breakdown and damage in bulk transparent materials induced by tightly

Laser-induced breakdown and damage in bulk transparent materials induced by tightly Home Search Collections Journals About Contact us My IOPscience Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses This content has been

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Coherence and width of spectral lines with Michelson interferometer

Coherence and width of spectral lines with Michelson interferometer Coherence and width of spectral lines TEP Principle Fraunhofer and Fresnel diffraction, interference, spatial and time coherence, coherence conditions, coherence length for non punctual light sources,

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković

Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Hatice Altug * and Jelena Vučković Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays Hatice Altug * and Jelena Vučković Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities 646 J. Opt. Soc. Am. B/ Vol. 17, No. 4/ April 2000 Paschotta et al. Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities R. Paschotta, J. Aus

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Filamentation characteristics of focused fs pulses in atmosphere

Filamentation characteristics of focused fs pulses in atmosphere Filamentation characteristics of focused fs pulses in atmosphere S. Sreeja a, b, V. Rakesh Kumar a, Ch. Leela a, P. Radhakrishnan b, Surya P. Tewari a, S. Venugopal Rao a#, P. Prem Kiran a* a Advanced

More information

Color center production by femtosecond pulse laser irradiation in LiF crystals

Color center production by femtosecond pulse laser irradiation in LiF crystals Color center production by femtosecond pulse laser irradiation in LiF crystals Lilia Coronato Courrol*, Ricardo Elgul Samad, Laércio Gomes, Izilda Márcia Ranieri, Sonia Licia Baldochi, Anderson Zanardi

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Spatiotemporal coupling in dispersive nonlinear planar waveguides

Spatiotemporal coupling in dispersive nonlinear planar waveguides 2382 J. Opt. Soc. Am. B/Vol. 12, No. 12/December 1995 A. T. Ryan and G. P. Agrawal Spatiotemporal coupling in dispersive nonlinear planar waveguides Andrew T. Ryan and Govind P. Agrawal The Institute of

More information

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 365 371 Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser

More information

Mechanism of phase-energy coupling in f -to-2f interferometry

Mechanism of phase-energy coupling in f -to-2f interferometry Mechanism of phase-energy coupling in f -to-2f interferometry Chengquan Li, Eric Moon, Hiroki Mashiko, He Wang, Christopher M. Nakamura, Jason Tackett, and Zenghu Chang* J. R. Macdonald Laboratory, Department

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments

Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments PHYSICAL REVIEW A 86, 023850(2012) Molecular quantum wake-induced pulse shaping and extension of femtosecond air filaments S. Varma, Y.-H. Chen, J. P. Palastro, A. B. Fallahkair, E. W. Rosenthal, T. Antonsen,

More information

Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides

Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides I. Babushkin 1, A. Husakou 1, J. Herrmann 1, and Yuri S. Kivshar 2 1 Max Born Institute for Nonlinear

More information

Spatial Intensity Nonuniformities of an OMEGA Beam due to Nonlinear Beam Propagation

Spatial Intensity Nonuniformities of an OMEGA Beam due to Nonlinear Beam Propagation Spatial Intensity Nonuniformities of an OMEGA Beam due to Nonlinear Beam Propagation Several applications require that a laser beam maintain a high degree of wavefront quality after propagating a long

More information

Modulational instability of few cycle pulses in optical fibers

Modulational instability of few cycle pulses in optical fibers Modulational instability of few cycle pulses in optical fibers Amarendra K. Sarma* Department of Physics, Indian Institute of Technology Guwahati,Guwahati-78139,Assam,India. *Electronic address: aksarma@iitg.ernet.in

More information

SELF-ORGANIZATION OF SPATIAL SOLITONS

SELF-ORGANIZATION OF SPATIAL SOLITONS Chapter 5 86 SELF-ORGANIZATION OF SPATIAL SOLITONS 5.1. INTRODUCTION In this chapter we present experimental results on the self-organization of spatial solitons in a self-focusing nonlinear medium. We

More information

Numerical Construction of Nonlinear Optical Evolution of Femtosecond Laser Pulse Propagation in Air Based on 2D+1 NLSE Full Model

Numerical Construction of Nonlinear Optical Evolution of Femtosecond Laser Pulse Propagation in Air Based on 2D+1 NLSE Full Model JLMN-Journal of Laser Micro/Nanoengineering Vol. 1, No. 1, 017 Numerical Construction of Nonlinear Optical Evolution of Femtosecond Laser Pulse Propagation in Air Based on D+1 NLSE Full Model Yuheng Wang

More information

Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment arxiv:1512.05235v1 [physics.plasm-ph] 16 Dec 2015 A. Joulaei 1, 3, J.Moody 1, N. Berti 2, J. Kasparian 2, S. Mirzanejhad

More information