Analogical Inference for Multi-Relational Embeddings

Size: px
Start display at page:

Download "Analogical Inference for Multi-Relational Embeddings"

Transcription

1 Analogical Inference for Multi-Relational Embeddings Hanxiao Liu, Yuexin Wu, Yiming Yang Carnegie Mellon University August 8, 2017 nalogical Inference for Multi-Relational Embeddings 1 / 19

2 Task Description Multi-Relational Embeddings: Finding latent representations of entities and relations. Useful for knowledge base completion (by discovering missing facts), etc. Novel Contribution: Instead of tradition rule-based AI, we impose analogical structures in the learning of entity/relation embedding. nalogical Inference for Multi-Relational Embeddings 2 / 19

3 Why Analogy? (a toy example) nucleus surrounded by electrons scale down attract scale down made of sun surrounded by planets charge attract made of scale down mass Figure: Solar System (blue) v.s. Atomic System (red). Knowing the relational structure in one system will help us to understand the other system by analogy. Analogical Inference for Multi-Relational Embeddings 3 / 19

4 Basic Formulation Denote by vector v e the embedding of entity e. Denote by matrix W r in the embedding of relation r. Assume all valid subject-relation-object (s,r,o) triples approximately satisfy v s W r v o (1) Define the scoring function of any (s,r,o) triple as: φ(s, r, o) = v s W r, v o = v s W r v o (2) Analogical Inference for Multi-Relational Embeddings 4 / 19

5 Real Normal Matrices as Desirable The family of matrices satisfying: Wr W r = W r Wr (3) Special cases: 1. Symmetric Matrices φ(s, r, o) = φ(o, r, s). E.g. is identical. 2. Skew-symmetric Matrices φ(s, r, o) = φ(o, r, s). E.g. is parent of. 3. Orthogonal Matrices Useful if r is a bijection (one-to-one mapping). Analogical Inference for Multi-Relational Embeddings 5 / 19

6 Commutative Matrices as Necessary Observation: Analogical structures often imply parallelograms, e.g., man is to king as woman is to queen Or, in an abstract notion: a is to b as c is to d a r r c b r r d Given the parallelogram, if we know a r b and a r c, then c r d and b r d can be inferred by symmetry. nalogical Inference for Multi-Relational Embeddings 6 / 19

7 Commutative Matrices as Necessary (cont d) Mathematically, the necessary condition for having an analogical structure is the commutativity of relations: r r = r r (4) a r r c b r r d Equivalently, we want the following constraint: W r W r = W r W r (5) nalogical Inference for Multi-Relational Embeddings 7 / 19

8 Optimization: Straightforward Formulation Notation: Label y = +1 for positive examples and 1 otherwise; Data distribution D; Loss function l. min E s,r,o,y D l (φ v,w (s, r, o), y) (6) v,w s.t. W r W r = W r W r r (7) W r W r = W r W r r, r (8) (7) follows the definition of normal matrices. (8) is for the communicative property. The OPT is expensive due to (i) W r s are fully dense matrices (ii) large number of equality constraints. nalogical Inference for Multi-Relational Embeddings 8 / 19

9 Optimization: Complexity Reduced Version Solution v, W for the previous OPT can be exactly recovered by solution v, W of the following problem: Most notably, min E s,r,o,y D l (φ v v,w,w (s, r, o), y) (9) We show that any W r must be block-diagonal with the diagonal block sizes bounded by 2. O(m) free parameters in the m m matrix. We now have an unconstrained optimization instead. Efficiently solved using SGD without projection. nalogical Inference for Multi-Relational Embeddings 9 / 19

10 A Unified View of Existing Work We explain the strong empirical performance of DistMult (Yang et al., ICLR 2015) ComplEx (Trouillon et al., ICML 2016) HolE (Nickel et al., AAAI 2016) by showing that they are implicitly imposing analogical structures and are restricted cases of ours. nalogical Inference for Multi-Relational Embeddings 10 / 19

11 Connections to Existing Work Multiplicative Embeddings (DistMult) φ(s, r, o) = v s, v r, v o (10) where v s, v r, v o R m, s, r, o (11) DistMult embeddings of size m can be fully recovered by ANALOGY embeddings of size m. Intuition: v r can be viewed as a diagonal W r def = diag(v r ). Diagonal matrices are always commutative. nalogical Inference for Multi-Relational Embeddings 11 / 19

12 Connections to Existing Work Complex Embeddings (ComplEx) φ(s, r, o) = R ( v s, v r, v o ) (12) where v s, v r, v o C m, s, r, o (13) ComplEx embeddings of size m can be fully recovered by ANALOGY embeddings of size 2m. Intuition: ( there ) exists a bijection between any a + bj C a b and R b a 2 2. Analogical Inference for Multi-Relational Embeddings 12 / 19

13 Connections to Existing Work Holographic Embeddings (HolE) φ(s, r, o) = v r, v s v o (14) where v s, v r, v o R m, s, r, o (15) HolE embeddings can be equivalently obtained via φ(s, r, o) = R ( v s, v r, v o ) (16) where v s, v r, v o FFT(R m ) C m, s, r, o (17) Hence is a restricted case of ComplEx and ANALOGY. Intuition: Circular convolution can be converted into element-wise product after Fourier transform. nalogical Inference for Multi-Relational Embeddings 13 / 19

14 Experiments Implementation Details Use logistic loss: l(φ(s, r, o), y) = log σ(yφ(s, r, o)) (18) Optimization: Asynchronous AdaGrad (HogWild!) For each valid (s, r, o), generate negative examples (s, r, o), (s, r, o), (s, r, o ) by corrupting s, r, o. Evaluation Hits and Mean Reciprocal Rank (MRR) Benchmark datasets FreeBase-15K and WordNet-18. nalogical Inference for Multi-Relational Embeddings 14 / 19

15 Results (filt.) Models WN18 FB15K Unstructured RESCAL NTN SME SE LFM TransH TransE TransR TKRL 73.4 RTransE 76.2 TransD CTransR KG2E STransE DistMult TransSparse PTransE-MUL 77.7 PTransE-RNN 82.2 PTransE-ADD 84.6 NLF (+external data) ComplEx HolE Our ANALOGY Analogical Inference for Multi-Relational Embeddings 15 / 19

16 Results & MRR WN18 FB15K Models MRR (filt.) MRR (raw) (filt.) (filt.) MRR (filt.) MRR (raw) (filt.) (filt.) RESCAL TransE DistMult HolE ComplEx Our ANALOGY Analogical Inference for Multi-Relational Embeddings 16 / 19

17 Scalability The algorithm scales linearly over the embedding size FB15K WN Embedding size FB15K WN Number of threads Figure: CPU run time per epoch (secs) of ANALOGY. Intuition: O(m) for almost-diagonal matrices instead of O(m 2 ) for dense matrices. nalogical Inference for Multi-Relational Embeddings 17 / 19

18 Conclusion Contributions: A new framework that explicitly exploit analogy in a differentiable manner. Fast algorithm of linear scalability. Unified view of several representative works. Future work: Other applications where analogies might be useful (Machine Translation, Image Captioning, etc.). nalogical Inference for Multi-Relational Embeddings 18 / 19

19 Poster #51 Code: Thank You! nalogical Inference for Multi-Relational Embeddings 19 / 19

arxiv: v2 [cs.lg] 6 Jul 2017

arxiv: v2 [cs.lg] 6 Jul 2017 made of made of Analogical Inference for Multi-relational Embeddings Hanxiao Liu 1 Yuexin Wu 1 Yiming Yang 1 arxiv:1705.02426v2 [cs.lg] 6 Jul 2017 Abstract Large-scale multi-relational embedding refers

More information

Supplementary Material: Towards Understanding the Geometry of Knowledge Graph Embeddings

Supplementary Material: Towards Understanding the Geometry of Knowledge Graph Embeddings Supplementary Material: Towards Understanding the Geometry of Knowledge Graph Embeddings Chandrahas chandrahas@iisc.ac.in Aditya Sharma adityasharma@iisc.ac.in Partha Talukdar ppt@iisc.ac.in 1 Hyperparameters

More information

Modeling Topics and Knowledge Bases with Embeddings

Modeling Topics and Knowledge Bases with Embeddings Modeling Topics and Knowledge Bases with Embeddings Dat Quoc Nguyen and Mark Johnson Department of Computing Macquarie University Sydney, Australia December 2016 1 / 15 Vector representations/embeddings

More information

ParaGraphE: A Library for Parallel Knowledge Graph Embedding

ParaGraphE: A Library for Parallel Knowledge Graph Embedding ParaGraphE: A Library for Parallel Knowledge Graph Embedding Xiao-Fan Niu, Wu-Jun Li National Key Laboratory for Novel Software Technology Department of Computer Science and Technology, Nanjing University,

More information

A Convolutional Neural Network-based

A Convolutional Neural Network-based A Convolutional Neural Network-based Model for Knowledge Base Completion Dat Quoc Nguyen Joint work with: Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung April 16, 2018 Introduction Word vectors learned

More information

Knowledge Graph Completion with Adaptive Sparse Transfer Matrix

Knowledge Graph Completion with Adaptive Sparse Transfer Matrix Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Knowledge Graph Completion with Adaptive Sparse Transfer Matrix Guoliang Ji, Kang Liu, Shizhu He, Jun Zhao National Laboratory

More information

Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder

Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder Interpretable and Compositional Relation Learning by Joint Training with an Autoencoder Ryo Takahashi* 1 Ran Tian* 1 Kentaro Inui 1,2 (* equal contribution) 1 Tohoku University 2 RIKEN, Japan Task: Knowledge

More information

Knowledge Graph Embedding with Diversity of Structures

Knowledge Graph Embedding with Diversity of Structures Knowledge Graph Embedding with Diversity of Structures Wen Zhang supervised by Huajun Chen College of Computer Science and Technology Zhejiang University, Hangzhou, China wenzhang2015@zju.edu.cn ABSTRACT

More information

arxiv: v2 [cs.cl] 28 Sep 2015

arxiv: v2 [cs.cl] 28 Sep 2015 TransA: An Adaptive Approach for Knowledge Graph Embedding Han Xiao 1, Minlie Huang 1, Hao Yu 1, Xiaoyan Zhu 1 1 Department of Computer Science and Technology, State Key Lab on Intelligent Technology and

More information

Learning Entity and Relation Embeddings for Knowledge Graph Completion

Learning Entity and Relation Embeddings for Knowledge Graph Completion Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Learning Entity and Relation Embeddings for Knowledge Graph Completion Yankai Lin 1, Zhiyuan Liu 1, Maosong Sun 1,2, Yang Liu

More information

A Translation-Based Knowledge Graph Embedding Preserving Logical Property of Relations

A Translation-Based Knowledge Graph Embedding Preserving Logical Property of Relations A Translation-Based Knowledge Graph Embedding Preserving Logical Property of Relations Hee-Geun Yoon, Hyun-Je Song, Seong-Bae Park, Se-Young Park School of Computer Science and Engineering Kyungpook National

More information

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

arxiv: v1 [cs.ai] 12 Nov 2018

arxiv: v1 [cs.ai] 12 Nov 2018 Differentiating Concepts and Instances for Knowledge Graph Embedding Xin Lv, Lei Hou, Juanzi Li, Zhiyuan Liu Department of Computer Science and Technology, Tsinghua University, China 100084 {lv-x18@mails.,houlei@,lijuanzi@,liuzy@}tsinghua.edu.cn

More information

STransE: a novel embedding model of entities and relationships in knowledge bases

STransE: a novel embedding model of entities and relationships in knowledge bases STransE: a novel embedding model of entities and relationships in knowledge bases Dat Quoc Nguyen 1, Kairit Sirts 1, Lizhen Qu 2 and Mark Johnson 1 1 Department of Computing, Macquarie University, Sydney,

More information

Knowledge Graph Embedding via Dynamic Mapping Matrix

Knowledge Graph Embedding via Dynamic Mapping Matrix Knowledge Graph Embedding via Dynamic Mapping Matrix Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu and Jun Zhao National Laboratory of Pattern Recognition (NLPR) Institute of Automation Chinese Academy of

More information

Locally Adaptive Translation for Knowledge Graph Embedding

Locally Adaptive Translation for Knowledge Graph Embedding Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Locally Adaptive Translation for Knowledge Graph Embedding Yantao Jia 1, Yuanzhuo Wang 1, Hailun Lin 2, Xiaolong Jin 1,

More information

Learning Multi-Relational Semantics Using Neural-Embedding Models

Learning Multi-Relational Semantics Using Neural-Embedding Models Learning Multi-Relational Semantics Using Neural-Embedding Models Bishan Yang Cornell University Ithaca, NY, 14850, USA bishan@cs.cornell.edu Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research

More information

REVISITING KNOWLEDGE BASE EMBEDDING AS TEN-

REVISITING KNOWLEDGE BASE EMBEDDING AS TEN- REVISITING KNOWLEDGE BASE EMBEDDING AS TEN- SOR DECOMPOSITION Anonymous authors Paper under double-blind review ABSTRACT We study the problem of knowledge base KB embedding, which is usually addressed

More information

Neighborhood Mixture Model for Knowledge Base Completion

Neighborhood Mixture Model for Knowledge Base Completion Neighborhood Mixture Model for Knowledge Base Completion Dat Quoc Nguyen 1, Kairit Sirts 1, Lizhen Qu 2 and Mark Johnson 1 1 Department of Computing, Macquarie University, Sydney, Australia dat.nguyen@students.mq.edu.au,

More information

Neural Tensor Networks with Diagonal Slice Matrices

Neural Tensor Networks with Diagonal Slice Matrices Neural Tensor Networks with Diagonal Slice Matrices Takahiro Ishihara 1 Katsuhiko Hayashi 2 Hitoshi Manabe 1 Masahi Shimbo 1 Masaaki Nagata 3 1 Nara Institute of Science and Technology 2 Osaka University

More information

TransG : A Generative Model for Knowledge Graph Embedding

TransG : A Generative Model for Knowledge Graph Embedding TransG : A Generative Model for Knowledge Graph Embedding Han Xiao, Minlie Huang, Xiaoyan Zhu State Key Lab. of Intelligent Technology and Systems National Lab. for Information Science and Technology Dept.

More information

Towards Understanding the Geometry of Knowledge Graph Embeddings

Towards Understanding the Geometry of Knowledge Graph Embeddings Towards Understanding the Geometry of Knowledge Graph Embeddings Chandrahas Indian Institute of Science chandrahas@iisc.ac.in Aditya Sharma Indian Institute of Science adityasharma@iisc.ac.in Partha Talukdar

More information

Learning to Represent Knowledge Graphs with Gaussian Embedding

Learning to Represent Knowledge Graphs with Gaussian Embedding Learning to Represent Knowledge Graphs with Gaussian Embedding Shizhu He, Kang Liu, Guoliang Ji and Jun Zhao National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences,

More information

Data-Dependent Learning of Symmetric/Antisymmetric Relations for Knowledge Base Completion

Data-Dependent Learning of Symmetric/Antisymmetric Relations for Knowledge Base Completion The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Data-Dependent Learning of Symmetric/Antisymmetric Relations for Knowledge Base Completion Hitoshi Manabe Nara Institute of Science

More information

Relation path embedding in knowledge graphs

Relation path embedding in knowledge graphs https://doi.org/10.1007/s00521-018-3384-6 (0456789().,-volV)(0456789().,-volV) ORIGINAL ARTICLE Relation path embedding in knowledge graphs Xixun Lin 1 Yanchun Liang 1,2 Fausto Giunchiglia 3 Xiaoyue Feng

More information

Embedding-Based Techniques MATRICES, TENSORS, AND NEURAL NETWORKS

Embedding-Based Techniques MATRICES, TENSORS, AND NEURAL NETWORKS Embedding-Based Techniques MATRICES, TENSORS, AND NEURAL NETWORKS Probabilistic Models: Downsides Limitation to Logical Relations Embeddings Representation restricted by manual design Clustering? Assymetric

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Modeling Relation Paths for Representation Learning of Knowledge Bases

Modeling Relation Paths for Representation Learning of Knowledge Bases Modeling Relation Paths for Representation Learning of Knowledge Bases Yankai Lin 1, Zhiyuan Liu 1, Huanbo Luan 1, Maosong Sun 1, Siwei Rao 2, Song Liu 2 1 Department of Computer Science and Technology,

More information

Modeling Relation Paths for Representation Learning of Knowledge Bases

Modeling Relation Paths for Representation Learning of Knowledge Bases Modeling Relation Paths for Representation Learning of Knowledge Bases Yankai Lin 1, Zhiyuan Liu 1, Huanbo Luan 1, Maosong Sun 1, Siwei Rao 2, Song Liu 2 1 Department of Computer Science and Technology,

More information

TransT: Type-based Multiple Embedding Representations for Knowledge Graph Completion

TransT: Type-based Multiple Embedding Representations for Knowledge Graph Completion TransT: Type-based Multiple Embedding Representations for Knowledge Graph Completion Shiheng Ma 1, Jianhui Ding 1, Weijia Jia 1, Kun Wang 12, Minyi Guo 1 1 Shanghai Jiao Tong University, Shanghai 200240,

More information

Combining Two And Three-Way Embeddings Models for Link Prediction in Knowledge Bases

Combining Two And Three-Way Embeddings Models for Link Prediction in Knowledge Bases Journal of Artificial Intelligence Research 1 (2015) 1-15 Submitted 6/91; published 9/91 Combining Two And Three-Way Embeddings Models for Link Prediction in Knowledge Bases Alberto García-Durán alberto.garcia-duran@utc.fr

More information

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network Dai Quoc Nguyen 1, Tu Dinh Nguyen 1, Dat Quoc Nguyen 2, Dinh Phung 1 1 Deakin University, Geelong, Australia,

More information

Learning Embedding Representations for Knowledge Inference on Imperfect and Incomplete Repositories

Learning Embedding Representations for Knowledge Inference on Imperfect and Incomplete Repositories Learning Embedding Representations for Knowledge Inference on Imperfect and Incomplete Repositories Miao Fan, Qiang Zhou and Thomas Fang Zheng CSLT, Division of Technical Innovation and Development, Tsinghua

More information

Mining Inference Formulas by Goal-Directed Random Walks

Mining Inference Formulas by Goal-Directed Random Walks Mining Inference Formulas by Goal-Directed Random Walks Zhuoyu Wei 1,2, Jun Zhao 1,2 and Kang Liu 1 1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing,

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Implicit ReasoNet: Modeling Large-Scale Structured Relationships with Shared Memory

Implicit ReasoNet: Modeling Large-Scale Structured Relationships with Shared Memory Implicit ReasoNet: Modeling Large-Scale Structured Relationships with Shared Memory Yelong Shen, Po-Sen Huang, Ming-Wei Chang, Jianfeng Gao Microsoft Research, Redmond, WA, USA {yeshen,pshuang,minchang,jfgao}@microsoft.com

More information

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016 GloVe on Spark Alex Adamson SUNet ID: aadamson June 6, 2016 Introduction Pennington et al. proposes a novel word representation algorithm called GloVe (Global Vectors for Word Representation) that synthesizes

More information

Web-Mining Agents. Multi-Relational Latent Semantic Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Web-Mining Agents. Multi-Relational Latent Semantic Analysis. Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Web-Mining Agents Multi-Relational Latent Semantic Analysis Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) Acknowledgements Slides by: Scott Wen-tau

More information

Type-Sensitive Knowledge Base Inference Without Explicit Type Supervision

Type-Sensitive Knowledge Base Inference Without Explicit Type Supervision Type-Sensitive Knowledge Base Inference Without Explicit Type Supervision Prachi Jain* 1 and Pankaj Kumar* 1 and Mausam 1 and Soumen Chakrabarti 2 1 Indian Institute of Technology, Delhi {p6.jain, k97.pankaj}@gmail.com,

More information

Learning Multi-Relational Semantics Using Neural-Embedding Models

Learning Multi-Relational Semantics Using Neural-Embedding Models Learning Multi-Relational Semantics Using Neural-Embedding Models Bishan Yang Cornell University Ithaca, NY, 14850, USA bishan@cs.cornell.edu Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng Microsoft Research

More information

Complex Embeddings for Simple Link Prediction

Complex Embeddings for Simple Link Prediction Théo Trouillon 1,2 THEO.TROUILLON@XRCE.XEROX.COM Johannes Welbl 3 J.WELBL@CS.UCL.AC.UK Sebastian Riedel 3 S.RIEDEL@CS.UCL.AC.UK Éric Gaussier 2 ERIC.GAUSSIER@IMAG.FR Guillaume Bouchard 3 G.BOUCHARD@CS.UCL.AC.UK

More information

A fast and simple algorithm for training neural probabilistic language models

A fast and simple algorithm for training neural probabilistic language models A fast and simple algorithm for training neural probabilistic language models Andriy Mnih Joint work with Yee Whye Teh Gatsby Computational Neuroscience Unit University College London 25 January 2013 1

More information

arxiv: v2 [cs.cl] 3 May 2017

arxiv: v2 [cs.cl] 3 May 2017 An Interpretable Knowledge Transfer Model for Knowledge Base Completion Qizhe Xie, Xuezhe Ma, Zihang Dai, Eduard Hovy Language Technologies Institute Carnegie Mellon University Pittsburgh, PA 15213, USA

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

arxiv: v4 [cs.cl] 24 Feb 2017

arxiv: v4 [cs.cl] 24 Feb 2017 arxiv:1611.07232v4 [cs.cl] 24 Feb 2017 Compositional Learning of Relation Path Embedding for Knowledge Base Completion Xixun Lin 1, Yanchun Liang 1,2, Fausto Giunchiglia 3, Xiaoyue Feng 1, Renchu Guan

More information

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation

A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Yue Ning 1 Yue Shi 2 Liangjie Hong 2 Huzefa Rangwala 3 Naren Ramakrishnan 1 1 Virginia Tech 2 Yahoo Research. Yue Shi

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

PROBABILISTIC KNOWLEDGE GRAPH CONSTRUCTION: COMPOSITIONAL AND INCREMENTAL APPROACHES. Dongwoo Kim with Lexing Xie and Cheng Soon Ong CIKM 2016

PROBABILISTIC KNOWLEDGE GRAPH CONSTRUCTION: COMPOSITIONAL AND INCREMENTAL APPROACHES. Dongwoo Kim with Lexing Xie and Cheng Soon Ong CIKM 2016 PROBABILISTIC KNOWLEDGE GRAPH CONSTRUCTION: COMPOSITIONAL AND INCREMENTAL APPROACHES Dongwoo Kim with Lexing Xie and Cheng Soon Ong CIKM 2016 1 WHAT IS KNOWLEDGE GRAPH (KG)? KG widely used in various tasks

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

PROBABILISTIC KNOWLEDGE GRAPH EMBEDDINGS

PROBABILISTIC KNOWLEDGE GRAPH EMBEDDINGS PROBABILISTIC KNOWLEDGE GRAPH EMBEDDINGS Anonymous authors Paper under double-blind review ABSTRACT We develop a probabilistic extension of state-of-the-art embedding models for link prediction in relational

More information

Jointly Embedding Knowledge Graphs and Logical Rules

Jointly Embedding Knowledge Graphs and Logical Rules Jointly Embedding Knowledge Graphs and Logical Rules Shu Guo, Quan Wang, Lihong Wang, Bin Wang, Li Guo Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China University

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms

Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms Pasquale Minervini 1, Luca Costabello 2, Emir Muñoz 1,2, Vít Nová ek 1 and Pierre-Yves Vandenbussche 2 1 Insight Centre for

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

William Yang Wang Department of Computer Science University of California, Santa Barbara Santa Barbara, CA USA

William Yang Wang Department of Computer Science University of California, Santa Barbara Santa Barbara, CA USA KBGAN: Adversarial Learning for Knowledge Graph Embeddings Liwei Cai Department of Electronic Engineering Tsinghua University Beijing 100084 China cai.lw123@gmail.com William Yang Wang Department of Computer

More information

KGBuilder: A System for Large-Scale Scientific Domain Knowledge Graph Building

KGBuilder: A System for Large-Scale Scientific Domain Knowledge Graph Building XLDB2018 KGBuilder: A System for Large-Scale Scientific Domain Knowledge Graph Building Yi Zhang, Xiaofeng Meng WAMDM@RUC 5/3/2018 Knowledge Graph 什么是知识图谱 (Knowledge Graph)? Knowledge Graph Language Open

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Experiments on the Consciousness Prior

Experiments on the Consciousness Prior Yoshua Bengio and William Fedus UNIVERSITÉ DE MONTRÉAL, MILA Abstract Experiments are proposed to explore a novel prior for representation learning, which can be combined with other priors in order to

More information

arxiv: v4 [math.oc] 5 Jan 2016

arxiv: v4 [math.oc] 5 Jan 2016 Restarted SGD: Beating SGD without Smoothness and/or Strong Convexity arxiv:151.03107v4 [math.oc] 5 Jan 016 Tianbao Yang, Qihang Lin Department of Computer Science Department of Management Sciences The

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

A Three-Way Model for Collective Learning on Multi-Relational Data

A Three-Way Model for Collective Learning on Multi-Relational Data A Three-Way Model for Collective Learning on Multi-Relational Data 28th International Conference on Machine Learning Maximilian Nickel 1 Volker Tresp 2 Hans-Peter Kriegel 1 1 Ludwig-Maximilians Universität,

More information

Reduced-Rank Hidden Markov Models

Reduced-Rank Hidden Markov Models Reduced-Rank Hidden Markov Models Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon Carnegie Mellon University ... x 1 x 2 x 3 x τ y 1 y 2 y 3 y τ Sequence of observations: Y =[y 1 y 2 y 3... y τ ] Assume

More information

Cutting Plane Training of Structural SVM

Cutting Plane Training of Structural SVM Cutting Plane Training of Structural SVM Seth Neel University of Pennsylvania sethneel@wharton.upenn.edu September 28, 2017 Seth Neel (Penn) Short title September 28, 2017 1 / 33 Overview Structural SVMs

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Recurrent Latent Variable Networks for Session-Based Recommendation

Recurrent Latent Variable Networks for Session-Based Recommendation Recurrent Latent Variable Networks for Session-Based Recommendation Panayiotis Christodoulou Cyprus University of Technology paa.christodoulou@edu.cut.ac.cy 27/8/2017 Panayiotis Christodoulou (C.U.T.)

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 22 1 / 21 Overview

More information

Implicit Optimization Bias

Implicit Optimization Bias Implicit Optimization Bias as a key to Understanding Deep Learning Nati Srebro (TTIC) Based on joint work with Behnam Neyshabur (TTIC IAS), Ryota Tomioka (TTIC MSR), Srinadh Bhojanapalli, Suriya Gunasekar,

More information

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec Jiezhong Qiu Tsinghua University February 21, 2018 Joint work with Yuxiao Dong (MSR), Hao Ma (MSR), Jian Li (IIIS,

More information

Differentiable Learning of Logical Rules for Knowledge Base Reasoning

Differentiable Learning of Logical Rules for Knowledge Base Reasoning Differentiable Learning of Logical Rules for Knowledge Base Reasoning Fan Yang Zhilin Yang William W. Cohen School of Computer Science Carnegie Mellon University {fanyang1,zhiliny,wcohen}@cs.cmu.edu Abstract

More information

arxiv: v1 [cs.lg] 20 Jan 2019 Abstract

arxiv: v1 [cs.lg] 20 Jan 2019 Abstract A tensorized logic programming language for large-scale data Ryosuke Kojima 1, Taisuke Sato 2 1 Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

More information

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems A Constraint Generation Approach to Learning Stable Linear Dynamical Systems Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon Carnegie Mellon University NIPS 2007 poster W22 steam Application: Dynamic Textures

More information

Review: Linear and Vector Algebra

Review: Linear and Vector Algebra Review: Linear and Vector Algebra Points in Euclidean Space Location in space Tuple of n coordinates x, y, z, etc Cannot be added or multiplied together Vectors: Arrows in Space Vectors are point changes

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Chengjie Qin 1, Martin Torres 2, and Florin Rusu 2 1 GraphSQL, Inc. 2 University of California Merced August 31, 2017 Machine

More information

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Hiroaki Hayashi 1,* Jayanth Koushik 1,* Graham Neubig 1 arxiv:1611.01505v3 [cs.lg] 11 Jun 2018 Abstract Adaptive

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai

ECE521 W17 Tutorial 1. Renjie Liao & Min Bai ECE521 W17 Tutorial 1 Renjie Liao & Min Bai Schedule Linear Algebra Review Matrices, vectors Basic operations Introduction to TensorFlow NumPy Computational Graphs Basic Examples Linear Algebra Review

More information

arxiv: v1 [cs.lg] 17 Sep 2017

arxiv: v1 [cs.lg] 17 Sep 2017 On Inductive Abilities of Latent Factor Models for Relational Learning arxiv:1709.05666v1 [cs.lg] 17 Sep 2017 Théo Trouillon theo.trouillon@imag.fr Univ. Grenoble Alpes, 700 avenue Centrale, 38401 Saint

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Rule Learning from Knowledge Graphs Guided by Embedding Models

Rule Learning from Knowledge Graphs Guided by Embedding Models Rule Learning from Knowledge Graphs Guided by Embedding Models Vinh Thinh Ho 1, Daria Stepanova 1, Mohamed Gad-Elrab 1, Evgeny Kharlamov 2, Gerhard Weikum 1 1 Max Planck Institute for Informatics, Saarbrücken,

More information

Deep Learning & Neural Networks Lecture 4

Deep Learning & Neural Networks Lecture 4 Deep Learning & Neural Networks Lecture 4 Kevin Duh Graduate School of Information Science Nara Institute of Science and Technology Jan 23, 2014 2/20 3/20 Advanced Topics in Optimization Today we ll briefly

More information

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract)

Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Approximating the Partition Function by Deleting and then Correcting for Model Edges (Extended Abstract) Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Representing structured relational data in Euclidean vector spaces. Tony Plate

Representing structured relational data in Euclidean vector spaces. Tony Plate Representing structured relational data in Euclidean vector spaces Tony Plate tplate@acm.org http://www.d-reps.org October 2004 AAAI Symposium 2004 1 Overview A general method for representing structured

More information

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018

Regularization Introduction to Machine Learning. Matt Gormley Lecture 10 Feb. 19, 2018 1-61 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Regularization Matt Gormley Lecture 1 Feb. 19, 218 1 Reminders Homework 4: Logistic

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM Syllabus (014): Pure Mathematics AM SYLLABUS (014) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (014): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

More information

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery Tim Roughgarden & Gregory Valiant May 3, 2017 Last lecture discussed singular value decomposition (SVD), and we

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Using Joint Tensor Decomposition on RDF Graphs

Using Joint Tensor Decomposition on RDF Graphs Using Joint Tensor Decomposition on RDF Graphs Michael Hoffmann AKSW Group, Leipzig, Germany michoffmann.potsdam@gmail.com Abstract. The decomposition of tensors has on multiple occasions shown state of

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) Machine Learning and NLP NER WordNet Usually machine learning

More information