The Exponential-Generalized Truncated Geometric (EGTG) Distribution: A New Lifetime Distribution

Size: px
Start display at page:

Download "The Exponential-Generalized Truncated Geometric (EGTG) Distribution: A New Lifetime Distribution"

Transcription

1 Itratioal Joural of Statistics ad Probability; Vol. 7, No. 1; Jauary 018 ISSN E-ISSN Publishd by Caadia Ctr of Scic ad Educatio Th Epotial-Gralid Trucatd Gomtric (EGTG) Distributio: 1 Uivrsity of Tuis, ESSECT, Tuisia A Nw Liftim Distributio Mohiddi Rahmoui 1, & Ayma Orabi Kig Faisal Uivrsity, Commuity Collg i Abqaiq, Saudi Arabia Corrspodc: Mohiddi Rahmoui, Commuity Collg i Abqaiq, Kig Faisal Uivrsity, 3198, Al-ihsa, Eastr Rgio, Saudi Arabia. mohiddi.rahmoui@gmail.com Rcivd: Octobr 1, 017 Accptd: Octobr 4, 017 Oli Publishd: Novmbr 3, 017 doi: /ijsp.v71p1 URL: Abstract This papr itroducs a w two-paramtr liftim distributio, calld th potial-gralid trucatd gomtric (EGTG) distributio, by compoudig th potial with th gralid trucatd gomtric distributios. Th w distributio ivolvs two importat kow distributios, i.., th potial-gomtric (Adamidis ad Loukas, 1998) ad th tdd (complmtary) potial-gomtric distributios (Adamidis t al., 005; Louada t al., 011) i th miimum ad maimum liftim cass, rspctivly. Gral forms of th probability distributio, th survival ad th failur rat fuctios as wll as thir proprtis ar prstd for som spcial cass. Th applicatio study is illustratd basd o two ral data sts. Kywords: Liftim distributios; potial distributio; trucatd gomtric distributio; ordr statistics; failur rat; survival fuctio. 010 Mathmatics Subjct Classificatio: 60E05; 6E15; 6F Itroductio Liftim distributios ar widly usd i rliability thory, survival aalysis ad svral aras of studis, such as fiac, maufactur, biological scics, physics ad girig. Th potial distributio is th most commoly usd i rliability ad liftim tstig, assumig th failur rat is costat (Balakrisha ad Basu, 1995; Barlow ad Proscha, 1975). I rct yars, som of rsarch paprs hav b dvotd to tak ito accout data with icrasig or dcrasig failur rat fuctios. Th motivatio is to provid mor covit paramtric fit for ral data whr th udrlyig haard rats, arisig o a latt complmtary risk problm bas, prst mooto shaps (o-costat haard rats). Th gsis is statd o complmtary risk scarios with maskd causs of failur (Basu ad Kli, 198; Co ad Oaks, 1984). Svral familis of compoud liftim distributios ar itroducd as tsios of th potial distributio, followig Adamidis ad Loukas (1998), usig a mitur of discrt ad cotiuous distributios. Adamidis ad Loukas (1998) itroducd th potial-gomtric (EG) liftim distributio with dcrasig failur rat (DFR) arisig by miig powr-sris distributios. I th sam way, Adamidis t al. (005) ad Louada t al. (011) proposd th complmtary (or tdd) potial-gomtric (CEG) distributio with icrasig failur rat (IFR). Othr familis of liftim distributios hav b ivstigatd by svral authors. For ampl, Kus (007), Tahmasbi ad Rai (008), Chahkadi ad Gajali (009), Barrto-Soua ad Cribari-Nto (009), Silva t al. (010), Barrto-Soua t al. (011), Cacho t al. (011), Louada-Nto t al. (011), Morais ad Barrto-Soua (011), Hmmati t al. (011), Alkari ad Orabi (01), Nadarajah t al. (013), Bakouch t al. (014), ad othrs. Th proposd distributios com from th ida of modllig th rliability of sris ad paralll systms basd o th rliability of thir compots. Thy ar carrid out oly for th first (miimum) or th last (maimum) ordr statistics. 1

2 Th distributios of stochastic ordrd statistics 1 ar vry itrstig i may filds of statistics, particularly, th dtctio of outlirs, quality cotrol, auctio thory, rliability ad lif tstig modls. I this papr, w grali th distributios modllig th tim to th first (or th last) failur, to a distributio mor appropriat for modllig ay ordr statistic (scod, third, or ay k th liftim). For ampl, o may b itrstd i th priod of tim patits may spd i hospital durig a moth bfor thy lav. Lt's suppos that umbr of patits fill bds i a hospital ad lav durig a moth. W suppos that T i is th priod a patit spds bfor lavig ad Z th radom umbr of patits that lav th hospital. W may lt X (1) < X () < < X (Z) b th ordr statistics of idpdt obsrvatios of tim T = (T 1, T,, T ). Mayb prvious studis focusd o th miimum, X (1) = mi {T i } Z i=1, or th maimum, X (Z) = ma {T i } Z i=1, duratio of fillig bds. W ar itrstd hr i th duratio X (k) ad th w dtrmi th distributio for th obsrvd k th ordr statistic. Ordrd radom variabls ar alrady kow for thir ascdig ordr. Th cocpt of dual gralid ordrd statistics, itroducd by Burkschat t al. (003), abls a commo approach to th rvrs (or dscdig) ordr statistics. Rvrs ordr statistics hav also wid rag of applicatios i coomics such as providig divrs distributiv critria i assssig wlfar ad iqualitis of icoms ad walth (Wymark, 1981; Parrado-Gallardo t al., 014). W propos th w family of liftim distributios by compoudig th potial with th gralid trucatd gomtric distributios, amd th potial-gralid trucatd gomtric (EGTG) distributio. W show that th miimum liftim (Adamidis ad Loukas, 1998) ad th maimum liftim (Adamidis t al., 005; Louada t al., 011) ar spcial cass of our EGTG distributio. Fially, this papr is orgaid as follows: I sctio, w driv diffrt statistical propritis of our proposd distributio, icludig th probability dsity fuctio (pdf), th momt gratig fuctio, th rliability ad failur rat fuctios, th radom umbr gratio ad th tropy fuctio. Th stimatio of th paramtrs will b discussd i sctio 3. As a illustratio of th stimatio mthod, umrical computatios will b prformd i sctio 4. Th applicatio study is illustratd basd o two ral data sts i sctio 5. W coclud th papr i th last sctio.. Th Nw Liftim Distributio.1 Th Distributio Th drivatio of th w family of liftim distributios is obtaid by miig th potial with gralid trucatd gomtric distributios as follows: Lt T = (T 1, T,, T ) b iid potial radom variabls with scal paramtr θ > 0 ad pdf giv by: f(t) = θ θt, for t 0, whr Z is a discrt radom variabl (th radom umbr of uit i a systm) followig a trucatd at k 1 gomtric distributio with paramtr 0 < η < 1. Th probability mass fuctio (pmf), P k 1 (Z = ), is: whr th pmf of th gomtric distributio is giv by: P k 1 (Z = ) = (1 η)η k ; 0 < η < 1 ; k = 1,,, (1) P(Z = i) = (1 η)η i 1 ; 0 < η < 1 ad i = 1,, Z Z Lt X (1) = mi {T i } i=1 b th first ordr statistic (or th smallst ordr statistic) ad X (Z) = ma {T i } i=1 th last ordr statistic (or th largst ordr statistic). Th pdf of th k th ordr statistic X (k) (th k th -smallst valu of th liftim) is giv by th quatio () (David, 1981, p. 9; Balakrisha ad Coh, 1991, p. 1): ( 1) f ( k) ( k 1) Th joit probability dsity fuctio is obtaid from quatios (1) ad () as follows: ( k1) k1 k (, ) (1 ) ;, 0 () k k 1 (1 ) ( 1)(1 ) ( I) ; k 1,,..., ( k 1) ( k) ( k 1) g(,, ) (3) m1 m1 (1 ) ( 1)(1 ) ( II) ; k, 1,...,1 ; m k ( m1) ( m) ( m 1) 1 Ordr Statistics play a ky rol i liftim-distributio studis ad thy ar widly usd i statistical modls ad ifrc. O may rfr to Balakrisha ad Rao (1998, 1998a) for thory, mthods ad som applicatios o th ordr statistics of radom variabls.

3 whr, is th liftim of a systm, is th last ordr statistic ad m 0,1,.... Equatio (3) givs two dfiitios : th first is for th ascdig ordr statistics ad th scod is for th dscdig ordr. If w cosidr th ascdig ordr X (1) < X () < < X (Z), th first part (I) of this joit probability dsity i quatio (3) is rachd by compoudig a trucatd at l = k 1 gomtric distributio ad th pdf of th k th ordr statistic (k = 1,,, ). Th trucatd at k 1 gomtric distributio is motivatd by mathmatical itrst bcaus w ar itrstd i th k th ordr statistic. Thr is a lft-trucatio schm, whr oly ( k + 1) idividuals who surviv a sufficit tim ar icludd. I compariso with th formulatio of Adamidis ad Loukas (1998), w cosidr th k th -smallst valu of liftim istad of th miimum liftim (th first ordr statistic), X (1) = mi {T i } Z i=1. Howvr, wh w cosidr th rvrs (dscdig) ordr X (Z) > X (Z 1) > > X (1), w obtai th scod dfiitio (II) i quatio (3) by compoudig th pdf of th ( m) th ordr statistic ad a trucatd at m gomtric distributio. W iclud i th sampl oly ( m) idividuals who hav pricd th vt by th spcifid tim m = k. I compariso with th formulatio of Louada t al. (011), w cosidr th ( k) th -largst valu of liftim istad of th maimum liftim (th last ordr statistics), X (Z) = ma {T i } Z i=1. So, our proposd w family of liftim distributios (EGTG) is th margial dsity fuctio of giv by: k 1 k(1 ) (1 ) k 1,,..., k1 [1 ] g (, ) (4) ( m1) ( m1) (1 ) k, 1,...,1 ad m k m [1 (1 )] whr 0 1is th shap paramtr ad 0 is th scal paramtr. Our distributio is mor appropriat for modllig ay ordr statistic ( d, 3 rd or ay k th liftim). W show latr that th miimum liftim (Adamidis ad Loukas, 1998) is a spcial cas of th first part of th EGTG distributio, ad that th maimum liftim (Adamidis t al., 005; Louada t al., 011) is a spcial cas of th scod part of th EGTG distributio. It should b otd that w hav two sparat dfiitios. Th first cas is a graliatio of th miimum liftim distributio usig th ascdig ordr of liftim. Th scod cas is a graliatio of th maimum liftim distributio usig th dscdig ordr. Also, th cumulativ distributio fuctio (cdf) of corrspodig to th pdf i quatio (4) is giv by: k 1 k 1,,..., 1 G (, ) (5) m1 1 k, 1,...,1 ; m k 1 (1 ) I tabl (1), w prst th pdf i quatio (4) for som spcial cass at th first, scod ad third ordr statistics ad at th last, last-1 ad last- ordr statistics. Tabl (1) shows that th particular cas of our EGTG dsity fuctio, for k = 1, is th EG distributio modllig th tim to th first failur (Adamidis ad Loukas, 1998). Figur (1) illustrats som possibl shaps of th pdf for som slctd cass of th ordr statistics (k=1,; m=0,1) ad som slctd valus of (η, θ). Th pdf dcrass strictly i ad tds to ro as. Not that, for k = 1 th EGTG distributio is strictly dcrasig with modal valu θ(1 η) 1 at = 0. Th mdia is calculatd to b θ 1 l ( η) for k = 1. As η 0 ad k = 1, th EGTG distributio tds to a potial distributio with paramtr θ. Th graphs of th dsity rsmbl thos of th potial ad Parto II distributios. Th particular cas of th pdf for th last ordr statistic (m = 0) is th maimum liftim distributio (Adamidis t al., 005; Louada t al., 011). As η 0 ad m = 0, th EGTG distributio covrgs to th potial distributio with paramtr θ. Th EGTG dsity fuctio is dcrasig ad its mod is θ(1 η) at = 0 for η 1 ad ui-modal at 1 1 η log θ η. It is icrasig for η > 1. As otd by Louada t al. (011), th paramtrs η ad θ may b itrprtd Th proofs of all stps ad quatios ar availabl upo rqust. 3

4 dirctly i trms of complmtary risk problms i prsc of latt risks (s also, Louada-Nto, 1999). I fact, (1 η) ad θ rprst th ma of th umbr of complmtary risks ad th liftim failur rat, rspctivly. A dtaild prstatio of th comptig risks thory ca b foud i David ad Moschbrgr (1978) ad Crowdr (001). Tabl 1. Th probability dsity fuctio for som spcial cass Ordr statistics k, m Probability dsity fuctio First k=1 Scod k= Third k=3 Last m=0 Last -1 m=1 Last- m= (1 ) [1 ] (1 ) (1 ) 3 [1 ] 3 (1 ) (1 ) 4 [1 ] (1 ) [1 (1 )] (1 ) [1 (1 )] 3 3 (1 ) [1 (1 )] 3 4 4

5 .. Momt Gratig Fuctio ad r th Momt Figur 1. Dsity of th EGTG distributio for k=(1,) ad m=(0,1) Th momt gratig fuctio (mgf) is a altrativ spcificatio of th probability distributio of a radom variabl. It allows for th study of th charactristics ad th faturs of a distributio through its momts, such as th ma ad variac. If has th pdf i quatio (4), th th mgf is calculatd to b: k 1 1 k i k 1 j i t i j i0 j0 k(1 ) C C ( 1) i j 1 ; k 1,,..., M t E m C C m j k, 1,...,1; m k i 1 t m i 1 i j i t ( ) ( ) ( 1)(1 ) i j ( 1) 1 (6) i0 j0 Th mgf i quatio (6) grats th momts of X by diffrtiatio. I othr words, th r th momt ca b obtaid by valuatig th r th ordr drivativ of M () t at t = 0 as follows: d M dt r r ( r) X ( ) M X (0) r E Th ma is th first ordr drivativ, μ = E(X) = M X (1) (0), ad th scod ordr drivativ is E(X ) = M X () (0). Hc, th variac is σ = E(X ) μ. From quatio (6), th r th momt is giv by: k 1 ( r1) ( r1) k(1 ) k i k 1 j i ( 1) 1 1,,..., r Ci C j i j k r i0 j0 E ( ) (7) i ( r1) ( r 1)( m 1)(1 ) m i 1 i j i Ci C j( 1) m j 1 k, 1,...,1 ; m k r i0 j0 Tabl () provids th plicit prssios i trms of th polylogarithm fuctio for th first ad scod ordr momts of th radom variabl X. Li s (η) is th graliatio of Eulr's dilogarithm fuctio of η. It is kow as th polylogarithm fuctio dfid by th powr sris (Erdlyi t al., 1953, p. 31): () t t0 5

6 η Li s (η) = ηt t s t=1 = η + η η3 + ts t s + whr, Li 0 (η) = ad Li 1 η 1(η) = l (1 η) (Jodra, 008; Adamidis ad Loukas, 1998). Tabl. Th first ad scod ordr momts for som spcial cass Ordr statistics k, m E() E( ) First k=1 1 η ηθ Li 1(η) (1 η) ηθ Li (η) Scod k= 1 η η θ Li 1(η) 1 η ηθ (1 η ) η θ Li (η) (1 η) η θ Li 1 (η) Third k=3 1 η 3 η 3 θ Li 1(η) 3 (1 η) ηθ 1 η η θ (1 η 3 ) η 3 θ Li (η) 3(1 η) (1 + η) (1 η) η 3 θ Li 1 (η) + η θ Last m=0 1 ηθ Li 1(η) ηθ {Li (1) Li (1 η) + 1 [Li 1(η)] + l(η)li 1 (η)} Last -1 m=1 1 η θ Li 1(η) 1 ηθ η θ {Li (1) Li (1 η) + 1 [Li 1(η)] + [l(η) 1]Li 1 (η)} Last- m= 1 η 3 θ Li 1(η) 1. 1 ηθ 1 η θ η 3 θ {Li (1) Li (1 η) + 1 [Li 1(η)] + [l(η) 3 ] Li 1(η) + η }.3. Rliability ad Failur Rat Fuctios Th rliability (or th survival) fuctio is th probability of big aliv just bfor a duratio, giv by S() = Pr{X > } = 1 G() = f(t)dt which is th probability that th vt udr study has ot occurrd by duratio. So th rliability fuctio corrspodig to th pdf i quatio (4) is giv by: k 1 1 k 1,,..., 1 S(,, m) m1 k, 1,...,1 ad m k 1 (1 ) I othr words, th rliability, S(), is th probability that a systm oprats proprly i th itrval from tim 0 to tim, whr X is a radom variabl dotig th tim-to-failur or failur tim. O may rfr to th litratur o th thory ad applicatios of rliability (s Barlow ad Proscha, 1975, 1981; Basu ad Kli, 198). Th haard rat h(), kow as failur rat fuctio, is th istataous rat of occurrc of th vt of itrst at duratio (i.. th rat of vt occurrc pr uit of tim). Mathmatically, it quals th probability dsity g ( ) of 8 6

7 vts at, dividd by th probability, S( ) 1 G( ), of survivig to that duratio without pricig th vt. Thus, w dfi a failur rat fuctio as i Barlow ad Proscha (1965) by h( ) g( ) / S( ). Th failur rat fuctio corrspodig to th pdf i quatio (4) is giv by: 1 1 k k k(1 ) (1 ) 1 1 k 1,,..., k 1 [1 ] 1 h (, ) (9) ( m 1)(1 ) k, 1,...,1 ad m k 1 (1 ) Th haard rat fuctio is aalytically rlatd to th tim-to-failur probability distributio. It lads to th amiatio of th IFR or th DFR proprtis of lif-lgth distributios. G is a IFR distributio, if h() icrass for all X such that G(X) < 1. Th motivatio of th EGTG liftim distributio is th ralistic faturs of th haard rat i may ral-lif physical ad o-physical systms, which is ot a mootoically icrasig, dcrasig or costat failur rat. Not that for th first part of quatio (9), if k = 1, th haard rat fuctio is dcrasig (Adamidis ad Loukas, 1998). I fact, if 0 th h k (\η, θ) = θ(1 η) 1 ad if th h k (\η, θ) θ. If k > 1, thr is a IFR distributio. Idd, if 0 th h k (\η, θ) 0. If th h k (\η, θ) = θ. I th scod part of quatio (9), th EGTG is a IFR distributio. Th iitial rat valu is fiit ad giv by h m (0\ η, θ) = θ(m + 1)(1 η). Th log trm haard valu is fiit ad giv by θ(m + 1). Idd, w hav lim h (, ) lim h (, ). Figur () illustrats th shaps of th haard rat fuctio for som cass (k=1,; 0 m m=0,1) ad som slctd valus of (η, θ). m 1 (1 ) k 1 lim hk (, ) 0 0 k,3,..., lim h (, ) k 1,,3,..., k lim h (, ) ( m 1)(1 ) k, 1,...,1 ; m k 0 m lim h (, ) ( m 1) k, 1,...,1 ; m k m I tabl (3), w prst th rliability ad failur rat fuctios i quatios (8) ad (9) for som spcial cass at th first, scod ad third ordr statistics, ad at th last, last-1 ad last- ordr statistics. Tabl 3. Th rliability ad failur fuctios for som spcial cass Ordr statistics k, m Survival fuctio Haard rat First k= Scod k= (1 ) (1 ) [1 ] 1 1 7

8 Third k= (1 ) (1 ) [1 ] Last m=0 Last -1 m=1 1 (1 ) 1 (1 ) (1 ) 1 (1 ) (1 ) 1 (1 ) Last- m= 1 (1 ) 3 3 (1 ) 1 (1 ) Figur. Haard rat of th EGTG distributio for k=(1,) ad m=(0,1) 8

9 .4. Radom Numbr Gratio W ca grat a radom variabl from th cdf of i quatio (5) usig th followig stps: Grat a radom variabl U from th stadard uiform distributio. Calculat th valus of X such as: 1 k 1 1 l U k 1,,..., 1 k 1U X (10) 1 m1 1 1 (1 U ) l k, 1,...,1 ad m k 1 m1 (1 )(1 U ) W ca dtrmi th quatils by dividig th st of obsrvatios ito qual sid groups. Th mdia is computd by lttig U = 0.5. Th quatio (10) ca b usd for a simulatio study of th EGTG distributio..5. Etropy Etropy is a masur of th ucrtaity that was itroducd by Shao (1948) as a basic cocpt i iformatio ad commuicatio thory, masurig th avrag missig iformatio o a radom sourc (Ls, 014). Shao dfid th tropy as: 0 H b (X) = E [log b ( 1 )] = g() log g() b ( 1 ) d = g() [log g() b g()] (11) log b ( 1 ) is also calld a ucrtaity. Th probability distributio alrady dscribs th probability charactristics of a g() radom variabl. Howvr, if w hav two or mor probability distributios w do ot kow actly which variabl is mor radom tha th othr. I this cas, a compariso btw probability distributios is possibl thaks to tropy whras a probability distributio dscribs th radomss of o radom variabl. Th tropy appars as th avrag iformatio rquird to spcify th outcom X wh th distributio g() is kow. It quivaltly masurs th amout of ucrtaity rprstd by a probability distributio (Jays, 1957). Wh th tropy is larg this mas that th ucrtaity associatd to th radom variabl is larg, ad vic vrsa. Lt th tropy of a radom variabl X 1 b 0.8 ad that of aothr variabl X b 0.1. It is obsrvd that th first radom variabl is mor ucrtai tha th scod. From quatio (11), th tropy for th w family distributio is giv by: 0 j ( k j)! -log[ k(1- )] k( k -1)(1- ) B( i j 1, k) i j! k! i1 j0 i j ( k j)! - k( k 1)(1- ) B( i j 1, k) ; k 1,,..., i1 j0 i j! k! H( ) -log[ ( m 1)(1- )] ( m 1) - ( m 1)( m )(1- ) i j ( m j1)! B( i j 1, m 1) for, k, -1,...,1 ad m - k i1 j0 i j!( m 1)! (1) whr μ = E(X) Equatio (1) prsss th mathmatical pctatio of ucrtaity. Similar to th ma ad variac of a radom variabl, tropy is a drivd quatity from probability distributio, but it has a valu of its ow (Zog, 006). If w ar 9

10 skig a pdf subjct to crtai costraits (r th momt), w choos th dsity satisfyig th costraits ad havig tropy as larg as possibl. Th pricipl of maimum tropy stats that w should choos th probability distributio that maimis th ucrtaity subjct to som costrais about th radom variabl X. This distributio should b last surprisig i trms of th prdictios it maks. Etropy ca also b usd to produc a modl for data-gratig distributio i trms of iformatio costraits. Giv th prior iformatio about th pdf g(, η, θ), o may stimat th paramtrs by maimiig th tropy id H(X) or quivaltly, miimiig th log-loss. I th applicatio ampls, w will us th tropy as a statistic i assssmt of distributio, by tstig th hypothsis that th data follow a spcific distributio. Idd, it masurs how wll a probability distributio fits a st of obsrvd data (masur of th ihrt radomss). Giv th stimatd paramtrs η ad θ, w ca calculat th tropy H(X). 3. Estimatio I this sctio, w will dtrmi th stimatd paramtrs η ad θ for th EGTG w family of liftim distributios. Lt (X 1, X,, X ) b a radom sampl with obsrvd valus ( 1,,, ) from th EGTG distributio with th pdf i quatio (4). Th log liklihood fuctio giv th obsrvd valus, obs = ( 1,, ), is: i l( k) l(1 ) l( ) ( k 1) l(1 ) i1 i ( k 1) l(1 ) k 1,,..., i i1 i1 l L(, / obs ) l( m 1) l(1 ) l( ) ( m 1) i i1 i ( m ) l[1 (1 )] k, 1,...,1 ad m k i1 (13) W subsqutly driv th associatd gradits: i ( k 1) k 1,,..., (1 i ) i1 1 l L(, / ) (14) i 1 ( m ) ; k, 1,...,1 ad m k i (1 ) i1 1 (1 ) i i i ( k 1) ( k 1) i i i1 i1 1 i1 k 1,,..., l L(, / ) (15) i ( m 1) i ( m ) i i1 i1 (1 ) k, 1,...,1 ad m k W d th Fishr iformatio matri for itrval stimatio ad tsts of hypothss o th paramtrs. It ca b prssd i trms of th scod drivativs of th log-liklihood fuctio: 10

11 For th first dfiitio, For th scod dfiitio, ll θ I 11 = E ( ll η ) I 1 = E ( ll η θ ) I = I 1 = E ( ll ( θ η ) I = E ( ll θ ) ) ll η = θi (k + 1) (1 η) (1 η θ i ) = + (k 1) θ ll η θ i=1 i θ i i=1 ( θ (k + 1) i 1) = (k + 1) i θi (1 η θ i ) i=1 η i θ i ( θ i η) i=1 ll η = 1 θi (m + ) (1 η) [1 η(1 θ i)] ll θ ll η θ = (m + ) η(1 θ = (m + ) i=1 i=1 θ i η) i [ θ i(1 η) + η] i θi [ θ i(1 η) + η] i=1 Th maimum liklihood stimats (MLEs) η ad θ of th EGTG paramtrs η ad θ, rspctivly, ca b dtrmid umrically by solvig th oliar quatios (14) ad (15) of th associatd gradits, usig a statistical softwar (it ca b asily do usig R, Mathcad ad Matlab packags, amog othrs). Th choic of a good st of iitial valus is sstial. Th MLEs ca also b foud aalytically usig th itrativ EM algorithm to hadl th icomplt data problms (Dmpstr t al., 1977; McLachla ad Krisha, 1997). Th itrativ mthod cosists o rpatdly updatig th paramtr stimats by rplacig th "missig data" with th w stimatd valus. Th stadard mthod usd to dtrmi th MLEs is th Nwto-Raphso algorithm that rquirs scod drivativs of th log-liklihood fuctio for all itratios. Th mai drawback of th EM algorithm is its rathr slow covrgc, compard to th Nwto-Raphso mthod, wh th "missig data" cotai rlativly larg amout of iformatio (Littl ad Rubi, 1983). Rctly, svral rsarchrs hav usd th EM mthod such as Adamidis t al. (005), Karlis (003), Ng t al. (00), Adamidis ad Loukas (1998), Adamidis (1999), amog othrs. Nwto-Raphso is rquird for th M-stp of th EM algorithm. To start th EM algorithm, w dfi a hypothtical distributio of complt-data with th joit dsity fuctio i quatio (3). W driv th coditioal mass fuctio as: E-stp: M-stp: k ( k ) k 1 ( 1) (1 ) k 1,,..., ( k 1) ( k 1) p(,, ) m m1 ( 1)[1 (1 )] k, 1,...,1 ad m k m1 ( m) ( m )(1 ) (16) k k 1,,..., 1 E(,, ) 1 m k, 1,...,1 ad m k 1 (1 ) (17) 11

12 ( r1) ( r ) ( r) i i1 ( r ) ( r) i ( k 1) k 1,,..., (1 ) i1 ( r ) ( r) i (1 ) i1 k, 1,...,1 ad m k ( r ) ( r) i ( 1) (1 ) i1 (18) ( r1) k 1,,..., ( r ) ( r1) ( r) i k (1 k) i ( r1) i ( r) i ( r) i i 1 i 1 1 i 1 1 k, 1,...,1 ad m k ( r) ( r1) ( r) i ( r1) i (1 ) ( m1) i ( r) ( r1) ( r) i i i1 i1 1 (1 ) 1 4. Simulatio Study As a illustratio of th MLEs, umrical computatios hav b prformd usig th stps prstd i sctio.4 for radom umbr gratio. Th umrical study was basd o 1000 radom sampls of th sis 0, 50 ad 100 from th EGTG distributio for th ascdig ad dscdig ordr statistics with cass k = (1; ) ad m = (0; 1), rspctivly. W hav cosidrd th iitial valus of (η, θ) : (0.1, 0.5), (0.3, 0.5), (0.5,1), (0.1, 1.5), (0.7, 1.5). Aftr dtrmiig th paramtr stimats λ = (η, θ ) w comput th biass, variacs ad ma squar rrors (MSEs), whr MSE(λ ) = E(λ λ) = Bias (λ ) + var(λ ) ad Bias(λ ) = E(λ ) λ. A stimator λ is said to b fficit if its ma squar rror (MSE) is miimum amog all comptitors. I fact, λ 1 is mor fficit tha λ if MSE(λ 1) < MSE(λ ). Tabl 4 rports th rsults from th simulatd data whr th variacs ad th MSEs of th stimatd paramtrs ar giv. Th rsults show that, for ach cas, th covrgc has b achivd. Idd, th stimatd paramtrs λ = (η, θ ) approach to thir ral valus wh th si of th sampl icrass. th variacs ad th MSEs dcras ad covrg to ro wh th sampl si icrass, which may suggst that th MLEs ar prformd cosisttly. (19) 1

13 Tabl 4. Rsults from th simulatio study (η, θ) Ordr statistics Rvrs ordr statistics k η θ var(η ) var(θ ) MSE(η ) MSE(θ ) m η θ var(η ) var(θ ) MSE(η ) MSE(θ ) 0 (0.1, 0.5) m= (0.3, 0.5) k= (0.5, 1) (0.1, 1.5) (0.7, 1.5) (0.1, 0.5) k= m= (0.3, 0.5) (0.5, 1) (0.1, 1.5) (0.7, 1.5) (0.1, 0.5) k= m= (0.3, 0.5) (0.5, 1) (0.1, 1.5) (0.7, 1.5) (0.1, 0.5) k= m= (0.3, 0.5) (0.5, 1) (0.1, 1.5) (0.7, 1.5) (0.1, 0.5) k= m= (0.3, 0.5) (0.5, 1) (0.1, 1.5) (0.7, 1.5) (0.1, 0.5) k= m= (0.3, 0.5) (0.5, 1) (0.1, 1.5) (0.7, 1.5)

14 4. Applicatio Eampls I this sctio, w fit th EGTG distributio to two ral data sts usig th MLEs dtrmid umrically by dirct itgratio usig Mathcad Th first st (tabl A i appdi) cosists of "107 failur tims for right rar braks o D9G-66A catrpillar tractors", rproducd from Barlow ad Campo (1975) ad usd also by Chag ad Rao (1993). Ths data ar usd i may applicatios i rliability (Adamidis t al., 005; Tsokos, 01; Shahsaai t al., 01). Th scod st of data ivolvs 100 obsrvatios (tabl B i appdi) of th rsults from a primt cocrig "th tsil fatigu charactristics of a polystr/viscos yar". Ths data wr prstd by Picciotto (1970) to study th problm of warp brakag durig wavig. Th obsrvatios wr obtaid o th cycls to failur of a 100 cm yar sampl put to tst udr.3% strai lvl. Th sampl is usd i Qusbrry ad Kt (198) as a ampl to illustrat slctio procdur amog probability distributios usd i rliability. Th rliability fuctio of ths two data sts blogs to th icrasig failur rat class (Doksum ad Yadll, 1984; Adamidis t al., 005). W us diffrt statistical tsts to assss th agrmt btw th EGTG distributio ad th data sts. I additio to our class of distributios, th gamma ad Wibull distributios fittd ths data sts. Th rspctiv dsitis of gamma ad Wibull distributios ar: f 1 (, λ 1, β 1 ) = λ 1 β 1 β 1 1 p ( λ 1 )Γ(β 1 ) 1 ad f (, λ, β ) = β λ β β 1 p ( λ ) β. Tabls 5 ad 6 show th fittd paramtrs, calculatd valus of Kolmogorov Smirov (K-S) ad thir rspctiv p-valus for th two data sts. It should b otd that th K-S tst compars a mpirical distributio with a kow (ot stimatd) o. It is usd to dcid if a sampl coms from a populatio with a spcific distributio (H0: th data follow a spcifid distributio). W stimat som spcial cass of th EGTG distributio at 5% sigificat lvl. Th tabls rport also th AIC ad BIC iformatio critria ad th Shao s tropy (H) for modl slctio. Tabl (7) givs th mas ad th stadard rrors for som spcial cass of th EGTG distributio, compard to thir mpirical valus. I ordr to idtify mpirical bhaviors that th failur rat fuctio ca tak, w shall cosidr th graphical mthod basd o th total tst o tim (TTT-plot) proposd by Aarst (1987). I its mpirical vrsio th TTT-plot is costructd by valus r ad G(r ), whr G(r ) = r i=1 X i: + ( r)x r: i=1 X i: whr r = 1,, ad X i: rprsts th ordr statistics of th sampl. Th graphic TTT may hav various forms. It rsmbls to th Gii id ad it is usd as a crud idicativ of th shap of th failur rat fuctio. Idd, wh th curv approachs a straight diagoal fuctio, costat failur rat is adquat ad th data ar from a potial distributio. Wh th curv is approimatly cocav or cov, th data ar from IFR distributio or DFR distributio, rspctivly. Figur (3) shows cocav tdcis idicatig that th two data sts hibit IFR distributios. This rsult is i agrmt with th MLEs of th shap paramtrs ad th K-S tst. Th p-valus ar oly sigificat for th cas k = 1 for th two data sts. As show i sctio.3, If k = 1, th EGTG is DFR, but hr th data hibit a icrasig haard rat. Tabls (5) ad (6) show smallst valus of K-S statistics for th last ordr statistics (k = ) with largst associatd p-valus qual to ad , rspctivly. Th K-S distacs btw th mpirical distributio fuctio of th two sampls ad th cdf of th corrspodig distributio ar rspctivly ad W ca s that th w liftim family provids good fit to th data sts. Th K-S tst shows that th EGTG distributio is a attractiv altrativ to th popular gamma ad Wibull distributios. 14

15 Tabl 5. Th goodss of fit for som spcial cass, for th first data st (107 obs.) ML Estimats Distributios ˆ ˆ K-S p-valu Log-lik AIC BIC H EGTG: First ordr (k = 1) Scod ordr (k = ) Third ordr (k = 3) Fourth ordr (k = 4) Last ordr (k = ) Last ordr-1 (k = 1) Last ordr- (k = ) Last ordr-3 (k = 3) λ β Gamma Wibull Tabl 6. Th goodss of fit for som spcial cass, for th scod data st (100 obs). ML Estimats Distributios ˆ ˆ K-S p-valu Log-lik AIC BIC H EGTG: First ordr (k = 1) Scod ordr (k = ) Third ordr (k = 3) Fourth ordr (k = 4) Last ordr (k = ) Last ordr-1 (k = 1) Last ordr- (k = ) Last ordr-3 (k = 3) λ β Gamma Wibull

16 Barlow ad Campo (1975) data st Qusbrry ad Kt (198) data st Figur 3. Empirical TTT-plot For modls compariso, w comput th Akaik s iformatio critrio (AIC = ll + p) ad Schawar s Baysia iformatio critrio (BIC = ll + p log()), whr is th si of th sampl ad p is th umbr of paramtrs. Th rsults idicat that th last ordr statistic (k = ) has th smallst AIC ad BIC valus. Th, th maimum liftim distributio could b commoly chos as th prfrrd modl for dscribig th two data sts. Th tropy id shows that our distributio is a good altrativ i stimatig liftim data. Figur (4) illustrats th fittd modls ad th obsrvd histograms ad figur (5) shows th probability-probability plots for th two data sts. Th plots corroborat th prvious rsults ad cofirm th good prformac of our distributio. Th diagoal is th rfrc li i th PP-plot. Figur 4. Fittd modls ad obsrvd histograms 16

17 Figur 5. Th probability-probability plots for th data sts Tabl 7. Mas ad stadard rrors for som spcial cass Barlow & Campo (1975) data st Qusbrry & Kt (198) data st (107 obs.) (100 obs.) E(X) σ(x) E(X) σ(x) EGTG distributio First ordr (k = 1) Scod ordr (k = ) Third ordr (k = 3) Fourth ordr (k = 4) Last ordr (k = ) Last ordr-1 (k = 1) Last ordr- (k = ) Last ordr-3 (k = 3) Empirical valus

18 6. Coclusio I this papr w proposd th EGTG distributio, that gralis th potial-gomtric (Adamidis ad Loukas, 1998) ad th tdd (or complmtary) potial-gomtric distributio (Adamidis t al., 005; Louada t al., 011) i th miimum ad maimum cass, rspctivly. Th applicatio study was illustratd basd o two sts of ral data usd i may applicatios of rliability. W hav show that our proposd distributio is suitabl for modllig th liftim of ay ordr statistics. Futur rsarch, that should b cosidrd, icluds th Baysia approach with csord data. Ackowldgmt "Th authors would lik to thak th ditors ad th rfr for th valuabl commts ad suggstios." Rfrcs Aarst, M. V. (1987). How to idtify bathtub haard rat. IEEE Tras. Rliab. 36, Adamidis, K. (1999). A EM algorithm for stimatig gativ biomial paramtrs. Austral. Nw Zalad J. Statist. 41 (), Adamidis, K., Dimitrakopoulou, T., & Loukas, S. (005). O a tsio of th potial gomtric distributio. Statist. Probab. Ltt. 73, Adamidis, K., & Loukas, S. (1998). A liftim distributio with dcrasig failur rat. Statist. Probab. Ltt. 39, Alkari, S., Orabi, A. (01). A compoud class of Poisso ad liftim distributios. J. Stat. Appl. Pro. 1(1), Bakouch, H. S., Jai, M. A., Nadarajah, S., Dolati, A., & Rasool, R. (014). A liftim modl with icrasig failur rat. Applid Mathmatical Modllig. 38, Balakrisha, N., & Coh, A. C. (1991). Ordr Statistics ad Ifrc: Estimatio Mthods. Acadmic, Bosto. Balakrisha, N., & Basu, A. P. (1995). Th Epotial Distributio: Thory, Mthods ad Applicatios. Nwark, Nw Jrsy: Gordo ad Brach Publishrs. Balakrisha, N., & Rao, C. R. (1998). Ordr Statistics: Applicatios. Amstrdam: Elsvir. Balakrisha, N., & Rao, C. R. (1998a). Ordr Statistics: Thory ad Mthods. Amstrdam: Elsvir. Barlow, R. E., & Campo, R. (1975). Total tim o tst procsss ad applicatios to failur data aalysis. Rliability ad Fault Tr Aalysis. Socity for Idustrial ad Applid Mathmatics, Philadlphia. pp Barlow, R. E., & Proscha, F. (1981). Statistical Thory of Rliability ad Lif Tstig. Publishr: To bgi with, Silvr Sprig, Marylad. Barlow, R. E., & Proscha, F. (1965). Mathmatical thory of rliability. Joh Wily & Sos., Barrto-Soua, W., & Bakouch, H. S. (013). A w liftim modl with dcrasig failur rat. Statistics. 47(), Barrto-Soua, W., & Cribari-Nto, F. (009). A graliatio of th Epotial-Poisso distributio Statist. Probab. Ltt. 79, Barrto-Soua, W., Lmos-Morais, A., & Cordiro, G. M. (011). Th Wibull-gomtric distributio. J. Statist. computat. Simul. 81(5), Basu, A. P., & Kli, J. P. (198). Som rct rsults i comptig risks thory. I: Crowly JRA J, ditor. Survival Aalysis. Istitut of Mathmatical Statistics, Hayward., Burkschat, M., Cramr, E., & Kamps, U. (003). Dual gralid ordr statistics. Mtro. 61(1), Cacho, F., Louada-Nto, F., & Barriga, G. (011). Th Poisso-potial liftim distributio. Computat. Statist. Data Aal. 55, Chahkadi, M., & Gajali, M. (009). O som liftim distributios with dcrasig failur rat. Computat. Statist. Data Aal. 53, Chag, M. N., & Rao, P. V. (1993). Improvd stimatio of survival fuctios i th w-bttr-tha-usd class. Tchomtrics. 35, Co, D. R., & Oaks, D. (1984). Aalysis of Survival Data. Moographs o Statistics & Applid Probability. Lodo: 18

19 Chapma & Hall. Crowdr, M. J. (001). Classical Comptig Risks. Chapma ad Hall. David, H. A. (1981). Ordr Statistics. Scod d. Nw York, Wily. David, H. A., & Moschbrgr, M. L. (1978). Th Thory of Comptig Risks. Griffi. Dmpstr, A. P., Laird, N. M., & Rubi, D. B. (1977). Maimum liklihood from icomplt data via th EM algorithm (with discussio). J. Roy. Statist. Soc. Sr. B. 39, Doksum, K. A., & Yadll, B. S. (1984). Tsts for potiality. I: Hadbook of statistics. vol. 4. Elsvir. p Erdlyi, A., Magus, W., Obrhttigr, F., & Tricomi, F. G. (1953). Highr Trascdtal Fuctios. McGraw-Hill, Nw York. Hmmati, F., Khorram, E., & Rakhah, S. (011). A w thr-paramtr agig distributio. J. stat. pla. if. 141, Jays, E. T. (1957). Iformatio thory ad statistical mchaics. Physics Rviw. 106, Jodra, P. (008). O a coctio btw th polylogarithm fuctio ad th Bass diffusio modl. Procdigs of th Royal Socity. 464: Karlis, D. (003). A EM algorithm for multivariat Poisso distributio ad rlatd modls. J. Appl. Statist. 30(1), Kus, C. (007). A w liftim distributio. Computat. Statist. Data Aal. 51, Ls, A. (014). Shao tropy: a rigorous otio at th crossroads btw probability, iformatio thory, dyamical systms ad statistical physics. Mathmatical Structurs i Computr Scic. 4(03), Littl, R. J. A., & Rubi, D. B. (1983). Icomplt data. I: Kot, S., Johso, N. L. (Eds.), Ecyclopdia of Statistical Scics, vol. 4. Wily, Nw York. Louada-Nto, F. (1999). Modllig liftim data: a graphical approach. Applid Stochastic Modls i Busiss ad Idustry. 15, Louada, F., Roma, M., & Cacho, V. G. (011). Th complmtary potial gomtric distributio: Modl, proprtis, ad a compariso with its coutrpart. Computat. Statist. Data Aal. 55(8), Louada-Nto, F., Cacho, V. G., & Barrigac, G. D. C. (011). Th Poisso potial distributio: A Baysia approach. J. Appl. Statist. 38, McLachla, G. J., & Krisha, T. (1997). Th EM Algorithm ad Etsio. Wily, Nw York. Morais, A., & Barrto-Soua, W. (011). A compoud class of Wibull ad powr sris distributios. Computat. Statist. Data Aal. 55, Nadarajah, S., Cacho. V. G., & Ortga, E. M. M. (013). Th gomtric potial Poisso distributio. Stat. Mthods Appl., Ng, H. K. T., Cha, P. S., & Balakrisha, N. (00). Estimatio of paramtrs from progrssivly csord data usig EM algorithm. Comput. Statist. Data Aal. 39, Parrado-Gallardo, E. M., Barca-Martı, E., & Imdio-Olmdo, L. J. (014). Iquality, wlfar ad ordr statistics. I Ecoomic Wll-Big ad Iquality: Paprs from th Fifth ECINEQ Mtig (vol., p. 383). Emrald Group Publishig. Picciotto, R. (1970). Tsil Fatigu Charactristics of a Sid Polystr/Viscos Yar ad Thir Effct o Wavig Prformac. Mastr s thsis. North Caroli Stat Uivrsity. Qusbrry, C. P., & Kt, J. (198). Slctig amog probability distributios usd i rliability. Tchomtrics. 4, Shahsaai, F., Rai S., & Pak, A. (01). A Nw Two-Paramtr Liftim Distributio with Icrasig Failur Rat. Ecoomic Quality Cotrol. 7(1), Shao, C. E. (1948). A mathmatical thory of commuicatio. Bll Systm Tchical Joural. 7,

20 Silva, R. B., Barrto-Soua, W., & Cordiro, G. M. (010). A w distributio with dcrasig, icrasig ad upsid-dow bathtub failur rat. Computat. Statist. Data Aal. 54, Tahmasbi, R., & Rai, S. (008). A two-paramtr liftim distributio with dcrasig failur rat, Computat. Statist. Data Aal. 5, Tsokos, C. (01). Th thory ad applicatios of rliability with mphasis o Baysia ad oparamtric mthods. Elsvir. Wymark, J. A. (1981). Gralid Gii iquality idics. Mathmatical Social Scics. 1(4), Zog, Z. (006). Iformatio-Thortic Mthods for Estimatig of Complicatd Probability Distributios. Elsvir. Appdi Tabl (A): Ordrd Failur Tims (i hours) of 107 Right Rar Braks o D9G-66A Catrpillar Tractors (Barlow ad Campo, 1975; Chag ad Rao, 1993) Tabl (B): Rsults of Modl Slctio Program o Yar Data (Qusbrry ad Kt, 198) Copyrights Copyright for this articl is rtaid by th author(s), with first publicatio rights gratd to th joural. This is a op-accss articl distributd udr th trms ad coditios of th Crativ Commos Attributio lics ( 0

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

A NEW FAMILY OF GENERALIZED GAMMA DISTRIBUTION AND ITS APPLICATION

A NEW FAMILY OF GENERALIZED GAMMA DISTRIBUTION AND ITS APPLICATION Joural of Mathmatics ad Statistics 10 (2): 211-220, 2014 ISSN: 1549-3644 2014 Scic Publicatios doi:10.3844/jmssp.2014.211.220 Publishd Oli 10 (2) 2014 (http://www.thscipub.com/jmss.toc) a 1 y whr, Γ (

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

MILLIKAN OIL DROP EXPERIMENT

MILLIKAN OIL DROP EXPERIMENT 11 Oct 18 Millika.1 MILLIKAN OIL DROP EXPERIMENT This xprimt is dsigd to show th quatizatio of lctric charg ad allow dtrmiatio of th lmtary charg,. As i Millika s origial xprimt, oil drops ar sprayd ito

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010 Pag for-aftr Cotrol-Impact (ACI) Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Richard A. Hirichs Sptmbr 4, Cavat: This primtal dsig tool is a idalizd powr aalysis built upo svral simplifyig assumptios

More information

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA

DETECTION OF RELIABLE SOFTWARE USING SPRT ON TIME DOMAIN DATA Itratioal Joural of Computr Scic, Egirig ad Applicatios (IJCSEA Vol., No.4, August DETECTION OF RELIABLE SOFTWARE USING SRT ON TIME DOMAIN DATA G.Krisha Moha ad Dr. Satya rasad Ravi Radr, Dpt. of Computr

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A.

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A. Pag BACI Bfor-Aftr-Cotrol-Impact Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Octobr, 3 Richard A. Hirichs Cavat: This study dsig tool is for a idalizd powr aalysis built upo svral simplifyig assumptios

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Solution of Assignment #2

Solution of Assignment #2 olution of Assignmnt #2 Instructor: Alirza imchi Qustion #: For simplicity, assum that th distribution function of T is continuous. Th distribution function of R is: F R ( r = P( R r = P( log ( T r = P(log

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES

FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES Itratioal Joural of Computatioal Itlligc Systms, Vol. 5, No. 1 (Fbruary, 2012), 13-29 FUZZY ACCEPTANCE SAMPLING AND CHARACTERISTIC CURVES Ebru Turaoğlu Slçu Uivrsity, Dpartmt of Idustrial Egirig, 42075,

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Availabl oli at www.scicdirct.com Ergy Procdia 4 (01 170 177 Ergy Procdia 00 (010) 000 000 Ergy Procdia www.lsvir.com/locat/procdia www.lsvir.com/locat/xxx GHGT-10 Exprimtal Studis of CO ad CH 4 Diffusio

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker

Evaluating Reliability Systems by Using Weibull & New Weibull Extension Distributions Mushtak A.K. Shiker Evaluating Rliability Systms by Using Wibull & Nw Wibull Extnsion Distributions Mushtak A.K. Shikr مشتاق عبذ الغني شخير Univrsity of Babylon, Collg of Education (Ibn Hayan), Dpt. of Mathmatics Abstract

More information

A New Lifetime Distribution For Series System: Model, Properties and Application

A New Lifetime Distribution For Series System: Model, Properties and Application Joural of Moder Applied Statistical Methods Volume 7 Issue Article 3 08 A New Lifetime Distributio For Series System: Model, Properties ad Applicatio Adil Rashid Uiversity of Kashmir, Sriagar, Idia, adilstat@gmail.com

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Recursive Implementation of Anisotropic Filters

Recursive Implementation of Anisotropic Filters Rcursiv Implmtatio of Aisotropic Filtrs Zu Yu Dpartmt of Computr Scic, Uivrsit of Tas at Austi Abstract Gaussia filtr is widl usd for imag smoothig but it is wll kow that this tp of filtrs blur th imag

More information

A Novel Approach to Recovering Depth from Defocus

A Novel Approach to Recovering Depth from Defocus Ssors & Trasducrs 03 by IFSA http://www.ssorsportal.com A Novl Approach to Rcovrig Dpth from Dfocus H Zhipa Liu Zhzhog Wu Qiufg ad Fu Lifag Collg of Egirig Northast Agricultural Uivrsity 50030 Harbi Chia

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco EMPLOYMENT AND THE DISTRIBUTION OF INCOME Adrés Vlasco Ju 2011 Motivatio My xpric as Fiac Miistr Chil: hatd discussios o iquality. But... Focus oly o th wag distributio Discussios o th shap of th wag distributio

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Continuous probability distributions

Continuous probability distributions Continuous probability distributions Many continuous probability distributions, including: Uniform Normal Gamma Eponntial Chi-Squard Lognormal Wibull EGR 5 Ch. 6 Uniform distribution Simplst charactrizd

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

n n ee (for index notation practice, see if you can verify the derivation given in class)

n n ee (for index notation practice, see if you can verify the derivation given in class) EN24: Computatioal mthods i Structural ad Solid Mchaics Homwork 6: Noliar matrials Du Wd Oct 2, 205 School of Egirig Brow Uivrsity I this homwork you will xtd EN24FEA to solv problms for oliar matrials.

More information

A Strain-based Non-linear Elastic Model for Geomaterials

A Strain-based Non-linear Elastic Model for Geomaterials A Strai-basd No-liar Elastic Modl for Gomatrials ANDREW HEATH Dpartmt of Architctur ad Civil Egirig Uivrsity of Bath Bath, BA2 7AY UNITED KINGDOM A.Hath@bath.ac.uk http://www.bath.ac.uk/ac Abstract: -

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units Dpartmt of Agricultural ad Rsourc Ecoomics Uivrsity of Califoria, Davis Estimatio of Cosumr Dmad Fuctios Wh th Obsrvd Prics Ar th Sam for All Sampl Uits by Quirio Paris Workig Papr No. 03-004 Sptmbr 2003

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations.

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations. Eulr s Mthod for Solvig Iitial Valu Problms i Ordiar Diffrtial Equatios. Suda Fadugba, M.Sc. * ; Bosd Ogurid, Ph.D. ; ad Tao Okulola, M.Sc. 3 Dpartmt of Mathmatical ad Phsical Scics, Af Babalola Uivrsit,

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Supplemental Material for Automated Estimation of Vector Error Correction Models Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary

More information