Quantitative XRF Analysis. algorithms and their practical use

Size: px
Start display at page:

Download "Quantitative XRF Analysis. algorithms and their practical use"

Transcription

1 Joint ICTP-IAEA School on Novel Experimental Methodologies for Synchrotron Radiation Applications in Nano-science and Environmental Monitoring Quantitative XRF Analysis algorithms and their practical use Piet Van Espen 20 Nov

2 Content Quantitative analysis Relation between intensity and concentration Consequences of this relation The fundamental parameter method Calibration curves Dealing with detection limits Some final remarks 2

3 Quantitative analysis in XRF The NET intensity of the characteristic x-ray lines is proportional to the concentration NET = background corrected and interference free Use mainly Ka or La lines of elements 3

4 Quantitative results major elements (conc. range 100% - 5%) uncertainty of < 1% relative i.e % Cu (0.5 % relative error) minor elements (conc. range 5% - 0.1%) uncertainty of 5% relative trace elements (<0.1%) uncertainty of >5 % Only with homogeneous samples Semi-quantitative results uncertainties between 5 and 30% relative The real situation in many XRF applications Qualitative results presence/absence of elements The reality for the analysis of culturale heritage samples 4

5 The fundamental parameter relation Derivation of the relation between concentration and X-ray measured intensity: the Sherman equation 5

6 3.1 The fundamental parameter relation Derivation of the relation between Concentration and X-ray measured intensity: the Sherman equation Mono-energetic excitation Sample 95% Al, 5% Fe The measured intensity (cps) of the Fe Kα x-rays depend on (1) How many primary x-ray reach the sample at a certain depth d Sample: 95 % Al, 5% Fe (2) How many Fe K-vacancies are produced and how many of them cause the emission of Kα photons (2) (1) x x + dx Θ 2 Θ 1 (3) How many of those Fe Kα photons can leave the sample and get detected Ω 1 Ω 2 I o, E o (3) I i, E Fe Kα 6 Detector X-ray source

7 1) Number of primary x-ray that reach at depth x: Path traveled: d l = x sin 1 Sample: 95 % Al, 5% Fe x + dx x X-ray intensity impinging on depth x: x l Θ 1 I x = I 0 (E 0 ) exp[ µ M (E 0 ) M x/ sin 1 ] ρ M density of the sample (matrix) µ M (E 0 ) mass att. coeff. of the matrix for the primary radiation 7

8 2) Number of Fe Kα photons emitted from dx: Number of Fe vacancies created in the layer dx at depth x Fe (E 0 ) dx sin 1 I x ρ Fe - "density" of Fe, gram Fe per cm 3 [g/cm 3 ] τ Fe (E 0 ) fraction of photons that are absorbed and create vacancies in any shell photo-electric mass absorption coefficient of Fe [cm 2 /g] x Fraction of K shell vacancies: t K,Fe (E 0 )=t Fe (E 0 ) 1 1 J K (J K - K-edge jump ratio of Fe) x Fraction emitted as K photons: ωk (ω K - K-shell fluorescence yield of Fe ) x Fraction emitted as Kα photons: fkα di Fe = f K K 1 1 J K 8 (f Kα - Kα to total K (Kα+Kβ) ratio) Fe (E 0 ) Fe dx sin 1 I x

9 3) Number of Fe Kα that reach the detector Path traveled: l = x sin 2 Sample: 95 % Al, 5% Fe l x d x x + dx Attenuation of Fe Kα x-ray from layer at depth x: Θ 2 exp[ µ M (E Fe K ) M x/ sin 2 ] I i, E Fe Kα µ M (E Fe Kα ) mass att. coeff. of the matrix for Fe Kα Fraction viewed by the detector: 2 4 (E Fe K ) Attenuation in air path, detector windows (detector efficiency) di Fe K = 2 4 (E Fe K ) exp[ µ M (E Fe K ) M x/ sin 2 ]di Fe 9

10 Combination of the 3 terms di Fe K = 2 4 (E Fe K ) exp[ µ M (E Fe K ) M x/ sin 2 ]di Fe 1 dx di Fe = f K K 1 Fe (E 0 ) Fe sin I x = I 0 (E 0 ) exp[ µ x M (E 0 ) M x/ sin 1 ] 1 Define K Fe = f K K 1 J K J K 1 I x fundamental constants G = 2 4 sin 1 geometrie factor M (E Fe K, E 0 ) = µ M(E Fe K ) sin 2 + µ M(E 0 ) sin 1 absorption term detected intensity of Fe Kα from a layer dx at depth x di Fe K dx = G (E Fe K )K Fe Fe Fe (E 0 ) exp[ M (E Fe K, E 0 ) M x]dxi 0 10

11 Intensity from the entire sample: integration over thickness d I Fe K = G (E Fe K )K Fe Fe Fe (E 0 )I 0 x=d x=0 exp[ M M x]dx exp[ M M x] I Fe K = G (E Fe K )K Fe Fe Fe (E 0 )I 0 M M d 1 e ( M M d) I Fe K = G (E Fe K )K Fe Fe Fe (E 0 )I 0 M M but ρfe/ρm = wfe weight fraction of Fe in the sample Relation between intensity of the Kα line and weight fraction of element i for mono-energetic excitation of a sample of thickness d 0 I i = G (E i )K i w i i (E 0 ) 1 e M (E i,e 0 ) M d M (E i, E 0 ) I 0 Or if we consider the sample as infinitely thick I i = G (E i )K i w i i (E 0 ) 11 1 M (E i, E 0 ) I 0

12 Consequences of this relation Define the sensitivity for element i S i = (E i )K i i (E 0 ) sensitivity depends on the photo-electric cross section, thus of the excitation energy (E0) The absorption term is = µ M(E i ) sin 2 + µ M(E 0 ) sin 2 Intensity of element i having a weight fraction wi for a intermediate thick sample I i = I 0 GS i w i 1 exp( d) for a infinity thick sample I i = I 0 GS i w i 1 12

13 Depth of analysis is small and depends on the element analyzed Variation with thickness I(d)/I(inf) Al Fe rd g/cm2 100 µm at density of 1 g/cm 3 13

14 The relation between is not necessary linear and depends on the element and the matrix if the absorption is nearly constant linear calibration lines can be used Fe Intensity Al Conc Wi 14

15 The fundamental parameter method Standardless FP method All elements in the sample give characteristic lines in the spectrum Set of n equation with n+1 unknowns I0G, wi With I Al = I 0 GS Al w Al 1 Al I Fe = I 0 GS Fe w Fe 1 Al = w Al µ Al (E Al )+w Fe µ Fe (E Al ) + w Al µ Al (E 0 )+w Fe µ Fe (E 0 ) sin 2 sin 1 Fe = w Al µ Al (E Fe )+w Fe µ Fe (E Fe ) + w Al µ Al (E 0 )+w Fe µ Fe (E 0 ) sin 2 sin 1 Need one more equation w Al + w Fe = 1 Fe Can be solved iteratively 15

16 Table 3: Results obtained on NIST 1108 Naval Brass CRM Line Compound Estim. Conc. Stdev Certified value Mn-Ka Mn 470ppm 90ppm 0.025% Ni-Ka Ni <219.8 ppm 0.033% Fe-Ka Fe 670ppm 70ppm 0.05% Cu-Ka Cu 66.9% 0.1% 64.95% Zn-Ka Zn 32.92% 0.07% 34.43% Table 4: Results obtained on NIST 1156 Steel CRM Line Compound Estim. Conc. Stdev Certified value Mo-Ka Mo 2.86% 0.01% 3.1% Cu-Ka Cu 0.11% 0.02% 0.025% Fe-Ka Fe 70.7% 0.2% 69.7% Ni-Ka Ni 17.8% 0.1% 19.0% Cr-Ka Cr 0.22% 0.02% 0.2% Mn-Ka Mn 0.27% 0.03% 0.21% Co-Ka Co 7.82% 0.07% 7.3% Ti-Ka Ti 0.25% 0.05% 0.21% 16

17 Standard FP method use at least one standard to determine I0G No normalisation wi=1, check for correctness possible Problem with FP method concentration of ALL elements must be estimated to do the absorption correction χ Metals often ok for metals Geological material (stone, sediments, pottery...) contains oxygen from stochiometry Al2O3, CaO, Fe2O3 (FeO?) Organic material Missing C, O, N 17

18 Calibration curves If the matrix remains more or less constant then the absorption term χ remains also constant I i = I 0 GS i w i 1 or Ii = b1 wi or better Ii = b0 + b1 wi Straight line equation y = b0 + b1 x 18

19 Works for e.g. organic material Concentration range is always limited Standards and unknown must be measured under the same conditions and intensities corrected for measuring time and tube current Calib Curve Br in indolinone y = x I Br Ka / 500s Br ppm 19

20 Calibration using the incoherent scattered radiation As the matrix changes also the amount of Compton scattering changes. Normalising with the intensity of the Compton peak helps I i I Inc = b 0 + b 1 w i Useful for quantitative analysis of geological material 20

21 Composition of geological standards used for calibration Z Elem Units BCR-2 BIR-1 BHVO- 2 DNC-1 NIST 2711 BCR 145 Soil 5 8 O % Na % Mg % Al % Si % P % S % K % Ca % Sc ppm Ti % V ppm Cr ppm Mn ppm Fe % Co ppm Ni ppm Cu ppm Zn ppm Ga ppm As ppm Rb ppm Sr ppm Y ppm Zr ppm Mo ppm Cd ppm Ba ppm Hg ppm Pb ppm Th ppm U ppm

22 20 I Fe K / I Ag K,Inc Calibration for Fe A = / B = / R = SD= Conc Fe (%) Fig. 11: Calibration graph for Fe 22

23 Thin films Basic equation: I i = I 0 GS i w i 1 exp( d) χρd 1 approximation (Tailor expansion) exp( d) =1+ d I i = I 0 GS i w i d = I 0GS i w i d What is wiρd? Dimension is g/cm 2 areal concentration OK If we know the area If we analyse the same area for standards and unknowns 23

24 How do we determine the sensitivity Si for each element i? I i = I 0 GS i w i d Analysing thin film standards with known areal concentration e.g. MicroMatter standards Fe 45.6 ng/cm 2 Elemental sensitivity Si varies smoothly with Z for a given excitation (allows to interpolate, e.g. fitting a polynomial) 24

25 Dealing with detection limits To decide after the analysis if a compound is really (95%) present After spectrum evaluation: For each element of interest we obtain the net peak data (R) and a reliable estimate of the uncertainty (s)! R ± s IF: report concentration based on R and uncertainty (based on s) report detection limit based on R = 3xs revise your data processing!!! 25

26 Detection limits in XRF: practical And what about blanks??? Instrumental blanks: spurious peaks from fluorescence of excitation chamber lines from x-ray tube Sample blanks: elements present in sample support (filters for the analysis of aerosol particles) elements introduced during sample preparation (fused sample) Need to establish very accurately (n=30): the value of this blank contribution µ bl (to subtract from the measured count rate or concentration) and the standard deviation σ bl (to add to the expression of the detection limit) 26

27 Detection limits in XRF: example Analysis of aerosol material collected on a membrane filter Measurement time 1000s Sensitivity Cnts.s Net peak area Cnts/1000s Instrument blank Cnts/1000s Sample blank Cnts/1000s V Fe Br ± ± ± ± ± 60 27

28 V Fe Br Sensitivity Cnts.s Net peak area Cnts/1000s 110 ± ± ± 37 Instrument blank Cnts/1000s ± 20 - Sample blank Cnts/1000s ± 60 Vanadium: 110 cnts < 3*60 => peak not significant DL = 180/1.31/1000 = V < 0.1 µg Iron: 7440 >> 3*136 => peak significant 7440 >> 3*( ) => signal is from aerosol Fe = ( )/2.98/1000 = µg s = ( )/2.98/1000 = µg Fe = ± µg Bromine: 198 cnts > 3*37 => peak significant 198 cnts < 3* ( ) = 211 => maybe signal from filter DL = 211/8.76/1000 = µg Br < 0.02 µg 28

29 Some final remarks Be careful!!!! We use often intensity ratio s rather than concentrations We often normalise intensities to 100 % Also for real concentrations we have Element Conc. = 100 % Beware of the consequences!!! 29

30 Three random variables X, Y and Z (let s say x-ray intensities of three elements) They have nothing to do with each other. They are uncorrelated 30

31 Normalise with Z i.e. study the ratio s X/Z en Y/Z What do you get? Nonsense!!! spurious correlation 31

32 Or, normalise to the sum S = X + Y + Z i.e. study the ratio s X/S, Y/S en Z/S What do you get? Nonsense!!! Closure 32

33 Once again Thanks for your attention 33

Overview of X-Ray Fluorescence Analysis

Overview of X-Ray Fluorescence Analysis Overview of X-Ray Fluorescence Analysis AMPTEK, INC., Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com 1 What is X-Ray Fluorescence (XRF)? A physical process: Emission of characteristic

More information

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited XRF Standardless Analysis In this talk What is meant by standardless analysis? Fundamental Parameters

More information

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS 255 Yoshiyuki Kataoka 1, Naoki Kawahara 1, Shinya Hara 1, Yasujiro Yamada 1, Takashi Matsuo 1, Michael Mantler 2 1 Rigaku

More information

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong Introduction: X-ray fluorescence (XRF) spectrometer is an x-ray instrument used for routine, relatively

More information

Altitude influence of elemental distribution in grass from Rila mountain. Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory

Altitude influence of elemental distribution in grass from Rila mountain. Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory Altitude influence of elemental distribution in grass from Rila mountain Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory I. Introduction The application of modern instrumental

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

X-Ray Fluorescence and Natural History

X-Ray Fluorescence and Natural History X-Ray Fluorescence and Natural History How XRF Helps XRF can be used both quantitatively (homogenous samples) and quantitatively (heterogenous samples).! Trace elements in a fossil can help identify source,

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 18, 2010 SUMMARY

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 18, 2010 SUMMARY Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 8, 200 SUMMARY This report summarizes the quality assurance performed during elemental

More information

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS ANTOANETA ENE 1, I. V. POPESCU 2, T. BÃDICÃ 3, C. BEªLIU 4 1 Department of Physics, Faculty

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2006 UC Davis - Submitted May 14, 2008 SUMMARY

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2006 UC Davis - Submitted May 14, 2008 SUMMARY Data report for elemental analysis of IMPROVE samples collected during April, May, June 2006 UC Davis - Submitted May 4, 2008 SUMMARY This report summarizes the quality assurance performed during elemental

More information

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS 45 ABSTRACT FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS W. T. Elam, Robert B. Shen, Bruce Scruggs, and Joseph A. Nicolosi EDAX, Inc. Mahwah, NJ 70430 European Community Directive 2002/95/EC

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

Determination of the activity of radionuclides

Determination of the activity of radionuclides BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-33 Determination of the activity of radionuclides contained in volume samples

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis The Agilent 77x ICP-MS Advantage for Drinking Water Analysis Application Note Environmental Authors Steve Wilbur Agilent Technologies, Inc. 338 146th Place SE, Suite 3, Bellevue Washington, 987 USA Introduction

More information

XUV 773: X-Ray Fluorescence Analysis of Gemstones

XUV 773: X-Ray Fluorescence Analysis of Gemstones Fischer Application report vr118 HELM UT FISCHER GMBH + CO. KG Institut für Elektronik und Messtechnik Industriestrasse 21-7169 Sindelfingen, Germany Tel.: (+49) 731 33- - Fax: (+49) 731 33-79 E-Mail:

More information

Data report for elemental analysis of IMPROVE samples collected during OCTOBER, NOVEMBER, DECEMBER 2005 UC Davis SUMMARY

Data report for elemental analysis of IMPROVE samples collected during OCTOBER, NOVEMBER, DECEMBER 2005 UC Davis SUMMARY Data report for elemental analysis of IMPROVE samples collected during OCTOBER, NOVEMBER, DECEMBER 2005 UC Davis SUMMARY This report summarizes the quality assurance performed during elemental analysis

More information

FINDING A NEEDLE IN A HAYSTACK: PERFORMANCE EVALUATION OF PORTABLE XRF INSTRUMENTS FROM THREE MANUFACTURERS

FINDING A NEEDLE IN A HAYSTACK: PERFORMANCE EVALUATION OF PORTABLE XRF INSTRUMENTS FROM THREE MANUFACTURERS FINDING A NEEDLE IN A HAYSTACK: PERFORMANCE EVALUATION OF PORTABLE XRF INSTRUMENTS FROM THREE MANUFACTURERS Brand N. W 1 and Brand CJ 1 1 Portable XRF Services Pty Ltd. Suite 1, 5 Colin Street, West Perth,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION USEFULNESS OF A DUAL MACRO AND MICRO ENERGY DISPERSIVE X-RAY FLUORESCENCE SPECTROMETER TO DEVELOP QUANTITATIVE METHODOLOGIES FOR HISTORIC MORTAR AND RELATED MATERIALS CHARACTERIZATION

More information

ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED

ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED 384 ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED X-RAYS R. Schramm, J. Heckel, K. Molt 2 Spectra Analytical Instruments, Kleve, Germany. 2Gerhard-Mercator- University Duisburg,

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

Chapter 2 Methods Based on the Absorption of Gamma-Ray Beams by Matter

Chapter 2 Methods Based on the Absorption of Gamma-Ray Beams by Matter Chapter 2 Methods Based on the Absorption of Gamma-Ray Beams by Matter Abstract Physical effects of a gamma-ray beam passing through matter as a basis for soil density determination is discussed. These

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 219 AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Takao Moriyama 1), Atsushi Morikawa 1), Makoto

More information

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name:

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: SUNetID: @stanford.edu Honor Code Observed: (Signature) Circle your section 9:00am 10:00am 2:15pm 3:15pm 7:00pm 8:00pm S02 OC103 S04 OC103

More information

Summer Students lectures

Summer Students lectures Summer Students lectures XRF: X-ray fluorescence spectrometry Matthias Alfeld XRF: X-ray fluorescence spectrometry Hamburg, 13.08.13 > What is XRF? X-Ray Fluorescence spectrometry > What can it do? Detect

More information

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction

Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion-Products Reaction Ohta, M. and A. Takahashi. Analysis of Nuclear Transmutation Induced from Metal Plus Multibody-Fusion- Products Reaction. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR- CANR.org.

More information

In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer*

In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer* In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer* Anthony Thomas 1, Joachim Heckel 1, and Dirk Wissmann 1 Search and Discovery Article #41836 (2016)

More information

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists:

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists: EXTRA HOMEWORK 1A 1. When Dalton proposed that matter was composed of atoms, why was his Atomic Theory accepted? 2. For the following two compounds between oxygen and hydrogen: Mass of O Mass of H Compound

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 146 EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine gas to moles. Use formula weight. 2 - Convert moles

More information

Analysis Repeatability of Trace and Major Elements in a Water Sample

Analysis Repeatability of Trace and Major Elements in a Water Sample Analysis Repeatability of Trace and Major Elements in a Water Sample Agnès COSNIER HORIBA Scientific Longjumeau, France Keywords: environment Elements: Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li,

More information

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011 X-ray Spectroscopy David-Alexander Robinson; Pádraig Ó Conbhuí; 08332461 14th March 2011 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The X-ray Spectrum............................ 2 2.2 X-Ray Absorption

More information

Micro-XRF excitation in an SEM

Micro-XRF excitation in an SEM X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 254 259 Published online 8 May 2007 in Wiley InterScience (www.interscience.wiley.com).974 Micro-XRF excitation in an SEM M. Haschke, 1 F. Eggert 2 andw.t.elam

More information

Analysis of Soil and Sewage Sludge in the Field with a Portable ED-XRF Spectrometer

Analysis of Soil and Sewage Sludge in the Field with a Portable ED-XRF Spectrometer AN APPLICATION BRIEF FROM SPECTRO ANALYTICAL INSTRUMENTS When results matter Analysis of Soil and Sewage Sludge in the Field with a Portable ED-XRF Spectrometer Introduction Arsenic, barium, cadmium, chromium,

More information

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION

ANALYSIS OF NUCLEAR TRANSMUTATION INDUCED FROM METAL PLUS MULTIBODY-FUSION- PRODUCTS REACTION Ohta, M. and A. Takahashi. Analysis Of Nuclear Transmutation Induced From Metal Plus Multibody-Fusion- Products, Reaction PowerPoint slides. in Tenth International Conference on Cold Fusion. 23. Cambridge,

More information

Introduction to LIBS COMMUNITY USER WORKSHOP ON PLANETARY LIBS (CHEMCAM) DATA. Sam Clegg and the ChemCam team

Introduction to LIBS COMMUNITY USER WORKSHOP ON PLANETARY LIBS (CHEMCAM) DATA. Sam Clegg and the ChemCam team Lunar and Planetary Science Conference, March 18 th, 2015 NASA/JPL-Caltech/MSSS COMMUNITY USER WORKSHOP ON PLANETARY LIBS (CHEMCAM) DATA Introduction to LIBS Sam Clegg and the ChemCam team Creating LIBS

More information

AMMS-100 Atmospheric Metal Monitoring System

AMMS-100 Atmospheric Metal Monitoring System AMMS-100 Atmospheric Metal Monitoring System USEPA Method IO-. compliant Measure 28 toxic metals simultaneously Magnitude of detection limit 0.01-0.1ng/m Associate measurements with time of day or meteorological

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

AXP Research group Analytical X-ray Physics

AXP Research group Analytical X-ray Physics Research group Analytical X-ray Physics X-ray Fluorescence Spectrometry Wolfgang and BLiX Team Our Current Activities 3D Micro-XRF 3D Micro-XANES High resolution X-ray emission spectroscopy Characterisation

More information

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015 X-ray Spectroscopy Danny Bennett and Maeve Madigan October 12, 2015 Abstract Various X-ray spectra were obtained, and their properties were investigated. The characteristic peaks were identified for a

More information

APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND ENVIRONMENTAL MATERIALS

APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND ENVIRONMENTAL MATERIALS Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 540 APPLICATION OF MICRO X-RAY FLUORESCENCE SPECTROMETRY FOR LOCALIZED AREA ANALYSIS OF BIOLOGICAL AND

More information

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ...

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ... Q1.An atom of aluminium has the symbol (a) Give the number of protons, neutrons and electrons in this atom of aluminium. Number of protons... Number of neutrons... Number of electrons... (3) (b) Why is

More information

Samples compliant with the WATER

Samples compliant with the WATER ENVIRONMENTAL analysis A routine method for the Quantitative Measurement of trace metals in WATER Samples compliant with the WATER Quality Standard EN ISO 17294 on the Agilent 7000 Series ICP-MS. Solutions

More information

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data Indian Journal of Pure & Applied Physics Vol. 54, Februray 2016, pp. 137-143 Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental

More information

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

- Atomic line spectra are UNIQUE to each element. They're like atomic fingerprints. - Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints". - Problem was that the current model of the atom completely failed to explain why atoms emitted these lines. An orbit

More information

Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA13. Determination of Major, Minor and Trace Elements in a Clay Sample

Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA13. Determination of Major, Minor and Trace Elements in a Clay Sample Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA13 Determination of Major, Minor and Trace Elements in a Clay Sample IAEA Laboratories, Seibersdorf November 2017 CONTENTS

More information

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR

CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR CALCULATION OF THE DETECTOR-CONTRIBUTION TO ZIRCONIUM PEAKS IN EDXRF SPECTRA OBTAINED WITH A SI-DRIFT DETECTOR A. C. Neiva 1, J. N. Dron 1, L. B. Lopes 1 1 Escola Politécnica da Universidade de São Paulo

More information

PARAMETERISATION OF FISSION NEUTRON SPECTRA (TRIGA REACTOR) FOR NEUTRON ACTIVATION WITHOUT THE USED OF STANDARD

PARAMETERISATION OF FISSION NEUTRON SPECTRA (TRIGA REACTOR) FOR NEUTRON ACTIVATION WITHOUT THE USED OF STANDARD Parameterisation of Fission Neutron Spectra (TRIGA Reactor) 81 7 PARAMETERISATION OF FISSION NEUTRON SPECTRA (TRIGA REACTOR) FOR NEUTRON ACTIVATION WITHOUT THE USED OF STANDARD Liew Hwi Fen Noorddin Ibrahim

More information

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37 Electronic Structure Worksheet 1 Given the following list of atomic and ionic species, find the appropriate match for questions 1-4. (A) Fe 2+ (B) Cl (C) K + (D) Cs (E) Hg + 1. Has the electron configuration:

More information

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS Enhancing the productivity of food sample analysis with the Agilent 77x ICP-MS Application note Foods testing Authors Sebastien Sannac, Jean Pierre Lener and Jerome Darrouzes Agilent Technologies Paris,

More information

Lewis dot structures for molecules

Lewis dot structures for molecules 1 Lewis dot structures for molecules In the dot structure of a molecule, - SHARED valence electrons are shown with dashes - one per pair. - UNSHARED valence electrons ("lone pairs") are represented by

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

A novel coumarin based molecular switch for dual sensing of

A novel coumarin based molecular switch for dual sensing of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information A novel coumarin based molecular switch for dual sensing of Zn(II) and

More information

Name: SCH3U Worksheet-Trends

Name: SCH3U Worksheet-Trends PERIODIC TRENDS WORKSHEET 1. Choose which statement about the alkali metals lithium and cesium is correct. a) as the atomic number increases, the Electronegativity of the elements increases b) as the atomic

More information

X-ray Energy Spectroscopy (XES).

X-ray Energy Spectroscopy (XES). X-ray Energy Spectroscopy (XES). X-ray fluorescence as an analytical tool for element analysis is based on 3 fundamental parameters: A. Specificity: In determining an x-ray emission energy E certainty

More information

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Application note Geochemistry, metals, mining Authors John Cauduro Agilent Technologies, Mulgrave, Australia Introduction

More information

Attenuation of Radiation in Matter. Attenuation of gamma particles

Attenuation of Radiation in Matter. Attenuation of gamma particles Attenuation of Radiation in Matter In this experiment we will examine how radiation decreases in intensity as it passes through a substance. Since radiation interacts with matter, its intensity will decrease

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source Eric Gullikson Lawrence Berkeley National Laboratory 1 Reflectometry and Scattering Beamline (ALS 6.3.2) Commissioned Fall 1994

More information

2.3 Particle Induced X-Ray Emission PIXE

2.3 Particle Induced X-Ray Emission PIXE 2.3 Particle Induced X-Ray Emission PIXE The previous section concentrated on X-ray fluorescence. This section discusses a different X-ray production technique that can lead to the development of 2-D/3-D

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

DOCUMENT HISTORY. Initials Section/s Modified Brief Description of Modifications

DOCUMENT HISTORY. Initials Section/s Modified Brief Description of Modifications Page 2 of 13 DOCUMENT HISTORY Date Modified Initials Section/s Modified Brief Description of Modifications Page 3 of 13 Table of Contents 1. Purpose and Applicability... 4 2. Definitions... 4 3. Procedures...

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

VIIIA H PREDICTING CHARGE

VIIIA H PREDICTING CHARGE 58 IA PREDICTING CHARGE VIIIA H IIA IIIA IVA VA VIA VIIA You can reliably determine the charge using our method for Groups IA, IIA, IIIB, Aluminum, and the Group VA, VIA, and VIIA NONMETALS Li Be B C N

More information

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects) LECTURE 5: INTERACTION OF RADIATION WITH MATTER All radiation is detected through its interaction with matter! INTRODUCTION: What happens when radiation passes through matter? Emphasis on what happens

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean? 157 SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter. THERMOCHEMICAL

More information

Electrons. Unit H Chapter 6

Electrons. Unit H Chapter 6 Electrons Unit H Chapter 6 1 Electrons were discovered by 1. Dalton 2. Lavoisier 3. Proust 4. Mendeleev 6. Rutherford 7. Bohr 8. Schrodinger 9. Dirac 5. Thomson 2 Electrons were discovered by 1. Dalton

More information

Stability Nuclear & Electronic (then ion formation/covalent bonding)

Stability Nuclear & Electronic (then ion formation/covalent bonding) Stability Nuclear & Electronic (then ion formation/covalent bonding) Most elements are not stable in their atomic form. (Exceptions to that? ) They become stable by gaining or losing e! to form ions, or

More information

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES)

X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) X-Ray Photoelectron Spectroscopy (XPS) Auger Electron Spectroscopy (AES) XPS X-ray photoelectron spectroscopy (XPS) is one of the most used techniques to chemically characterize the surface. Also known

More information

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum

Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Multi Channel Analyzer (MCA) Analyzing a Gamma spectrum Objective: Using the MCA to acquire spectrums for different gamma sources and to identify an unknown source from its spectrum, furthermore to investigate

More information

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater PRAMANA c Indian Academy of Sciences Vol. 76, No. 2 journal of February 2011 physics pp. 361 366 Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Advances in Field-Portable XRF

Advances in Field-Portable XRF Advances in Field-Portable XRF Volker Thomsen and Debbie Schatzlein Field-portable x-ray fluorescence (XRF) allows us to take the laboratory to the sample. The latest generation of such handheld x-ray

More information

WRITING AN IONIC FORMULA

WRITING AN IONIC FORMULA WRITING AN IONIC FORMULA - if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero Example: If

More information

Example: If a simple ionic compound is made of these two ions, what is its formula? In the final formula, don't write the charges on the ions!

Example: If a simple ionic compound is made of these two ions, what is its formula? In the final formula, don't write the charges on the ions! 88 WRITING AN IONIC FORMULA - if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero Example:

More information

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 236 ABSTRACT TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Hagen Stosnach Röntec GmbH,

More information

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering.

X-RAY SCATTERING AND MOSELEY S LAW. OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. X-RAY SCATTERING AND MOSELEY S LAW OBJECTIVE: To investigate Moseley s law using X-ray absorption and to observe X- ray scattering. READING: Krane, Section 8.5. BACKGROUND: In 1913, Henry Moseley measured

More information

Multi Analyte Custom Grade Solution. Aluminum, Potassium, Magnesium, ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE

Multi Analyte Custom Grade Solution. Aluminum, Potassium, Magnesium, ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE 1.0 ACCREDITATION / REGISTRATION INORGANIC VENTURES is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for

More information

NAME (please print) MIDTERM EXAM FIRST LAST JULY 13, 2011

NAME (please print) MIDTERM EXAM FIRST LAST JULY 13, 2011 CEMISTRY 140A NAME (please print) MIDTERM EXAM IRST LAST JULY 13, 2011 SIGNATURE Vollhardt & Schore 6 th Edition Cp. 1 through 5 ID NUMBER LAST NAME PERSN SEATED IN T YUR RIGT: LAST NAME PERSN SEATED T

More information

Absorption of X-rays

Absorption of X-rays Absorption of X-rays TEP Related topics Bremsstrahlung, characteristic X-radiation, Bragg scattering, law of absorption, mass absorption coefficient, absorption edges, half-value thickness, photoelectric

More information

Microsoft Excel Directions

Microsoft Excel Directions Microsoft Excel Directions 1. Working in groups of two, log onto a computer. 2. Create a folder on the desktop a. Right click anywhere on the desktop new folder Name the folder Chemistry 3. Open MS Excel

More information

DETERMINATION OF X-RAY TOTAL ATTENUATION COEFFICIENT IN Zr, Ag, In FOR ENERGY RANGE BETWEEN kev

DETERMINATION OF X-RAY TOTAL ATTENUATION COEFFICIENT IN Zr, Ag, In FOR ENERGY RANGE BETWEEN kev Vol. 93 (1998) ACTA PHYSICA POLONICA A No. 5-6 DETERMINATION OF X-RAY TOTAL ATTENUATION COEFFICIENT IN Zr, Ag, In FOR ENERGY RANGE BETWEEN 10.5-111.9 kev U. TURGUT, E. BÚYUKKASAP, O. SIΜSΕΚ, Μ. ERTUĜRUL

More information

Measurements of K- shell production cross-section and fluorescence yield for Y element

Measurements of K- shell production cross-section and fluorescence yield for Y element American Journal of Physics and Applications 2015; 3(1): 1-5 Published online January 29, 2015 (http://www.sciencepublishinggroup.com/j/ajpa) doi: 10.11648/j.ajpa.20150301.11 ISSN: 2330-4286 (Print); ISSN:

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Application Note Semiconductor Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Tokyo, Japan Introduction

More information

Instructions. 1. Do not open the exam until you are told to start.

Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

VIIIA H PREDICTING CHARGE

VIIIA H PREDICTING CHARGE 58 IA PREDICTING CHARGE VIIIA H IIA IIIA IVA VA VIA VIIA You can reliably determine the charge using our method for Groups IA, IIA, IIIB, Aluminum, and the Group VA, VIA, and VIIA NONMETALS Li Be B C N

More information