Multivariate Simulations

Size: px
Start display at page:

Download "Multivariate Simulations"

Transcription

1 Multivariate Simulations Katarína Starinská Charles University Faculty of Mathematics and Physics Prague, Czech Republic Katarína Starinská Multivariate Simulations 1 / 23

2 Content 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 2 / 23

3 Content History 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 3 / 23

4 History Some History Earliest methods were manual (throwing dice, dealing cards, drawing balls from an urn) Mechanized devices in early 1900 s Later, methods based on electric circuits Many other schemes based on phone books, π etc. Advent of computing led to interest in numerical and arithmetic methods. Such methods generate numbers sequentially and are easily programmed. The most commonly used methods today Katarína Starinská Multivariate Simulations 4 / 23

5 Content Univariate Generation Techniques 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 5 / 23

6 Univariate Generation Techniques Inverse method X random variable with distribution function F(x) = P(X x). Inverse distribution function F 1 (u) = sup{x : F(x) u}. Let U Uni(0,1), then F 1 (U) = X. Cannot be generalized for multivariate generations. Acceptance-Rejection Method (next slide) Transformation Method The Box-Muller Method Marsaglia s Polar Method Normal Variance Mixture Composition Method Katarína Starinská Multivariate Simulations 6 / 23

7 Univariate Generation Techniques Acceptance-Rejection Method Simulate r.v. X (the target) from distribution with density f( ) and distribution function F( ). We start with a random variable Y (the proposal) with the density g( ) such that f(x) Cg(x), C < for all x. Given Y = x, one accepts Y and lets X = Y with probability f(x)/cg(x). Otherwise, a new Y is generated and one continues until eventual acceptance f(x) Cg(x) Katarína Starinská Multivariate x Simulations 7 / 23

8 Univariate Generation Techniques Algorithm C = max f(x) g(x) Generate Y from g( ) and U from Uni(0,1) If U > C f(y) g(y), reject and generate another Y and U Return Y Easy to prove that P ( Y x U < 1 C Number 1/C is called rate of acceptance. ) f(y) = F(x). g(y) Katarína Starinská Multivariate Simulations 8 / 23

9 Content Multivariate Generation Techniques 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 9 / 23

10 Multivariate Generation Techniques Independent Components Independent Components Apply the inverse-transform method or other generation method of our choice to each component individually. Example: Generate X = (X 1,...,X n ) for n-dimensional rectangle D = {(x 1,...,x n ) : a i x i b i,i = 1,...,n}. Components of X are independent and uniformly distributed X i U[a i,b i ], for i = 1,...,n. Inverse-transform method: X i = a i +(b i a i )U i, where U 1,...,U n are i.i.d. from U(0, 1). Katarína Starinská Multivariate Simulations 10 / 23

11 Multivariate Generation Techniques Independent Components Dependent Components No equivalent for inverse-transform method in multivariate generations On principle Conditional distributions Acceptance-Rejection method Composition method Transformation Katarína Starinská Multivariate Simulations 11 / 23

12 Multivariate Generation Techniques Conditional Distribution Approach Conditional Distribution Approach Need to know the conditional distributions of X i X i 1,...,X Generate X 1 = x 1 from the marginal distribution of X Generate X 2 = x 2 from the conditional distribution of X 2 given X 1 = x Generate X 3 = x 3 from the conditional distribution of X 3 given X 2 = x 2 and X 1 = x p. Generate X p = x p from the conditional distribution of X p given X p 1 = x p 1, X p 2 = x p 2,...,X 1 = x 1. Reduces the problem of generating a p-dimensional random vector into a series of p univariate generation problems. Requires the determination of p univariate distributions and their appropriate generation scheme. Katarína Starinská Multivariate Simulations 12 / 23

13 Multivariate Generation Techniques Conditional Distribution Approach Generation from Cauchy distribution: ( ) p +1 f(x) = π (p+1)/2 Γ (1+x x) (p+1)/2, x R p 2 Each component X i of X has a univariate Cauchy distribution and the conditional distribution of X m given X 1 = x 1,...,X m 1 = x m 1 is 1+ m 1 m i=1 x i t m where t m is a univariate Student s t distribution with m degrees of freedom. X 1 = tan(π(u 1/2)), where U is uniform (0,1). t variates: Y/ Z/m, where Y is standard normal and Z is independent Γ(m/2, 2) variate. Katarína Starinská Multivariate Simulations 13 / 23

14 Multivariate Generation Techniques Rejection Approach Rejection Approach Algorithm for univariate case can be generalized for more dimensions. Difficulty in finding a dominating function Cg for f if the dependence among components of X is strong. A logical choice for g is the density corresponding to independent components with the same marginal distributions as X. In most cases, however, as the dependencies in X increase, the extent to which g approximates f decreases, and thus the efficiency approaches zero. More complicated choices of g have the disadvantage of making the search for C = supf(x)/g(x) where x R p more difficult. Katarína Starinská Multivariate Simulations 14 / 23

15 Multivariate Generation Techniques Rejection Approach Example: 1. Generate X uniformly distributed in W, where W is a regular region. 2. If X G, accept Z = X as the random vector uniformly distributed over G. Otherwise, return to first step. Special case: G - n-dimensional unit ball, W - n-dimensional hypercube. Efficiency goes to zero as n goes to. Katarína Starinská Multivariate Simulations 15 / 23

16 Multivariate Generation Techniques Composition Method Composition Method Probability densities f i ( ), p i > 0,i = 1,...,r, r i=1 p i = 1 f(x) = r p i f i (x) i=1 Algorithm: 1. Let F j = j i=1 p i for j = 1,...,r 2. Let U Uni(0,1) 3. Set i = 1 4. While F i < U {i = i +1} 5. Return X = X i, a variate drawn from the density f i For queueing simulation where customer arrivals are composed of a mixture of different customers types, each with its own arrival pattern Katarína Starinská Multivariate Simulations 16 / 23

17 Multivariate Generation Techniques Transformation Approach Transformation Approach Represent X as a function of (usually independent) univariate random variables, each of which can be easily generated. Box-Muller transformation: Yields a pair of independent standard normal variates X 1 = ( 2lnU 1 ) 1/2 cos(2πu 2 ) X 2 = ( 2lnU 1 ) 1/2 sin(2πu 2 ) where U 1,U 2 are independent uniform (0,1) variates. Multivariate Cauchy distribution: X i = Z i /W, where Z i s and W are independent, the Z i s are standard normal and W is the square root of a Γ(1/2,1) variate. Katarína Starinská Multivariate Simulations 17 / 23

18 Multivariate Generation Techniques Transformation Approach How to find a particular transformation method to generate a multivariate distribution X specified by its density function f? 1. Apply invertible transformations to the components of X. Or try the probability integral transformation and compare to known multivariate distributions with uniform marginal distributions. 2. Consider transformations of X that simplify arguments of transcendental functions in the density f. 3. Attempt to decompose f as the (probabilistic) mixture f(x) = pf 1 (x)+(1 p)f 2 (x), where f 1 and f 2 are recognizable and easy to generate. 4. Track down earlier references to the distribution. Possibly an earlier author/inventor of the distribution was motivated by a physical process that could be modeled via mixtures, convolutions, or products of random variables. Katarína Starinská Multivariate Simulations 18 / 23

19 Content Multivariate Normal Distribution 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 19 / 23

20 Multivariate Normal Distribution Multivariate Normal Distribution The most popular multivariate distribution. X N(µ, Σ), Σ is symmetric, positive-definite matrix Many simulation methods. Cholesky decomposition is typically used Σ = LL, where L is a lower triangular matrix. Simulate Z N(0,I), then X = µ+lz R: package mvtnorm (Multivariate Normal and t Distributions) - Computes multivariate normal and t probabilities, quantiles, random deviates and densities. Katarína Starinská Multivariate Simulations 20 / 23

21 Content NORTA 1 History 2 Univariate Generation Techniques 3 Multivariate Generation Techniques Independent Components Conditional Distribution Approach Rejection Approach Composition Method Transformation Approach 4 Multivariate Normal Distribution 5 NORTA Katarína Starinská Multivariate Simulations 21 / 23

22 NORTA Normal To Anything The goal is to generate a r.v. X with the following properties X i F Xi, i = 1,...,k Corr(X) = Σ X, where Σ X is given Represent X as a transformation of a k-dimensional, standard multivariate normal vector Z with correlation matrix Σ Z. F 1 X 1 (Φ(Z 1 )) X = F 1 X 2 (Φ(Z 2 ))... F 1 X k (Φ(Z k )) Φ is a univariate standard normal distribution function and F 1 X denotes the inverse function. This transformation ensures, that X i has a desired marginal distribution. How to set Σ Z? Can be calculated for some cases (see Cario & Nelson, (1997)). Katarína Starinská Multivariate Simulations 22 / 23

23 NORTA Johnson M.E.: Multivariate Statistical Simulation, Wiley Series in Probability and Statistics, Ripley B.D.: Stochastic Simulation, Wiley Series in Probability and Statistics, Asmussen S., Glynn P.W.: Stochastic simulation: Algorithm and Analysis, Springer-Verlag, Cario M.C., Nelson B.L.: Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix,technical Report, Download link Katarína Starinská Multivariate Simulations 23 / 23

General Principles in Random Variates Generation

General Principles in Random Variates Generation General Principles in Random Variates Generation E. Moulines and G. Fort Telecom ParisTech June 2015 Bibliography : Luc Devroye, Non-Uniform Random Variate Generator, Springer-Verlag (1986) available on

More information

Stat 451 Lecture Notes Simulating Random Variables

Stat 451 Lecture Notes Simulating Random Variables Stat 451 Lecture Notes 05 12 Simulating Random Variables Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 22 in Lange, and Chapter 2 in Robert & Casella 2 Updated:

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Generation from simple discrete distributions

Generation from simple discrete distributions S-38.3148 Simulation of data networks / Generation of random variables 1(18) Generation from simple discrete distributions Note! This is just a more clear and readable version of the same slide that was

More information

Simulating Random Variables

Simulating Random Variables Simulating Random Variables Timothy Hanson Department of Statistics, University of South Carolina Stat 740: Statistical Computing 1 / 23 R has many built-in random number generators... Beta, gamma (also

More information

IE 581 Introduction to Stochastic Simulation

IE 581 Introduction to Stochastic Simulation 1. List criteria for choosing the majorizing density r (x) when creating an acceptance/rejection random-variate generator for a specified density function f (x). 2. Suppose the rate function of a nonhomogeneous

More information

Estimation of arrival and service rates for M/M/c queue system

Estimation of arrival and service rates for M/M/c queue system Estimation of arrival and service rates for M/M/c queue system Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

More information

Random Variate Generation

Random Variate Generation Random Variate Generation 28-1 Overview 1. Inverse transformation 2. Rejection 3. Composition 4. Convolution 5. Characterization 28-2 Random-Variate Generation General Techniques Only a few techniques

More information

Generating Random Variables

Generating Random Variables Generating Random Variables Christian Robert Université Paris Dauphine and CREST, INSEE George Casella University of Florida Keywords and Phrases: Random Number Generator, Probability Integral Transform,

More information

Ch3. Generating Random Variates with Non-Uniform Distributions

Ch3. Generating Random Variates with Non-Uniform Distributions ST4231, Semester I, 2003-2004 Ch3. Generating Random Variates with Non-Uniform Distributions This chapter mainly focuses on methods for generating non-uniform random numbers based on the built-in standard

More information

L3 Monte-Carlo integration

L3 Monte-Carlo integration RNG MC IS Examination RNG MC IS Examination Monte-Carlo and Empirical Methods for Statistical Inference, FMS091/MASM11 Monte-Carlo integration Generating pseudo-random numbers: Rejection sampling Conditional

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Chapter 6: Functions of Random Variables

Chapter 6: Functions of Random Variables Chapter 6: Functions of Random Variables We are often interested in a function of one or several random variables, U(Y 1,..., Y n ). We will study three methods for determining the distribution of a function

More information

Basic Sampling Methods

Basic Sampling Methods Basic Sampling Methods Sargur Srihari srihari@cedar.buffalo.edu 1 1. Motivation Topics Intractability in ML How sampling can help 2. Ancestral Sampling Using BNs 3. Transforming a Uniform Distribution

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

Uniform Random Number Generators

Uniform Random Number Generators JHU 553.633/433: Monte Carlo Methods J. C. Spall 25 September 2017 CHAPTER 2 RANDOM NUMBER GENERATION Motivation and criteria for generators Linear generators (e.g., linear congruential generators) Multiple

More information

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers Sampling Distributions Allen & Tildesley pgs. 345-351 and Numerical Recipes on random numbers Today I explain how to generate a non-uniform probability distributions. These are used in importance sampling

More information

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB:

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: You can save your project to a text file (on a floppy disk or CD or on your web page),

More information

Monte Carlo Methods for Computation and Optimization (048715)

Monte Carlo Methods for Computation and Optimization (048715) Technion Department of Electrical Engineering Monte Carlo Methods for Computation and Optimization (048715) Lecture Notes Prof. Nahum Shimkin Spring 2015 i PREFACE These lecture notes are intended for

More information

Nonuniform Random Variate Generation

Nonuniform Random Variate Generation Nonuniform Random Variate Generation 1 Suppose we have a generator of i.i.d. U(0, 1) r.v. s. We want to generate r.v. s from other distributions, such as normal, Weibull, Poisson, etc. Or other random

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1.(10) What is usually true about a parameter of a model? A. It is a known number B. It is determined by the data C. It is an

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

Function Operations and Composition of Functions. Unit 1 Lesson 6

Function Operations and Composition of Functions. Unit 1 Lesson 6 Function Operations and Composition of Functions Unit 1 Lesson 6 Students will be able to: Combine standard function types using arithmetic operations Compose functions Key Vocabulary: Function operation

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

Intelligent Systems I

Intelligent Systems I 1, Intelligent Systems I 12 SAMPLING METHODS THE LAST THING YOU SHOULD EVER TRY Philipp Hennig & Stefan Harmeling Max Planck Institute for Intelligent Systems 23. January 2014 Dptmt. of Empirical Inference

More information

Generating Random Variates 2 (Chapter 8, Law)

Generating Random Variates 2 (Chapter 8, Law) B. Maddah ENMG 6 Simulation /5/08 Generating Random Variates (Chapter 8, Law) Generating random variates from U(a, b) Recall that a random X which is uniformly distributed on interval [a, b], X ~ U(a,

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Maximum Likelihood Estimation. only training data is available to design a classifier

Maximum Likelihood Estimation. only training data is available to design a classifier Introduction to Pattern Recognition [ Part 5 ] Mahdi Vasighi Introduction Bayesian Decision Theory shows that we could design an optimal classifier if we knew: P( i ) : priors p(x i ) : class-conditional

More information

1 Acceptance-Rejection Method

1 Acceptance-Rejection Method Copyright c 2016 by Karl Sigman 1 Acceptance-Rejection Method As we already know, finding an explicit formula for F 1 (y), y [0, 1], for the cdf of a rv X we wish to generate, F (x) = P (X x), x R, is

More information

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002

Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Statistics Ph.D. Qualifying Exam: Part II November 9, 2002 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Stat 5101 Notes: Algorithms (thru 2nd midterm)

Stat 5101 Notes: Algorithms (thru 2nd midterm) Stat 5101 Notes: Algorithms (thru 2nd midterm) Charles J. Geyer October 18, 2012 Contents 1 Calculating an Expectation or a Probability 2 1.1 From a PMF........................... 2 1.2 From a PDF...........................

More information

1 What is the area model for multiplication?

1 What is the area model for multiplication? for multiplication represents a lovely way to view the distribution property the real number exhibit. This property is the link between addition and multiplication. 1 1 What is the area model for multiplication?

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

Order Statistics and Distributions

Order Statistics and Distributions Order Statistics and Distributions 1 Some Preliminary Comments and Ideas In this section we consider a random sample X 1, X 2,..., X n common continuous distribution function F and probability density

More information

λ(x + 1)f g (x) > θ 0

λ(x + 1)f g (x) > θ 0 Stat 8111 Final Exam December 16 Eleven students took the exam, the scores were 92, 78, 4 in the 5 s, 1 in the 4 s, 1 in the 3 s and 3 in the 2 s. 1. i) Let X 1, X 2,..., X n be iid each Bernoulli(θ) where

More information

Random processes and probability distributions. Phys 420/580 Lecture 20

Random processes and probability distributions. Phys 420/580 Lecture 20 Random processes and probability distributions Phys 420/580 Lecture 20 Random processes Many physical processes are random in character: e.g., nuclear decay (Poisson distributed event count) P (k, τ) =

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Jan-Pieter Dorsman 1 & Michel Mandjes 1,2,3 1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam 2 CWI, Amsterdam 3 Eurandom, Eindhoven University of Amsterdam,

More information

MATH5835 Statistical Computing. Jochen Voss

MATH5835 Statistical Computing. Jochen Voss MATH5835 Statistical Computing Jochen Voss September 27, 2011 Copyright c 2011 Jochen Voss J.Voss@leeds.ac.uk This text is work in progress and may still contain typographical and factual mistakes. Reports

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

1 Introduction. P (n = 1 red ball drawn) =

1 Introduction. P (n = 1 red ball drawn) = Introduction Exercises and outline solutions. Y has a pack of 4 cards (Ace and Queen of clubs, Ace and Queen of Hearts) from which he deals a random of selection 2 to player X. What is the probability

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

Problem 1 (20) Log-normal. f(x) Cauchy

Problem 1 (20) Log-normal. f(x) Cauchy ORF 245. Rigollet Date: 11/21/2008 Problem 1 (20) f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 4 2 0 2 4 Normal (with mean -1) 4 2 0 2 4 Negative-exponential x x f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.5

More information

Exam 2 Practice Questions, 18.05, Spring 2014

Exam 2 Practice Questions, 18.05, Spring 2014 Exam 2 Practice Questions, 18.05, Spring 2014 Note: This is a set of practice problems for exam 2. The actual exam will be much shorter. Within each section we ve arranged the problems roughly in order

More information

Modelling Dropouts by Conditional Distribution, a Copula-Based Approach

Modelling Dropouts by Conditional Distribution, a Copula-Based Approach The 8th Tartu Conference on MULTIVARIATE STATISTICS, The 6th Conference on MULTIVARIATE DISTRIBUTIONS with Fixed Marginals Modelling Dropouts by Conditional Distribution, a Copula-Based Approach Ene Käärik

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 on bivariate Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 07: April 2, 2015 1 / 54 Outline on bivariate 1 2 bivariate 3 Distribution 4 5 6 7 8 Comments and conclusions

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1)

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1) B. Maddah INDE 504 Discrete-Event Simulation Output Analysis (1) Introduction The basic, most serious disadvantage of simulation is that we don t get exact answers. Two different runs of the same model

More information

18.05 Practice Final Exam

18.05 Practice Final Exam No calculators. 18.05 Practice Final Exam Number of problems 16 concept questions, 16 problems. Simplifying expressions Unless asked to explicitly, you don t need to simplify complicated expressions. For

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 18

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 18 EEC 686/785 Modeling & Performance Evaluation of Computer Systems Lecture 18 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org (based on Dr. Raj Jain s lecture

More information

Exam 2 extra practice problems

Exam 2 extra practice problems Exam 2 extra practice problems (1) If (X, d) is connected and f : X R is a continuous function such that f(x) = 1 for all x X, show that f must be constant. Solution: Since f(x) = 1 for every x X, either

More information

Hisashi Tanizaki Graduate School of Economics, Kobe University. Abstract

Hisashi Tanizaki Graduate School of Economics, Kobe University. Abstract A Simple Gamma Random Number Generator for Arbitrary Shape Parameters Hisashi Tanizaki Graduate School of Economics, Kobe University Abstract This paper proposes an improved gamma random generator. In

More information

Mean. Pranab K. Mitra and Bimal K. Sinha. Department of Mathematics and Statistics, University Of Maryland, Baltimore County

Mean. Pranab K. Mitra and Bimal K. Sinha. Department of Mathematics and Statistics, University Of Maryland, Baltimore County A Generalized p-value Approach to Inference on Common Mean Pranab K. Mitra and Bimal K. Sinha Department of Mathematics and Statistics, University Of Maryland, Baltimore County 1000 Hilltop Circle, Baltimore,

More information

Sampling Random Variables

Sampling Random Variables Sampling Random Variables Introduction Sampling a random variable X means generating a domain value x X in such a way that the probability of generating x is in accordance with p(x) (respectively, f(x)),

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Hypothesis Testing One Sample Tests

Hypothesis Testing One Sample Tests STATISTICS Lecture no. 13 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 12. 1. 2010 Tests on Mean of a Normal distribution Tests on Variance of a Normal

More information

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm)

MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Name: MATH 360. Probablity Final Examination December 21, 2011 (2:00 pm - 5:00 pm) Instructions: The total score is 200 points. There are ten problems. Point values per problem are shown besides the questions.

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Simulation of truncated normal variables Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Abstract arxiv:0907.4010v1 [stat.co] 23 Jul 2009 We provide in this paper simulation algorithms

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Monte Carlo Integration I [RC] Chapter 3

Monte Carlo Integration I [RC] Chapter 3 Aula 3. Monte Carlo Integration I 0 Monte Carlo Integration I [RC] Chapter 3 Anatoli Iambartsev IME-USP Aula 3. Monte Carlo Integration I 1 There is no exact definition of the Monte Carlo methods. In the

More information

A continuous random variable X takes all values in an interval of numbers. Not countable

A continuous random variable X takes all values in an interval of numbers. Not countable Continuous Probability Distribution A continuous random variable X takes all values in an interval of numbers. Not countable The probability distribution of a continuous r.v. X is described by a density

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Analog Circuit Verification by Statistical Model Checking

Analog Circuit Verification by Statistical Model Checking 16 th Asian Pacific Design Automation ti Conference Analog Circuit Verification by Statistical Model Checking Author Ying-Chih Wang (Presenter) Anvesh Komuravelli Paolo Zuliani Edmund M. Clarke Date 2011/1/26

More information

Precept 4: Hypothesis Testing

Precept 4: Hypothesis Testing Precept 4: Hypothesis Testing Soc 500: Applied Social Statistics Ian Lundberg Princeton University October 6, 2016 Learning Objectives 1 Introduce vectorized R code 2 Review homework and talk about RMarkdown

More information

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms L03. PROBABILITY REVIEW II COVARIANCE PROJECTION NA568 Mobile Robotics: Methods & Algorithms Today s Agenda State Representation and Uncertainty Multivariate Gaussian Covariance Projection Probabilistic

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Info on midterm CALCULATOR: only NON-programmable, NON-scientific, NON-graphing (and of course,

More information

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania Monte Carlo Methods Jesús Fernández-Villaverde University of Pennsylvania 1 Why Monte Carlo? From previous chapter, we want to compute: 1. Posterior distribution: π ³ θ Y T,i = f(y T θ,i)π (θ i) R Θ i

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Robustness and Distribution Assumptions

Robustness and Distribution Assumptions Chapter 1 Robustness and Distribution Assumptions 1.1 Introduction In statistics, one often works with model assumptions, i.e., one assumes that data follow a certain model. Then one makes use of methodology

More information

Convergence Rate of Markov Chains

Convergence Rate of Markov Chains Convergence Rate of Markov Chains Will Perkins April 16, 2013 Convergence Last class we saw that if X n is an irreducible, aperiodic, positive recurrent Markov chain, then there exists a stationary distribution

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH A Test #2 June 11, Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH A Test #2 June 11, Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 2. A Test #2 June, 2 Solutions. (5 + 5 + 5 pts) The probability of a student in MATH 4 passing a test is.82. Suppose students

More information

Sampling from complex probability distributions

Sampling from complex probability distributions Sampling from complex probability distributions Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University UTOPIAE Training School II 4 July 2017 1/37 Motivation

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages Name No calculators. 18.05 Final Exam Number of problems 16 concept questions, 16 problems, 21 pages Extra paper If you need more space we will provide some blank paper. Indicate clearly that your solution

More information

Practice Exam 1: Long List 18.05, Spring 2014

Practice Exam 1: Long List 18.05, Spring 2014 Practice Eam : Long List 8.05, Spring 204 Counting and Probability. A full house in poker is a hand where three cards share one rank and two cards share another rank. How many ways are there to get a full-house?

More information

Bivariate Transformations

Bivariate Transformations Bivariate Transformations October 29, 29 Let X Y be jointly continuous rom variables with density function f X,Y let g be a one to one transformation. Write (U, V ) = g(x, Y ). The goal is to find the

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah Math 5040 1 Stochastic Processes & Simulation Davar Khoshnevisan University of Utah Module 1 Generation of Discrete Random Variables Just about every programming language and environment has a randomnumber

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

Independent Components Analysis

Independent Components Analysis CS229 Lecture notes Andrew Ng Part XII Independent Components Analysis Our next topic is Independent Components Analysis (ICA). Similar to PCA, this will find a new basis in which to represent our data.

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information