Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers

Size: px
Start display at page:

Download "Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers"

Transcription

1 Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers Today I explain how to generate a non-uniform probability distributions. These are used in importance sampling to reduce the variance of a Monte Carlo evaluation or to simulate various physical processes. We start by assuming that there is software to generate udrn s (uniform RN) in the range (0,1). How do we sample an arbitrary p(x)dx? There are lots of tricks. 1

2 Discrete Distributions Any discrete distribution p k can be sampled by constructing the cumulant. 0 u 1 p a p b p c p d c k = k i=1 p i Sample 0<u<1. Find which region it is in, i.e. find k: c k-1 < u < c k Return label k. Make a Table c k = c k-1 + p k before simulation. The search can be done by bisection in log 2 (N) steps. For simple distributions, it might be even easier. There is a faster more complicated method (see notes on the class website). 2

3 Continuous Distributions Generalize this method to a continuous function. This is the mapping method. Construct the cumulant: Prob(x<y)=c(y) Sample u in (0,1) y c( y) = dxp(x) Find x=c -1 (u) Do inverse mapping from urnd to x. Then x is sampled from p(x) dx. Can always perform the inverse with a table lookup. Two analytic examples: P(x)=a e -ax 0 <x then x = -ln(u)/a P(x)=(a+1)x a 0 < x < 1 then x = u 1/(a+1) Problem: inverse mapping may be difficult to compute. 3

4 Sample x from q(x)dx Rejection technique Accept x with probability c(x), otherwise repeat What is distribution of accepted x s? p(x)dx= c(x)q(x)dx/normalization Hence choose c(x) = a p(x)/q(x) Where a is set so that c(x) 1 à a min[q(x)/p(x)] 1/a is the acceptance probability, the efficiency. Do not under sample, or else efficiency will be low. If inefficient, you will use lots of prns/step. 5

5 Composition method Combine several random numbers Add several udrn s. remember characteristic function limit for large k is a Gaussian Example: add two integers in (1,6) Example: add 12 udrn, i.e 12 ς = u i 6 u [0,1] i=1 Gaussian distributed on (-6,6). Take maximum of k udrns. x= max(u 1,.., u k ) Prove that P(x)= k x k-1 6

6 Normal distribution Inverse mapping is a little slow, also of infinite range. Trick: Generate 2 prns at a time: r=(x,y) Generate u 1 and u 2 Calculate y 1 = 2lnu 1 cos2πu 2 y 2 = 2lnu 1 sin2πu 2 Samples: p(x,y) dxdy = (2π) -1 exp( r 2 /2) = p(r) r dr dθ p(v) dv = 0.5*exp( v/2) with v= r 2 We can sample the angle using a rejection technique: Sample (x,y) in square Accept if x 2 +y 2 <1 Normalize to get the correct r. 7

7 Example: Box-Mueller Code to sample a Normal Distribution Normal distribution <x>=x 0 and <(x-x 0 ) 2 >=σ 2 While(r2 > 0.25) then {x=prng()-0.5, y=prng()-0.5 r2 = x*x+y*y} radius= sigma*sqrt(-2*ln(prng())/r2) xnormal = x0 + x*radius ynormal = y0 + y*radius No trig functions! Rejection mixes up regularity of random numbers Efficiency of angle generation is 4/π. Will get 2 ndrn s each time. 8

8 Multivariate normal distributions How to sample a correlated Gaussian? (say with D components) Suppose we want to sample <x i x j > =T ij & <x i >=0 1. Take the square root of T: SS T = T by making a Choleski decomposition (see Numerical Recipes or notes). We can assume S is a triangular matrix all entries above diagonal are zero. S= 2. Generate D normally distributed numbers y. 3. Transform to correlated random distribution x α = S αi y i where y i y j = δ ij i Proof: x α x β = S ai y i S β j y j = S ai S β j y i y j = S ai S β j δ ij = SS T = T 9

9 Reduction of Variance The statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = ζ = 1/νT v = error 2 of mean and T = total CPU time How can you make simulation more efficient? Write a faster code, Get a faster computer Work on reducing the variance. Or all three We will talk about the third option: Importance sampling and correlated sampling 11

10 Given the integral: Importance Sampling I = dxf (x) = f (x) How should we sample x to maximize the efficiency? Transform the integral: I = f (x) dx p(x) = f (x) p(x) p(x) p Estimator variance is: 2 f( x) f( x) v σ = I dxp( x) I px ( ) = px ( ) 2 2 p 2 Optimal sampling: δv δ p(x) = 0 with dx p(x) = 1 The mean value is independent of p(x), but variance v is not! Assume CPU-time/sample is independent of p(x), and vary p(x) to minimize v. 12

11 Finding Optimal p*(x) for Sampling Trick to parameterize as a positive definite PDF, define q(x): Solution: p *(x) = dx f (x) f (x) Estimator: p(x) = f (x) p*(x) [ q(x) ] 2 dx [ q(x) ] 2 sign( f (x)) = dx f (x) If f(x) is entirely positive or negative, estimator is constant. zero variance We can t generally sample p * (x), because, if we could, then we would have solved problem analytically! But the form of p*(x) is a guide to lowering the variance. Importance sampling is a general technique: it works in any dimension. 13

12 Example of importance sampling Suppose f(x) is given by: Try to sample from a Gaussian: 2 f (x) = e x /2 1+ x 2 Value is independent of a. p(x) = e x2 /2a (2πa) 1/2 CPU time is not 14

13 v σ 2 = dx p(x) f (x) p(x) I 2 = dx e x 2 (1 1/ 2a) I 2 (1+ x 2 ) 2 Importance sampling functions Variance integrand 15

14 What are the allowed values of a? Clearly for p(x) to exist: 0<a a For finite estimator 1<a For finite variance 0.5<a Obvious value a=1 Optimal value a=0.6 v = dx f (x) 2 p(x) = e x2 (1 1/ 2a) 1+ x 2 dx (2πa)1/2 16

15 What does infinite variance look like? Spikes Long tails on the distributions Near optimal 17

16 General Approach to Importance Sampling Basic idea of importance sampling is to sample more in regions where function is large. Find a convenient approximation to f(x). Do not under-sample -- could cause infinite variance. Over-sampling -- loss in efficiency but not infinite variance. Always derive conditions for finite variance analytically. Always test that estimated value is independent of important sampling. Sign problem: zero variance is not possible for oscillatory integral. Monte Carlo can add but not subtract. 18

17 Correlated Sampling Suppose we want to compute a function G(F 1,F 2 ) where F s are given by integrals: F 2 = dx f 2 x Suppose we use the same p(x) and the same random numbers to do both integrals. F 1 = dxf 1 ( x) ( ) What is the optimal p(x)? p *(x) f 1 (x) dg df 1 + f 2 (x) dg df 2 It is a weighted average of the distributions for F 1 and F 2. 19

18 Sampling the Boltzmann distribution Suppose we want to calculate a whole set of averages: O k = dr O k (R)e V ( R)/kT dr e V ( R)/kT Optimal sampling is: p k * (x) e V (R)/kT (O k (R) < O k >) We need to sample the first factor because we want several different properties. Avoid undersampling. But the Boltzmann distribution is very highly peaked. 20

19 Independent Sampling for exp(-v/kt)? What is the variance of the free energy and how does it depend on the number of particles? Var(Z) = Z(T)= exp(-v/kt). Sample R uniformly in (0,L): P(R) = Ω -N =1 dr e βv ( R) Z(β) = Z(2β) Z(β) 2 var(β F) = var(z) / Z 2 = Z(2β) Z(β) 2 1= e2β[ F (β ) F (2β )] 1 β[ F (β ) F (2β )] error(β F) = e Variance grows exponentially versus N since F is extensive! The number of sample points will grow exponentially in N, just like a grid based method. We haven t reduced the complexity! 2 21

20 Intuitive explanation Throw N points in a box, area A. Say probability of no overlap is q. Throw 2N points in a box, area 2A. Probability of no overlap is q 2. Throw mn points in a box with area ma Probability of no overlap is p=q m. Probability of getting a success is p=exp(m ln(q)). Success defined as a reasonable sample of a configuration. This general argument shows independent sample has exponential scaling. We need to sample only near the peak of the distribution: to do so use random walks. 22

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers

Sampling Distributions Allen & Tildesley pgs and Numerical Recipes on random numbers Sampling Distributions Allen & Tildesley pgs. 345-351 and Numerical Recipes on random numbers Today I explain how to generate a non-uniform probability distributions. These are used in importance sampling

More information

Reduction of Variance. Importance Sampling

Reduction of Variance. Importance Sampling Reduction of Variance As we discussed earlier, the statistical error goes as: error = sqrt(variance/computer time). DEFINE: Efficiency = = 1/vT v = error of mean and T = total CPU time How can you make

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic - not

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 1940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic -

More information

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016

Monte Carlo Integration. Computer Graphics CMU /15-662, Fall 2016 Monte Carlo Integration Computer Graphics CMU 15-462/15-662, Fall 2016 Talk Announcement Jovan Popovic, Senior Principal Scientist at Adobe Research will be giving a seminar on Character Animator -- Monday

More information

Statistical Learning Theory

Statistical Learning Theory Statistical Learning Theory Part I : Mathematical Learning Theory (1-8) By Sumio Watanabe, Evaluation : Report Part II : Information Statistical Mechanics (9-15) By Yoshiyuki Kabashima, Evaluation : Report

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 1940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic -

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

So we will instead use the Jacobian method for inferring the PDF of functionally related random variables; see Bertsekas & Tsitsiklis Sec. 4.1.

So we will instead use the Jacobian method for inferring the PDF of functionally related random variables; see Bertsekas & Tsitsiklis Sec. 4.1. 2011 Page 1 Simulating Gaussian Random Variables Monday, February 14, 2011 2:00 PM Readings: Kloeden and Platen Sec. 1.3 Why does the Box Muller method work? How was it derived? The basic idea involves

More information

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010 Fitting Integrals to Basic Rules Basic Integration Rules Lesson 8.1 Consider these similar integrals Which one uses The log rule The arctangent rule The rewrite with long division principle Try It Out

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Advanced Monte Carlo Methods Problems

Advanced Monte Carlo Methods Problems Advanced Monte Carlo Methods Problems September-November, 2012 Contents 1 Integration with the Monte Carlo method 2 1.1 Non-uniform random numbers.......................... 2 1.2 Gaussian RNG..................................

More information

A simple algorithm that will generate a sequence of integers between 0 and m is:

A simple algorithm that will generate a sequence of integers between 0 and m is: Using the Pseudo-Random Number generator Generating random numbers is a useful technique in many numerical applications in Physics. This is because many phenomena in physics are random, and algorithms

More information

Multivariate Simulations

Multivariate Simulations Multivariate Simulations Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Prague, Czech Republic 21.11.2011 Katarína Starinská Multivariate Simulations 1 /

More information

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that

From Random Numbers to Monte Carlo. Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that From Random Numbers to Monte Carlo Random Numbers, Random Walks, Diffusion, Monte Carlo integration, and all that Random Walk Through Life Random Walk Through Life If you flip the coin 5 times you will

More information

Stat 451 Lecture Notes Simulating Random Variables

Stat 451 Lecture Notes Simulating Random Variables Stat 451 Lecture Notes 05 12 Simulating Random Variables Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 22 in Lange, and Chapter 2 in Robert & Casella 2 Updated:

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

Monte Carlo integration (naive Monte Carlo)

Monte Carlo integration (naive Monte Carlo) Monte Carlo integration (naive Monte Carlo) Example: Calculate π by MC integration [xpi] 1/21 INTEGER n total # of points INTEGER i INTEGER nu # of points in a circle REAL x,y coordinates of a point in

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

Distances in R 3. Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane:

Distances in R 3. Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane: Distances in R 3 Last time we figured out the (parametric) equation of a line and the (scalar) equation of a plane: Definition: The equation of a line through point P(x 0, y 0, z 0 ) with directional vector

More information

Intelligent Systems I

Intelligent Systems I 1, Intelligent Systems I 12 SAMPLING METHODS THE LAST THING YOU SHOULD EVER TRY Philipp Hennig & Stefan Harmeling Max Planck Institute for Intelligent Systems 23. January 2014 Dptmt. of Empirical Inference

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

in Computer Simulations for Bioinformatics

in Computer Simulations for Bioinformatics Bi04a_ Unit 04a: Stochastic Processes and their Applications in Computer Simulations for Bioinformatics Stochastic Processes and their Applications in Computer Simulations for Bioinformatics Basic Probability

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Multivariate Distribution Models

Multivariate Distribution Models Multivariate Distribution Models Model Description While the probability distribution for an individual random variable is called marginal, the probability distribution for multiple random variables is

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

[POLS 8500] Review of Linear Algebra, Probability and Information Theory

[POLS 8500] Review of Linear Algebra, Probability and Information Theory [POLS 8500] Review of Linear Algebra, Probability and Information Theory Professor Jason Anastasopoulos ljanastas@uga.edu January 12, 2017 For today... Basic linear algebra. Basic probability. Programming

More information

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger

Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm. by Korbinian Schwinger Exponential Family and Maximum Likelihood, Gaussian Mixture Models and the EM Algorithm by Korbinian Schwinger Overview Exponential Family Maximum Likelihood The EM Algorithm Gaussian Mixture Models Exponential

More information

Let X and Y denote two random variables. The joint distribution of these random

Let X and Y denote two random variables. The joint distribution of these random EE385 Class Notes 9/7/0 John Stensby Chapter 3: Multiple Random Variables Let X and Y denote two random variables. The joint distribution of these random variables is defined as F XY(x,y) = [X x,y y] P.

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Ch3. Generating Random Variates with Non-Uniform Distributions

Ch3. Generating Random Variates with Non-Uniform Distributions ST4231, Semester I, 2003-2004 Ch3. Generating Random Variates with Non-Uniform Distributions This chapter mainly focuses on methods for generating non-uniform random numbers based on the built-in standard

More information

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference Expectation Propagation for Approximate Bayesian Inference José Miguel Hernández Lobato Universidad Autónoma de Madrid, Computer Science Department February 5, 2007 1/ 24 Bayesian Inference Inference Given

More information

Multivariate Distributions

Multivariate Distributions Copyright Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/adafaepov/ Appendix E Multivariate Distributions E.1 Review of Definitions Let s review

More information

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques 1 Proof techniques Here we will learn to prove universal mathematical statements, like the square of any odd number is odd. It s easy enough to show that this is true in specific cases for example, 3 2

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

Question: My computer only knows how to generate a uniform random variable. How do I generate others? f X (x)dx. f X (s)ds.

Question: My computer only knows how to generate a uniform random variable. How do I generate others? f X (x)dx. f X (s)ds. Simulation Question: My computer only knows how to generate a uniform random variable. How do I generate others?. Continuous Random Variables Recall that a random variable X is continuous if it has a probability

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Physics 115/242 Romberg Integration

Physics 115/242 Romberg Integration Physics 5/242 Romberg Integration Peter Young In this handout we will see how, starting from the trapezium rule, we can obtain much more accurate values for the integral by repeatedly eliminating the leading

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania

Monte Carlo Methods. Jesús Fernández-Villaverde University of Pennsylvania Monte Carlo Methods Jesús Fernández-Villaverde University of Pennsylvania 1 Why Monte Carlo? From previous chapter, we want to compute: 1. Posterior distribution: π ³ θ Y T,i = f(y T θ,i)π (θ i) R Θ i

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

p(z)

p(z) Chapter Statistics. Introduction This lecture is a quick review of basic statistical concepts; probabilities, mean, variance, covariance, correlation, linear regression, probability density functions and

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information

Review session Midterm 1

Review session Midterm 1 AS.110.109: Calculus II (Eng) Review session Midterm 1 Yi Wang, Johns Hopkins University Fall 2018 7.1: Integration by parts Basic integration method: u-sub, integration table Integration By Parts formula

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations What are Monte Carlo Simulations and why ones them? Pseudo Random Number generators Creating a realization of a general PDF The Bootstrap approach A real life example: LOFAR simulations

More information

Generating the Sample

Generating the Sample STAT 80: Mathematical Statistics Monte Carlo Suppose you are given random variables X,..., X n whose joint density f (or distribution) is specified and a statistic T (X,..., X n ) whose distribution you

More information

In this section again we shall assume that the matrix A is m m, real and symmetric.

In this section again we shall assume that the matrix A is m m, real and symmetric. 84 3. The QR algorithm without shifts See Chapter 28 of the textbook In this section again we shall assume that the matrix A is m m, real and symmetric. 3.1. Simultaneous Iterations algorithm Suppose we

More information

A note on multivariate Gauss-Hermite quadrature

A note on multivariate Gauss-Hermite quadrature A note on multivariate Gauss-Hermite quadrature Peter Jäckel 1th May 5 1 Introduction Gaussian quadratures are an ingenious way to approximate the integral of an unknown function f(x) over a specified

More information

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications.

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications. Stat 811 Lecture Notes The Wald Consistency Theorem Charles J. Geyer April 9, 01 1 Analyticity Assumptions Let { f θ : θ Θ } be a family of subprobability densities 1 with respect to a measure µ on a measurable

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Transformation of Probability Densities

Transformation of Probability Densities Transformation of Probability Densities This Wikibook shows how to transform the probability density of a continuous random variable in both the one-dimensional and multidimensional case. In other words,

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Bell-shaped curves, variance

Bell-shaped curves, variance November 7, 2017 Pop-in lunch on Wednesday Pop-in lunch tomorrow, November 8, at high noon. Please join our group at the Faculty Club for lunch. Means If X is a random variable with PDF equal to f (x),

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 17, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 17, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 17, 2016 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions that follow INSTRUCTIONS TO

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 2: Multivariate distributions and inference Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2016/2017 Master in Mathematical

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Brief Review of Probability

Brief Review of Probability Brief Review of Probability Nuno Vasconcelos (Ken Kreutz-Delgado) ECE Department, UCSD Probability Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS STAT/MA 4 Answers Homework November 5, 27 Solutions by Mark Daniel Ward PROBLEMS Chapter Problems 2a. The mass p, corresponds to neither of the first two balls being white, so p, 8 7 4/39. The mass p,

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 9

CPSC 536N: Randomized Algorithms Term 2. Lecture 9 CPSC 536N: Randomized Algorithms 2011-12 Term 2 Prof. Nick Harvey Lecture 9 University of British Columbia 1 Polynomial Identity Testing In the first lecture we discussed the problem of testing equality

More information

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations

6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations 6-1 Study Guide and Intervention Multivariable Linear Systems and Row Operations Gaussian Elimination You can solve a system of linear equations using matrices. Solving a system by transforming it into

More information

1 Introduction. Systems 2: Simulating Errors. Mobile Robot Systems. System Under. Environment

1 Introduction. Systems 2: Simulating Errors. Mobile Robot Systems. System Under. Environment Systems 2: Simulating Errors Introduction Simulating errors is a great way to test you calibration algorithms, your real-time identification algorithms, and your estimation algorithms. Conceptually, the

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory D. Large sample results E. Diffuse priors F. Numerical Bayesian methods

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Lecture 6: The Pigeonhole Principle and Probability Spaces

Lecture 6: The Pigeonhole Principle and Probability Spaces Lecture 6: The Pigeonhole Principle and Probability Spaces Anup Rao January 17, 2018 We discuss the pigeonhole principle and probability spaces. Pigeonhole Principle The pigeonhole principle is an extremely

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Quantifying Uncertainty

Quantifying Uncertainty Sai Ravela M. I. T Last Updated: Spring 2013 1 Markov Chain Monte Carlo Monte Carlo sampling made for large scale problems via Markov Chains Monte Carlo Sampling Rejection Sampling Importance Sampling

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

MAT137 - Term 2, Week 4

MAT137 - Term 2, Week 4 MAT137 - Term 2, Week 4 Reminders: Your Problem Set 6 is due tomorrow at 3pm. Test 3 is next Friday, February 3, at 4pm. See the course website for details. Today we will: Talk more about substitution.

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revised on April 24, 2017 Today we are going to learn... 1 Markov Chains

More information

Name: MAT 444 Test 4 Instructor: Helene Barcelo April 19, 2004

Name: MAT 444 Test 4 Instructor: Helene Barcelo April 19, 2004 MAT 444 Test 4 Instructor: Helene Barcelo April 19, 004 Name: You can take up to hours for completing this exam. Close book, notes and calculator. Do not use your own scratch paper. Write each solution

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Dr. Allen Back. Nov. 5, 2014

Dr. Allen Back. Nov. 5, 2014 Dr. Allen Back Nov. 5, 2014 12 lectures, 4 recitations left including today. a Most of what remains is vector integration and the integral theorems. b We ll start 7.1, 7.2,4.2 on Friday. c If you are not

More information

Preliminary statistics

Preliminary statistics 1 Preliminary statistics The solution of a geophysical inverse problem can be obtained by a combination of information from observed data, the theoretical relation between data and earth parameters (models),

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information