86 On the generalized convolutions for Fourier cosine and sine transforms the convolution has the form [8] (f g)(x) = p 1 f(y)[g(j x ; y j)+g(x + y)]d

Size: px
Start display at page:

Download "86 On the generalized convolutions for Fourier cosine and sine transforms the convolution has the form [8] (f g)(x) = p 1 f(y)[g(j x ; y j)+g(x + y)]d"

Transcription

1 East-West Journal of Mathematics: Vol. 1, No 1 (1998) pp ON THE GENERALIZED CONVOLUTIONS FOR FOURIER COSINE AND SINE TRANSFORMS Nguyen Xuan Thao, V.A. Kakichev Novgorod University, St. Petersburg str. 41 Novgorod 1733, Russia Vu Kim Tuan Department of Mathematics and Computer Science Faculty of Science, Kuwait University P.O. Box 5969, Safat 136, Kuwait Abstract A generalized convolution for the Fourier cosine and sine transforms is introduced, its properties and applications to integral equations are considered. 1. Introduction Generalized convolution of functions f and g under three operators K, K1, K, and with some weight-function is a function, denoted by the symbol f g, such that the following factorization property holds [5] : K(f g)(x) =(x)(k1f)(x)(kg)(x): (1:1) If K = K1 = K we have the usual classical convolution [3,4]. For example, for K = K1 = K = F c { the Fourier cosine transform [8] (F c f)(x) = r f(y)cos xy dy (1:) Key phrases. Fourier cosine and Fourier sine transforms, convolution, integral equations. 85

2 86 On the generalized convolutions for Fourier cosine and sine transforms the convolution has the form [8] (f g)(x) = p 1 f(y)[g(j x ; y j)+g(x + y)]dy (1:3) and the property (1.1) holds F c (f g)(x) =(F c f)(x)(f c g)(x): (1:4) Otherwise, there appear "exotic" convolutions. An example of generalized convolutions was rst introduced by Churchill [1] (f 1 g)(x) = p 1 f(y)[g(j x ; y j) ; g(x + y)]dy (1:5) and the respective factorization property (1.1) for (1.5) has the form F s (f 1 g)(x) =(F s f)(x)(f c g)(x) (1:6) where F s is the Fourier sine transform [8] r Z 1 (F s f)(x) = f(y)sin xy dy: (1:7) Many authors have studied similar convolutions for Hankel's transform [1], Stieltjes' transform [9], Hilbert's transform [], G-transform [7], and integral transforms of Mellin convolution type [6,1]. The present work is devoted to investigate properties of another generalized convolution for Fourier cosine and sine transforms, dierent from (1.5), and its application to a linear system of integral equations.. The generalized convolution Denition 1. A generalized convolution for the Fourier cosine and sine transforms is dened as follows: (f g)(x) = p 1 f(y)[sign(y ; x)g(j y ; x j)+g(y + x)]dy: (:1) Theorem 1. Let f g L(R+), then the convolution f g belongs to L(R+) and F c (f g)(x) =(F s f)(x)(f s g)(x) xr+ : (:)

3 N.X. Thao, V.A. Kakichev and V.K. Tuan 87 Proof. We have j (f g)(x) j dx p 1 j (f(y) j (j g(j x;y j) j + j g(x+y) j)dxdy p 1 j f(y) j dy j g(jxj) j dx + j g(x) j dx ;y y r Z 1 = j f(y) j dy j g(x) j dx < 1: Hence, the convolution (.) belongs to L(R+). Furthermore, (F s f)(x)(f s g)(x) = cos x(u;v) f(u)g(v)du dv; 1 sin xu sin xv f(u) g(v) du dv cos x(u+v) f(u)g(v)du dv cos xt [f(y)g(y + t)+f(y + t)g(y)]dy dt Z t ; 1 cos xt f(y)g(t ; y)dy dt Z t cos xt f(y)g(y + t)dy + f(y)g(y ; t)dy ; f(y)g(t ; y)dy dt t cos xt f(y)g(y + t)dy + sign(y ; t)f(y)g(jy ; tj)dy dt Theorem 1 is thus proved. = F c (f g)(x): Remark 1: Formulas (1.4) and (.) show thattheconvolution f g and f g are commutative. On the other hand, the convolution f 1 g is non commutative: f 1 g = ;g 1 r f + f g (:3) L where f g is the Laplace convolution L (f Z x L g)(x) = f(y) g(x ; y) dy: (:4)

4 88 On the generalized convolutions for Fourier cosine and sine transforms Indeed, we have (f 1 g)(x) = p 1 f(y)[g(j x ; y j) ; g(x + y)]dy = p 1 f(x + s)g(j s j) ds ; f(s ; x)g(s) ds ;x = p 1 g(s)[f(x + s) ; f(j s ; x j)] ds+ Z Z x + f(x + s) g(j s j) ds + f(j s ; x j) g(s) ds ;x = ;(g 1 r f)(x)+ (f L g)(x): Remark : Convolution (.1) was introduced implicitly, but incorrectly in [8], where the term sign(y ; x) was missing. Theorem. Let the functions f g h belong to L(R+). Then the following formulas hold x (f 1 g) 1 h =(f 1 h) 1 g = f 1 (g h) (:5) f (g h) =g (h 1 f) =h (g 1 f) (:6) f 1 (g h) =g 1 (f h) =h 1 (f g) (:7) f (g h) =g (f h) =h (f g) (:8) The proof follows easily from formulas (1.4), (1.6) and (.). For example, we have F s [(f 1 g) 1 h] =F s (f 1 g)f c (h) =F s (f)f c (g)f c (h) =[F s (f)f c (h)]f c (g) =F s (f 1 h)f c (g) = F s [(f 1 h) 1 g]: Hence, (f 1 g) 1 h =(f 1 h) 1 g. On the other hand, F s [(f 1 g) 1 h] =F s (f)[f c (g)f c (h)] = F s (f)f c (g h) =F s [(f 1 (g h)]: Therefore, (f 1 g) 1 h = f 1 (g h), and formula (.5) is proved. By the same way, one can verify the other parts, too.

5 N.X. Thao, V.A. Kakichev and V.K. Tuan Applications to integral equations We consider the following linear system of integral equations: '(x)+1 k(x y) (y)dy = f(x) (3:1) (x)+ h(x y)'(y)dy = g(x) x R+ : (3:) where ' and are unknown functions, f and g are given functions, 1 and denote complex parameters, and k(x y) andh(x y) arethekernels that can be expressed in the form k(x y) =k1(j x ; y j) ; k1(x + y) h(x y) = sign(y ; x)h1(j x ; y j)+h1(x + y): (3:3) Applying the Fourier sine transform to equation (3.1) and the Fourier cosine transform to equation (3.) and using the convolution formulas (1.6) and (.) we obtain a linear system of algebraic equations Suppose that F s (')+ p 1F c ( )F s (k1) =F s (f) F c ( )+ p F s (')F s (h1) =F c (g): (3:4) 1 ; 1(F s k1)(x)(f s h1)(x) 6= (3:5) for any x R+. Then the linear system (3.4) has the solution F s (') =[F s (f) ; p 1F c (g)f s (k1)]=[1 ; 1F s (k1)f s (h1)] F c ( )=[F c (g) ; p F s (f)f s (h1)]=[1 ; 1F s (k1)f s (h1)]: (3:6) Consider the function (t) =1t=(1 ; 1t) with t = F c (k1 h1) = F s (k1)f s (h1). Since (t) is analytic under the condition (3.5) and () =, by the Wiener-Levi theorem there exists a function l L(R+) such that Hence, we obtain F c (l) =1F s (k1)f s (h1)=[1 ; 1F s (k1)f s (h1)]: (3:7) F s (') =[F s (f) ; p 1F c (g)f s (k1)][1 + F c (l)] = F s (f) ; p 1F s (k1 1 g)+f s (f 1 l) ; p 1F s ((k1 1 g) 1 l):

6 9 On the generalized convolutions for Fourier cosine and sine transforms Therefore, ' = f ; p 1k1 1 g + f 1 l ; p 1(k1 1 g) 1 l: (3:8) Similarly, wehave F c ( )=[F c (g) ; p F s (f)f s (h1)][1 + F c (l)] = F c (g) ; p F c (f h1)+f c (l g) ; p F c (l (f h1)): Consequently, = g ; p f h1 + l g ; p l (f h1): (3:9) References [1] R.V. Churchill, "Fourier series and boundary value problems", New York,1941. [] H.J. Glaeske and Vu Kim Tuan, Convolution of the Hilbert transform and its application to some nonlinear singular integral equations, Integral Transforms and Special Functions, 3(1995), no. 4, [3] V.A. Kakichev, On the convolutions for integral transform (Russian), Vestsi Akad. Navuk BSSR, Ser. Fiz. Mat. Navuk, (1967), no., [4] V.A. Kakichev, On the matrix convolutions for power series (Russian). Izv. Vyssh. Uchebn. Zaved. Mat., (199), no., [5] V.A. Kakichev and Nguyen Xuan Thao, On the design method for the generalized integral convolutions (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., (1997), no. 6. [6] Nguyen Thanh Hai and S.B. Yakubovich,The double Mellin-Barnes type integrals and their applications to convolution theory, World Scientic, Singapore, (199). [7] M. Saigo and S. B. Yakubovich, On the theory of convolution integrals for G-transforms, Fukuoka Univ. Sci. Reports, 1(1991), no., [8] I.N. Sneddon, "The use of integral transforms", McGray{Hill, New York, (197). [9] H.M. Srivastava and Vu Kim Tuan, A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations, Arch. Math., 64(1995), no., [1] Vu Kim Tuan and Megumi Saigo, Convolution of Hankel transform and its application to an integral involving Bessel function of rst kind, Internat. J. Math. Math. Sci., 18(1995), no. 3, [11] S.B. Yakubovich, On the constructive method of integral convolutions (Russian), Dokl. Akad. Nauk BSSR, 34(199), no. 7, [1] S.B. Yakubovich and Yu.F. Luchko, "The hypergeometric approach to integral transforms and convolutions", Kluwer Acad. Publ., 1994.

Research Article On the Polyconvolution with the Weight Function for the Fourier Cosine, Fourier Sine, and the Kontorovich-Lebedev Integral Transforms

Research Article On the Polyconvolution with the Weight Function for the Fourier Cosine, Fourier Sine, and the Kontorovich-Lebedev Integral Transforms Mathematical Problems in Engineering Volume, Article ID 7967, 6 pages doi:.55//7967 Research Article On the Polyconvolution with the Weight Function for the Fourier Cosine, Fourier Sine, and the Kontorovich-Lebedev

More information

Research Article Integral Transforms of Fourier Cosine and Sine Generalized Convolution Type

Research Article Integral Transforms of Fourier Cosine and Sine Generalized Convolution Type Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 27, Article ID 9725, 11 pages doi:1.1155/27/9725 Research Article Integral Transforms of Fourier Cosine

More information

vu KIM TUAN 9[f](x) yj(yx)f(y)dy, Re(,) > (1) h(x) 2-3 x-

vu KIM TUAN 9[f](x) yj(yx)f(y)dy, Re(,) > (1) h(x) 2-3 x- Internat. J. Math. & Math. Sci. VOL. 18 NO. 3 (1995) 545-550 545 CONVOLUTION OF HANKEL TRANSFORM AND ITS APPLICATION TO AN INTEGRAL INVOLVING BESSEL FUNCTIONS OF FIRST KIND vu KIM TUAN Institute of Mathematics,

More information

ON THE KONTOROVICH- LEBEDEV TRANSFORMATION

ON THE KONTOROVICH- LEBEDEV TRANSFORMATION JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 5, Number, Spring 3 ON THE KONTOROVICH- LEBEDEV TRANSFORMATION SEMYON B. YAKUBOVICH ABSTRACT. Further developments of the results on the Kontorovich-Lebedev

More information

On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution

On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution Journal of Approimation Theory 131 4 31 4 www.elsevier.com/locate/jat On the least values of L p -norms for the Kontorovich Lebedev transform and its convolution Semyon B. Yakubovich Department of Pure

More information

CONVOLUTIONS OF LOGARITHMICALLY. Milan Merkle. Abstract. We give a simple proof of the fact that the logarithmic concavity of real

CONVOLUTIONS OF LOGARITHMICALLY. Milan Merkle. Abstract. We give a simple proof of the fact that the logarithmic concavity of real Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (998), 3{7. CONVOLUTIONS OF LOGARITHMICALLY CONCAVE FUNCTIONS Milan Merkle Abstract. We give a simple proof of the fact that the logarithmic concavity

More information

2014 IJIRT Volume 1 Issue 6 ISSN : CONVOLUTION AND APPLICATIONS OF CONVOLUTION

2014 IJIRT Volume 1 Issue 6 ISSN : CONVOLUTION AND APPLICATIONS OF CONVOLUTION CONVOLUTION AND APPLICATIONS OF CONVOLUTION Akshay Behl, Akash Bhatia, Avril Puri Dronacharya College Of Engineering, GGN Abstract-We introduce an integral transform related to a Fourier sine-fourier -

More information

Tow estimates for the Generalized Fourier-Bessel Transform in the Space L 2 α,n

Tow estimates for the Generalized Fourier-Bessel Transform in the Space L 2 α,n Palestine Journal of Mathematics Vol. 6(1)(17), 195 1 Palestine Polytechnic University-PPU 17 Tow estimates for the Generalized Fourier-Bessel Transform in the Space L α,n R. Daher, S. El ouadih and M.

More information

QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS. 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA

QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS. 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA QUADRUPLE INTEGRAL EQUATIONS INVOLVING FOX S H-FUNCTIONS Mathur 1, P.K & Singh 2, Anjana 1.Dept. of Mathematics, Saifia Science College, Bhopal, (M.P.), INDIA 2.Dept. of Mathematics,Rajeev Gandhi Engineering

More information

The method to find a basis of Euler-Cauchy equation by transforms

The method to find a basis of Euler-Cauchy equation by transforms Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016), pp. 4159 4165 Research India Publications http://www.ripublication.com/gjpam.htm The method to find a basis of

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

G. NADIBAIDZE. a n. n=1. n = 1 k=1

G. NADIBAIDZE. a n. n=1. n = 1 k=1 GEORGIAN MATHEMATICAL JOURNAL: Vol. 6, No., 999, 83-9 ON THE ABSOLUTE SUMMABILITY OF SERIES WITH RESPECT TO BLOCK-ORTHONORMAL SYSTEMS G. NADIBAIDZE Abstract. Theorems determining Weyl s multipliers for

More information

International Journal of Pure and Applied Mathematics Volume 55 No ,

International Journal of Pure and Applied Mathematics Volume 55 No , International Journal of Pure and Applied Mathematics Volume 55 No. 9, 47-56 THE HANKEL CONVOLUTION OF ARBITRARY ORDER C.K. Li Department of Mathematics and Computer Science Brandon University Brandon,

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University Green Lab. 1/20 MAXIMA & ODE2 Cheng Ren, Lin Department of Marine Engineering National Kaohsiung Marine University email: crlin@mail.nkmu.edu.tw Objectives learn MAXIMA learn ODE2 2/20 ODE2 Method First

More information

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge Vladimir Kozlov (Linköping University, Sweden) 2010 joint work with A.Nazarov Lu t u a ij

More information

Math 212-Lecture 8. The chain rule with one independent variable

Math 212-Lecture 8. The chain rule with one independent variable Math 212-Lecture 8 137: The multivariable chain rule The chain rule with one independent variable w = f(x, y) If the particle is moving along a curve x = x(t), y = y(t), then the values that the particle

More information

An Approximate Solution for Volterra Integral Equations of the Second Kind in Space with Weight Function

An Approximate Solution for Volterra Integral Equations of the Second Kind in Space with Weight Function International Journal of Mathematical Analysis Vol. 11 17 no. 18 849-861 HIKARI Ltd www.m-hikari.com https://doi.org/1.1988/ijma.17.771 An Approximate Solution for Volterra Integral Equations of the Second

More information

SERIES REPRESENTATIONS FOR BEST APPROXIMATING ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

SERIES REPRESENTATIONS FOR BEST APPROXIMATING ENTIRE FUNCTIONS OF EXPONENTIAL TYPE SERIES REPRESENTATIONS OR BEST APPROXIMATING ENTIRE UNCTIONS O EXPONENTIAL TYPE D. S. LUBINSKY School of Mathematics, Georgia Institute of Technology, Atlanta, GA 333-6. e-mail: lubinsky@math.gatech.edu

More information

RETRACTED GENERALIZED PRODUCT THEOREM FOR THE MELLIN TRANSFORM AND ITS APPLICATIONS ALIREZA ANSARI

RETRACTED GENERALIZED PRODUCT THEOREM FOR THE MELLIN TRANSFORM AND ITS APPLICATIONS ALIREZA ANSARI Kragujevac Journal of Mathematics Volume 36 Number 2 (22), Pages 287 298 GENERALIZED PRODUCT THEOREM FOR THE MELLIN TRANSFORM AND ITS APPLICATIONS ALIREZA ANSARI Abstract In this paper, we introduce the

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

On the Integral of Almost Periodic Functions. of Several Variables

On the Integral of Almost Periodic Functions. of Several Variables Applied Mathematical Sciences, Vol. 6, 212, no. 73, 3615-3622 On the Integral of Almost Periodic Functions of Several Variables Saud M. A. Alsulami Department of Mathematics King Abdulaziz University Jeddah,

More information

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials

Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials A. Kuznetsov Dept. of Mathematical Sciences University of New Brunswick

More information

INTEGRAL TRANSFORMS and THEIR APPLICATIONS

INTEGRAL TRANSFORMS and THEIR APPLICATIONS INTEGRAL TRANSFORMS and THEIR APPLICATIONS Lokenath Debnath Professor and Chair of Mathematics and Professor of Mechanical and Aerospace Engineering University of Central Florida Orlando, Florida CRC Press

More information

. Consider the linear system dx= =! = " a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z

. Consider the linear system dx= =! =  a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z Preliminary Exam { 1999 Morning Part Instructions: No calculators or crib sheets are allowed. Do as many problems as you can. Justify your answers as much as you can but very briey. 1. For positive real

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

On distribution functions of ξ(3/2) n mod 1

On distribution functions of ξ(3/2) n mod 1 ACTA ARITHMETICA LXXXI. (997) On distribution functions of ξ(3/2) n mod by Oto Strauch (Bratislava). Preliminary remarks. The question about distribution of (3/2) n mod is most difficult. We present a

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

On the Solution of the n-dimensional k B Operator

On the Solution of the n-dimensional k B Operator Applied Mathematical Sciences, Vol. 9, 015, no. 10, 469-479 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.015.410815 On the Solution of the n-dimensional B Operator Sudprathai Bupasiri Faculty

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume, Number, Pages S -9939(XX)- DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS J. A. PALMER Abstract. We show how the Mellin transform can be used to

More information

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t SOOCHOW JOURNAL OF MATHEMATICS Volume 26, No., pp. 9-27, January 2 A STUDY OF BESSEL POLYNOMIALS SUGGESTED BY THE POLYNOMIALS L n (x) OF PRABHAKAR AND REKHA BY MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Abstract.

More information

Core Mathematics C4 Advanced Level

Core Mathematics C4 Advanced Level Paper Reference(s) 6666/0 Edexcel GCE Core Mathematics C4 Advanced Level Thursday June 0 Afternoon Time: hour 0 minutes Materials required for examination Mathematical Formulae (Pink) Items included with

More information

arxiv: v2 [math.fa] 17 May 2016

arxiv: v2 [math.fa] 17 May 2016 ESTIMATES ON SINGULAR VALUES OF FUNCTIONS OF PERTURBED OPERATORS arxiv:1605.03931v2 [math.fa] 17 May 2016 QINBO LIU DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824, USA Abstract.

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

EFFECTIVE SOLUTIONS OF SOME DUAL INTEGRAL EQUATIONS AND THEIR APPLICATIONS

EFFECTIVE SOLUTIONS OF SOME DUAL INTEGRAL EQUATIONS AND THEIR APPLICATIONS GENEALIZATIONS OF COMPLEX ANALYSIS BANACH CENTE PUBLICATIONS, VOLUME 37 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WASZAWA 996 EFFECTIVE SOLUTIONS OF SOME DUAL INTEGAL EQUATIONS AND THEI APPLICATIONS

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

A Note on the Differential Equations with Distributional Coefficients

A Note on the Differential Equations with Distributional Coefficients MATEMATIKA, 24, Jilid 2, Bil. 2, hlm. 115 124 c Jabatan Matematik, UTM. A Note on the Differential Equations with Distributional Coefficients Adem Kilicman Department of Mathematics, Institute for Mathematical

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati

E.G. KALNINS AND WILLARD MILLER, JR. The notation used for -series and -integrals in this paper follows that of Gasper and Rahman [3].. A generalizati A NOTE ON TENSOR PRODUCTS OF -ALGEBRA REPRESENTATIONS AND ORTHOGONAL POLYNOMIALS E.G. KALNINSy AND WILLARD MILLER, Jr.z Abstract. We work out examples of tensor products of distinct generalized s`) algebras

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

ON FOURNIER GAGLIARDO MIXED NORM SPACES

ON FOURNIER GAGLIARDO MIXED NORM SPACES Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 36, 2, 493 58 ON FOURNIER GAGLIARDO MIXED NORM SPACES Robert Algervi and Vitor I. Kolyada Karlstad University, Department of Mathematics Universitetsgatan,

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be Final Problem Set Name A. Show the steps for each of the following problems. 1. Show 1 1 1 y y L y y(1 ) L.. Use the information in #1 to show a solution to the differential equation dy y ky(1 ), where

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x

Topics. Example. Modulation. [ ] = G(k x. ] = 1 2 G ( k % k x 0) G ( k + k x 0) ] = 1 2 j G ( k x Topics Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2008 CT/Fourier Lecture 3 Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

Lecture 2: Review of Prerequisites. Table of contents

Lecture 2: Review of Prerequisites. Table of contents Math 348 Fall 217 Lecture 2: Review of Prerequisites Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In this

More information

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By  T h e Committee'') - 6 7 8 9 3-6 7 8 9 3 G UDY 3 93 VU XXXV U XY F K FD D j V K D V FY G F D Y X K X DD Y j \ V F \ VD GD D U Y 78 K U D Y U Y 484?35 V 93 7 4 U x K 77 - D :3 F K > 6 D x F 5 - - x - G 7 43 8 D $35 K F $5

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

ON GENERALIZATIONS OF BOEHMIAN SPACE AND HARTLEY TRANSFORM. C. Ganesan and R. Roopkumar. 1. Introduction

ON GENERALIZATIONS OF BOEHMIAN SPACE AND HARTLEY TRANSFORM. C. Ganesan and R. Roopkumar. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 69, 2 (2017, 133 143 June 2017 originalni nauqni rad research paper ON GENERALIZATIONS OF BOEHMIAN SPACE AND HARTLEY TRANSFORM C. Ganesan and R. Roopkumar Abstract.

More information

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2

Topics. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2006 CT/Fourier Lecture 2 Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 CT/Fourier Lecture 2 Topics Modulation Modulation Transfer Function Convolution/Multiplication Revisit Projection-Slice Theorem Filtered

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

1 FUNCTIONS _ 5 _ 1.0 RELATIONS 1 FUNCTIONS 1.0 RELATIONS Notes : (i) Four types of relations : one-to-one many-to-one one-to-many many-to-many. (ii) Three ways to represent relations : arrowed diagram set of ordered pairs graph. (iii)

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Note : This document might take a little longer time to print. more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more exam papers at : more

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

The solutions of time and space conformable fractional heat equations with conformable Fourier transform

The solutions of time and space conformable fractional heat equations with conformable Fourier transform Acta Univ. Sapientiae, Mathematica, 7, 2 (25) 3 4 DOI:.55/ausm-25-9 The solutions of time and space conformable fractional heat equations with conformable Fourier transform Yücel Çenesiz Department of

More information

Outline. Asymptotic Expansion of the Weyl-Titchmarsh m Function. A Brief Overview of Weyl Theory I. The Half-Line Sturm-Liouville Problem

Outline. Asymptotic Expansion of the Weyl-Titchmarsh m Function. A Brief Overview of Weyl Theory I. The Half-Line Sturm-Liouville Problem Outline of the Weyl-Titchmarsh m Function A Qualifying Exam April 27, 21 The goal for this talk is to present the asymptotic expansion for the Weyl-Titchmarsh m-function as described in Levitan and Danielyan,

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

SPECTRAL PROPERTIES OF THE SIMPLE LAYER POTENTIAL TYPE OPERATORS

SPECTRAL PROPERTIES OF THE SIMPLE LAYER POTENTIAL TYPE OPERATORS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 43, Number 3, 2013 SPECTRAL PROPERTIES OF THE SIMPLE LAYER POTENTIAL TYPE OPERATORS MILUTIN R. OSTANIĆ ABSTRACT. We establish the exact asymptotical behavior

More information

PROPERTIES OF SOLUTIONS TO NEUMANN-TRICOMI PROBLEMS FOR LAVRENT EV-BITSADZE EQUATIONS AT CORNER POINTS

PROPERTIES OF SOLUTIONS TO NEUMANN-TRICOMI PROBLEMS FOR LAVRENT EV-BITSADZE EQUATIONS AT CORNER POINTS Electronic Journal of Differential Equations, Vol. 24 24, No. 93, pp. 9. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu PROPERTIES OF SOLUTIONS TO

More information

Functional Analysis HW 2

Functional Analysis HW 2 Brandon Behring Functional Analysis HW 2 Exercise 2.6 The space C[a, b] equipped with the L norm defined by f = b a f(x) dx is incomplete. If f n f with respect to the sup-norm then f n f with respect

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

11.8 Power Series. Recall the geometric series. (1) x n = 1+x+x 2 + +x n +

11.8 Power Series. Recall the geometric series. (1) x n = 1+x+x 2 + +x n + 11.8 1 11.8 Power Series Recall the geometric series (1) x n 1+x+x 2 + +x n + n As we saw in section 11.2, the series (1) diverges if the common ratio x > 1 and converges if x < 1. In fact, for all x (

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a

. (a) Express [ ] as a non-trivial linear combination of u = [ ], v = [ ] and w =[ ], if possible. Otherwise, give your comments. (b) Express +8x+9x a TE Linear Algebra and Numerical Methods Tutorial Set : Two Hours. (a) Show that the product AA T is a symmetric matrix. (b) Show that any square matrix A can be written as the sum of a symmetric matrix

More information

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜTESİ MATEMATİK BÖÜMÜ 1.5. MAT 7 K.T.D.D. Final Sınavın Çözümleri N. Course Question 1 (Canonical Forms). Consider the second order partial differential equation (sin

More information

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution Math 5 (006-007 Yum-Tong Siu. Derivation of the Poisson Kernel by Fourier Series and Convolution We are going to give a second derivation of the Poisson kernel by using Fourier series and convolution.

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always October 5 Relevant reading: Section 2.1, 2.2, 2.3 and 2.4 Our goal is to solve a general constant coecient linear second order ODE a d2 y dt + bdy + cy = g (t) 2 dt where a, b, c are constants and a 0.

More information

First integrals and reduction of a class of nonlinear higher order ordinary differential equations

First integrals and reduction of a class of nonlinear higher order ordinary differential equations J. Math. Anal. Appl. 287 (2003) 473 486 www.elsevier.com/locate/jmaa First integrals and reduction of a class of nonlinear higher order ordinary differential equations N. Euler a and P.G.L. Leach b, a

More information

MATH 2203 Exam 3 Version 2 Solutions Instructions mathematical correctness clarity of presentation complete sentences

MATH 2203 Exam 3 Version 2 Solutions Instructions mathematical correctness clarity of presentation complete sentences MATH 2203 Exam 3 (Version 2) Solutions March 6, 2015 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation.

More information

THE FOURTH-ORDER BESSEL-TYPE DIFFERENTIAL EQUATION

THE FOURTH-ORDER BESSEL-TYPE DIFFERENTIAL EQUATION THE FOURTH-ORDER BESSEL-TYPE DIFFERENTIAL EQUATION JYOTI DAS, W.N. EVERITT, D.B. HINTON, L.L. LITTLEJOHN, AND C. MARKETT Abstract. The Bessel-type functions, structured as extensions of the classical Bessel

More information

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y Lecture 5: The Sine Cosine Functions 5. Denitions We begin b dening functions s : c : ; i! R ; i! R b Note that 8 >< q tan(x) ; if x s(x) + tan (x) ; >: ; if x 8 >< q ; if x c(x) + tan (x) ; >: 0; if x.

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

A note on the saddle conic of quadratic planar differential systems

A note on the saddle conic of quadratic planar differential systems Electronic Journal of Differential Equations, Vol. 2000(2000), No. 23, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park Korean J. Math. 20 (2012), No. 1, pp. 77 89 FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES Choonkil Park Abstract. Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

Math 142 (Summer 2018) Business Calculus 5.8 Notes

Math 142 (Summer 2018) Business Calculus 5.8 Notes Math 142 (Summer 2018) Business Calculus 5.8 Notes Implicit Differentiation and Related Rates Why? We have learned how to take derivatives of functions, and we have seen many applications of this. However

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Alied Mathematics htt://jiam.vu.edu.au/ Volume 3, Issue 5, Article 8, 22 REVERSE CONVOLUTION INEQUALITIES AND APPLICATIONS TO INVERSE HEAT SOURCE PROBLEMS SABUROU SAITOH,

More information

Equations (3) and (6) form a complete solution as long as the set of functions fy n (x)g exist that satisfy the Properties One and Two given by equati

Equations (3) and (6) form a complete solution as long as the set of functions fy n (x)g exist that satisfy the Properties One and Two given by equati PHYS/GEOL/APS 661 Earth and Planetary Physics I Eigenfunction Expansions, Sturm-Liouville Problems, and Green's Functions 1. Eigenfunction Expansions In seismology in general, as in the simple oscillating

More information

arxiv: v1 [math.ca] 6 Mar 2019

arxiv: v1 [math.ca] 6 Mar 2019 GENERALIZED FOURIER SERIES BY DOUBLE RIGONOMERIC SYSEM K. S. KAZARIAN arxiv:903.02620v [math.ca] 6 Mar 209 Abstract. Necessary and sufficient conditions are obtained on the function M such that {M(x,y)e

More information

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first Math 632/6321: Theory of Functions of a Real Variable Sample Preinary Exam Questions 1. Let (, M, µ) be a measure space. (a) Prove that if µ() < and if 1 p < q

More information

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems Electronic Journal of Differential Equations, Vol. 200(200), No. 74, pp. 0. ISSN: 072-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Sufficient conditions

More information

Russia. St. Petersburg, , Russia

Russia. St. Petersburg, , Russia PACS 81.07.Bc, 61.72.Cc An asymptotic formula for displacement field in triangular lattice with vacancy V.A. Tsaplin 1, V.A. Kuzkin 1,2 vtsaplin@yandex.ru, kuzkinva@gmail.com 1 Institute for Problems in

More information

On an uniqueness theorem for characteristic functions

On an uniqueness theorem for characteristic functions ISSN 392-53 Nonlinear Analysis: Modelling and Control, 207, Vol. 22, No. 3, 42 420 https://doi.org/0.5388/na.207.3.9 On an uniqueness theorem for characteristic functions Saulius Norvidas Institute of

More information

NON-EUCLIDEAN GEOMETRY AND DIFFERENTIAL EQUATIONS

NON-EUCLIDEAN GEOMETRY AND DIFFERENTIAL EQUATIONS SINGULARITIES AND DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 33 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1996 NON-EUCLIDEAN GEOMETRY AND DIFFERENTIAL EQUATIONS A. G.

More information