Raman spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Size: px
Start display at page:

Download "Raman spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA"

Transcription

1 , 217 Uwe Burghaus, Fargo, ND, USA

2 HCl/DCl R data from NDSU Pchem lab class 28 R spectroscopy rotations & vibrations Vibration-rotation EXAMPLE HCl/DCl 9 8 inensity (a.u. 7 P branch R branch isotope splitting wave number in 1/cm inensity (a.u wave number in 1/cm v = 1 v = j = 3 j = 2 j = 1 j = j = 3 j = 2 j = 1 j =

3 Raman and nanoscience Dresselhaus, Jorios, Saito, Annu.Rev.Condens.Matter Phys. 1 (21 89 M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Physics Reports 49 ( Raman Spectroscopy in Graphene Related Systsems, SBN Rather didactic outline. Way too epensive, however, as a tetbook for students. The basics E. Smith, G. Dent, Modern Raman Spectroscopy, A practical approach, Wiley, SBN Undergraduate level description with many practical notes and an applied description of Raman scattering theory. A good starting book. Most undergrad books include a few pages long introduction. Spectra of Atoms and Molecules, 3 rd Ed., Peter F. Bernath, Oford University Press, Chapter 8 Physics of Atoms and Molecules, B.H. Bransden, C.J. Joachain, Wiley, Chapter 9, 1 Molecular Spectroscopy, J.M. Brown, Oford Chemistry Primers, Vol. 55, Chapter 6

4 Application of to nano materials made this PowerPoint originally for a different class Raman scattering is the inelastic scattering of a photon. LASER sample Detector Characterization 1 U. Burghaus, 214

5 1917 Professor of Physics at the University of Calcutta 1928 Raman effect discovered together with K. S. Krishnan 193 Nobel Prize for Physics He was the first Asian and first non-white to receive any Nobel Prize in the sciences discovered photon spin Sir Chandrasekhara Venkata Raman ( ndian physicist Characterization 2 U. Burghaus, 214

6

7 Raman effect is a three step process.. 2 Electron scatters, emitting phonon q, k 1 Photon ω 1, k 1 ecites electron hole pair Electron/hole pair 3 electron-hole pair recombines, emits photon ω 2, k 2 Virtual states ω 1, k 1 ω 2, k 2 Vibrational states q, k 4 Top Feynman diagram of the Raman effect; Bottom: energy diagram

8 Virtual states are.. Virtual states ω 1, k 1 sample ω 2, k sample 2 q, k n layman's terms: The photon polarizes (distorts the electron distribution of the target. A short lived photon-electron comple is formed. The scattering is fast such that the nuclear coordinates of the target are not affected, but only the charge distribution. That comple is unstable, i.e., a photon is released. Summary: n Raman scattering, the light distorts (polarizes the electron distribution of the scatterer forming a short lived state. A photon is re-emitted and phonon ecited. Quantum mechanics A virtual state is not a real eigenstate with distinct observables. Lifetime is restricted to energy-time uncertainty principle. The scattering is described by miing a ground and ecited state. 7

9 Polarization is key ntensity of Raman signal Pα 2 ω 4 LASER power Polarization of target Frequency of LASER µ = αe When photon interact with matter, the charge distribution of the target will be distorted by an amount that can be quantified by its polarizability. µ µ y µ z = α α α y z α α α y yy zy α α α z yz zz E E E y z n order to take the polarization of the photon and structure of the target into account a tensor description is used. µ = α E + α E + α y y z E z µ: dipole moment E: electrical field 8

10 Quantum Primer Bra-Ket Notation in Quantum Mechanics is. Consider it as a shorthand notation for integrals apparently introduced by Dirac F * r ρ = ψ Frˆ ρ ψ dv Bracket notation 9

11 Kramer Heisenberg Dirac Epression / photon-electron scattering µ = αe vibronic ground state (final state Vibronic state of an ecited electronic state µ: dipole moment E: electrical field α: polarizability vibronic ground state (initial state ( α ρσ constant GF = k ( F ω r ρ G ω L r σ iγ G + r ω ρ F G F + ω L r σ iγ scattered incident all vibronic states polarization direction of the photons dipole operator molecular polarization One can write this also as the probability for Raman scattering. 1

12 Kramer Heisenberg Dirac Epression / photon-electron scattering vibronic state of an ecited electronic state F vibronic ground state (final state G vibronic ground state (initial state α molecular polarization ρ scattered polarization direction of the photons σ incident polarization direction of the photons Σ sum over all vibronic states ( α ρσ GF = k ( F ω r ρ G ω L r σ iγ G + r ω ρ F G F + ω L r σ iγ * r G = ψ rˆ ψ GdV ρ ρ Miing the ground state and vibronic ecited state F rρ r G F r ρ σ Miing the final state and vibronic ecited state Similar but using the ecited state. The creation of the virtual state is described by miing electronic states. 11

13 Kramer Heisenberg Dirac Epression / photon-electron scattering vibronic state of an ecited electronic state F vibronic ground state (final state G vibronic ground state (initial state α molecular polarization ρ scattered polarization direction of the photons σ incident polarization direction of the photons Σ sum over all vibronic states ( α ρσ GF = k ( F ω r ρ G ω L r σ iγ G + r ω ρ F G F + ω L r σ iγ Ground state to intermediate state ntermediate state to final state Ecitation frequency (LASER input Line width of the intermediate state 12

14 Stokes and AntiStokes were not cusins but Virtual states ecitation Rayleigh classical scattering Stokes Raman scattering Anti-Stokes Raman scattering Vibrational states ecitation ecitation R absorption

15 Classical model undergrad version Where are Stokes & anti-stokes coming from? µ = αe E: eternal field Dipole moment depends on polarizability µ = αe cos(2πνt (t = equilibriu m + bond length of vibrating molecule ( t = ma cos(2πν t vib α dα α( equi + (. d =. = equi + µ = αe µ = α( + cos(2πν... Taylor epansion of polarizability dα t( ] E d cos(2πν [ equi. ma vib t 1 cos( *cos( y = [cos( y + cos( + y] 2 (t E 14a

16 Classical model undergrad version 14b...(...(... ]} 2 cos[(2 ] 2 {cos[(2 ( cos(2 ( cos(2 cos(2 ( cos(2 ( cos(2 ( cos(2 cos(2 ( ma. ma. ma. vib vib vib vib equi vib equi vib equi t t d d E t E t t d d E t E t E d d t E t E ν ν ν ν ν πν πν πν πν α πν α πν πν α πν α πν α πν πν α µ + = = + = + = ( = e d dα selection rule Rayleigh Stokes Anti-stokes ] cos( [cos( 2 1 *cos( cos( y y y + + =

17 Preventing that you fall asleep.. Q6 What has greater intensity stokes or anti-stokes? Q7 Aehhh? Who is Stokes? Q8 What is that? Virtual states Vibrational states

18 Preventing that you fall asleep.. Q6 What has greater intensity stokes or anti-stokes? Due to distribution of ecited vibrational states, at room temperature, Stokes lines dominate and for usually only Stokes lines are actually measured. (+ Raman shift, low energy side Q7 Aehhh? Who is Stokes? Q8 What is that? Rayleigh scattering Virtual states Vibrational states

19 Remember PChem364 quantum mechanics /1-5 intensity ν scat < ν Stokes lines ν ν scat > ν anti-stokes lines v = 1 v = v = 1 frequency vibrations & rotations pure rotations vibrations & rotations Selection rule Vibrations: Polarizability must change with vibration. V = 1 Rotations: Polarizability must be anisotropic. J =, 2 Compare: R dipole moment must change (resonant adsorption / desorption Raman polarizability must change (scattering process 17

20 f really want to take Raman spectra What Raman should purchase? UV, visible, NR monochromator Notch filter CCD detector Raman & microscope Practical aspects Sample preparation Sample container Calibration Spectrometer test Etc. nterferometer vs. dispersive Raman The basics E. Smith, G. Dent, Modern Raman Spectroscopy, A practical approach, Wiley, SBN

21 f really want to take Raman spectra Dispersive Raman Microscope Raman LASER 532 nm ecitation laser CCD detector sample diffraction gratings mirror LASER 532 nm ecitation laser CCD Fourier transform Raman microscope diffraction gratings LASER 1 μm ecitation laser sample sample beam splitter mirror R detector moveable mirror 21 interferometer

22 22 A few more details.. getting more intensity Virtual states phonon phonon phonon phonon ecitation Deecitation / e- recombination Electronic ecitation Non-resonant Resonant Double resonant 1-times greater intensity Raman from single layer graphene 1 st order 2 nd order

23 Kramer Heisenberg Dirac Epression eplains intensity enhancement of resonant Raman ( α ρσ GF = F r ρ rσ G k ( +... ω ω iγ G L At resonance ω G = ω GF ω L F rρ rσ G ( α ρσ GF k ( +... iγ large 2 4 Pα ω large 23

24 24 Some less commonly used versions Possible processes: one photon emission, two photon emission, one photon & 2 phonon scattering, etc.. Multi photon Raman (nonelinear spectroscopy: P α 2 ω 4 ntensity of Raman signal LASER power SERS Surface enhance Raman scattering SERRS Surface enhanced resonance Raman scattering CARS coherent anti-stokes Raman scattering Hyper Raman

25 Object prepare molecules in ecited vibrational levels (for subsequent eperiments by inducing transition with E = E 1 E (from v = to 1 Eample E: E = H 2 (v=, j= 1 E 1 = H 2 (v= 1, j= 1 How Two LASER frequencies needed 1 A pump laser pulse ω P 2 Stokes laser pulse ω S Condition needed: (ω P ω S = E 1 E = E Practical efficacy apparently 35%

26 Virtual states ω S ω S ω P Stokes Raman scattering ω P Stokes Raman scattering Vibrational states ecitation ecitation E = E 1 E Spontaneous Raman scattering SRS Stimulated Raman scattering

27

28 How to apply to carbon nanotubes? 26 Nanotube Modeler

29 of carbon nanotubes RBM mode Radial Breathing Mode (RBM: C atoms vibrate in radial direction (in/out of the tube. Frequency depends on CNT diameter (12-35/cm. ω = + RBM d 12.5 G - mode G + mode G +/- -Band: G + mode: C atoms vibrate along the tube ais ~159/cm G - mode: C atoms vibrate along the circumferential direction ~157/cm Different for metallic and semiconducting CNTs. 27 See for eample: R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon nanotubes mperial College Press, 25

30 Eample - of carbon nanotubes SEM cm -1 Raman spectrum of metallic CNTs RBM Raman ntensity Wavenumber (cm -1 G combination bands 1 µm D D Wavenumber (cm -1 RBM: breathing mode D: defects (vacancies, impurities, etc. G: along tube ais and circumference Figures reproduced with permission of Ya-Ping Sun (Clemson University 28 For details, see: Possible effect of carbon nanotube crystal structure on gas-surface interactions the case of benzene, water, and n-pentane adsorption on SWCNTs at ultra-high vacuum conditions by M Komarneni,, A. Sand, J. Goering, U. Burghaus, M. Lu, L. Monica Veca, Ya-Ping Sun, Chem. Phys. Lett. 29

31 What about graphene? 1-LG: one layer graphene M-LG: multi layer graphene, HOPG 29

32 Eample - of graphene intensity (a.u. intensity (a.u graphene/silica G' or 2D G D wavenumber (cm -1 Grapphene/Cu G D G' or 2D wavenumber (cm -1 G-band ~1582/cm C-C stretch Position depends on graphene thickness Longitudinal optical phonon mode First order D-band ~135/cm (for ev ecitation Disorder band ntensity ~ defect density Defect induced double resonant Raman Double resonance 2D-band, G, ~2685/cm (for ev ecitation Overtone of D band Shape depends on layer thickness ndependent of defects Depends on ecitation energy Double resonance No RBM mode for graphene. All features are resonant Raman. 3 Spectra reproduced with permission of A Chakradhar, U. Burghaus (NDSU

33 More Eamples - of graphene intensity (a.u. 1 5 graphene/silica G G' or 2D pristine Graphene/silica intensity (a.u. Standard silicon bare silica support D D wavenumber (cm -1 Sample 9-Graphene/Silica wavenumber (cm -1 intensity (a.u. G G' or 2D Damaged Graphene/silica Sample No 13 HOPG wavenumber (cm -1 intensity (a.u. G Sample 12- graphene/silica intensity (a.u. D G' or 2D Damaged Graphene/silica wavenumber (cm wavenumber (cm -1 3 Spectra reproduced with permission of Nilushni Sivapragasam, N.M.K.M. Tilan Abey, U. Burghaus (NDSU

34 More Eamples - of graphene intensity (a.u. Blank Copper-Sample 5 Copper wavenumber (cm -1 Sample 6(2 graphene/cu Sample 6(2 graphene/cu (bc ntensity (arb.units Raw data Graphene/Copper ntensity (arb.units Corrected data Graphene/Copper Raman shift (cm Raman shift (cm -1 Sample 6(4 graphene/cu Sample 6(4 graphene/cu bc ntensity (arb.units Raw data Graphene/Copper intensity (a.u. Corrected data Graphene/Copper % (Raman shift (cm wavenumber (cm -1 3 Spectra reproduced with permission of Nilushni Sivapragasam, N.M.K.M. Tilan Abey, U. Burghaus (NDSU

35 Defects in nanocarbon can be detected by Disorder: stacking disorder Atomic defects D-to-G intensity is a disorder parameter Figure on the right: Reprinted with permission from (Mildred S. Dresselhaus, Ado Jorio, Mario Hofmann, Gene Dresselhaus, and Riichiro Saito, Nano Lett. 21, 1, Copyright (21 American Chemical Society. 32

36 nternet resources Very detailed roscopy_basics.pdf

37 Homework 1 n one sentence: what is? 2 What are the advantages of which made it recently a so popular technique? 36

Raman spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Raman spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA , 2017 Uwe Burghaus, Fargo, ND, USA HCl/DCl IR data from NDSU Pchem lab class 2008 IR spectroscopy rotations & vibrations Vibration-rotation EXAMPLE HCl/DCl 90 80 inensity (a.u.) 70 P branch R branch 1

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... microwave

More information

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Vibrational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Vibrational spectroscopy, 017 Uwe Burghaus, Fargo, ND, USA CHEM761 Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states... by microwave

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

Material Analysis. What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample?

Material Analysis. What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample? Material Analysis What do you want to know about your sample? How do you intend to do for obtaining the desired information from your sample? Why can you acquire the proper information? Symmetrical stretching

More information

RAMAN-SPEKTROSZKÓPIA SZÉN NANOSZERKEZETEKBEN

RAMAN-SPEKTROSZKÓPIA SZÉN NANOSZERKEZETEKBEN RAMAN-SPEKTROSZKÓPIA SZÉN NANOSZERKEZETEKBEN GRAFÉN TÉLI ISKOLA 2011. február 3. Kürti Jenő ELTE Biológiai Fizika Tanszék e-mail: kurti@virag.elte.hu www: virag.elte.hu/~kurti VÁZLAT Bevezetés a Raman-spektroszkópiáról

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses A few Experimental methods for optical spectroscopy Classical methods Modern methods Shorter class Remember class #1 Generating fast LASER pulses, 2017 Uwe Burghaus, Fargo, ND, USA W. Demtröder, Laser

More information

From micro to nano - fundamentals and recent developments of Raman spectroscopy

From micro to nano - fundamentals and recent developments of Raman spectroscopy From micro to nano - fundamentals and recent developments of Raman spectroscopy Dr. Matthias Krause, Nanocomposite materials group, Helmholtz-Zentrum Dresden-Rossendorf, Germany Introduction into Raman

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Atomic spectroscopy (part I), 2017 Uwe Burghaus, Fargo, ND, USA

Atomic spectroscopy (part I), 2017 Uwe Burghaus, Fargo, ND, USA Atomic spectroscopy (part I), 2017 Uwe Burghaus, Fargo, ND, USA Last class: group theory Symmetry operations σ reflections C rotations S rotation-reflections I inversion E identity Spectra of Atoms and

More information

SWOrRD. For direct detection of specific materials in a complex environment

SWOrRD. For direct detection of specific materials in a complex environment SWOrRD For direct detection of specific materials in a complex environment SWOrRD Swept Wavelength Optical resonant Raman Detector RAMAN EFFECT Raman scattering or the Raman effect ( /rɑːmən/) is the inelastic

More information

Rotational Raman Spectroscopy

Rotational Raman Spectroscopy Rotational Raman Spectroscopy If EM radiation falls upon an atom or molecule, it may be absorbed if the energy of the radiation corresponds to the separation of two energy levels of the atoms or molecules.

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA Rotational spectroscopy, 2017 Uwe Burghaus, Fargo, ND, USA Atomic spectroscopy (part I) Absorption spectroscopy Bohr model QM of H atom (review) Atomic spectroscopy (part II) Visualization of wave functions

More information

Spectroscopy and the structure of matter 3. Raman spectroscopy

Spectroscopy and the structure of matter 3. Raman spectroscopy Spectroscopy and the structure of matter 3. Raman spectroscopy Kamarás Katalin MTA Wigner FK kamaras.katalin@wigner.mta.hu Optical spectroscopy in materials science 3. 1 Raman scattering: history C.V.

More information

Study of Phase Transitions by Means of Raman Scattering

Study of Phase Transitions by Means of Raman Scattering Study of Phase Transitions by Means of Raman Scattering M. Mahbubur Rahman Department of Physics & Physical Oceanography Memorial University, Canada Outlines Introduction Advantages of Raman spectroscopy?

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

A56. Raman Spektroscopy. Jan Publisher: Institute of Physical Chemistry

A56. Raman Spektroscopy. Jan Publisher: Institute of Physical Chemistry Physikalische-Chemisches Praktikum für Anfänger A56 Raman Spektroscopy Jan. 2017 Publisher: Institute of Physical Chemistry 1 Objectives 1. Take the Raman spectra of CO 2 (s), CS 2 (l), C 6 H 6 (l) and

More information

12 Carbon Nanotubes - script

12 Carbon Nanotubes - script 12 Carbon Nanotubes - script Carola Meyer Peter Günberg Insitute (PGI-6), and JARA-FIT Jülich Aachen Research Alliance - Future Information Technology Research Center Jülich, 52425 Jülich, Germany 12.2

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY MAX DIEM Department of Chemistry City University of New York Hunter College A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane

More information

Figure 1. APPLICATION NOTE

Figure 1. APPLICATION NOTE Low-Frequency Raman Spectra of Amino Acids Measured with an Astigmatism-Free Schmidt-Czerny-Turner Spectrograph: Discovery of a Second Fingerprint Region Abstract A novel astigmatism-free spectrograph

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Raman Spectroscopy: Basic Principles, Techniques, and One (of many) Applications

Raman Spectroscopy: Basic Principles, Techniques, and One (of many) Applications Raman Spectroscopy: Basic Principles, Techniques, and One (of many) Applications Yosun Chang March 2, 2004 1 Introduction Raman Spectroscopy, in its most general classification, is a form of vibrational

More information

PC Laboratory Raman Spectroscopy

PC Laboratory Raman Spectroscopy PC Laboratory Raman Spectroscopy Schedule: Week of September 5-9: Student presentations Week of September 19-23:Student experiments Learning goals: (1) Hands-on experience with setting up a spectrometer.

More information

A BRIEF OVERVIEW OF THE RAMAN SPECTRA OF GRAPHENE

A BRIEF OVERVIEW OF THE RAMAN SPECTRA OF GRAPHENE A BRIEF OVERVIEW OF THE RAMAN SPECTRA OF GRAPHENE Kesavan Manivannan Electrical and Electronics Engineering, Rajalakshmi Engineering College, Tamil Nadu, India ABSTRACT This paper is a review of the Raman

More information

Raman spectroscopy: Techniques and applications in the life sciences

Raman spectroscopy: Techniques and applications in the life sciences Review Article Advances in Optics and Photonics 1 Raman spectroscopy: Techniques and applications in the life sciences DUSTIN W. SHIPP 1,*,FARIS SINJAB 1,*, AND IOAN NOTINGHER 1,** 1 School of Physics

More information

Interaction between Single-walled Carbon Nanotubes and Water Molecules

Interaction between Single-walled Carbon Nanotubes and Water Molecules Workshop on Molecular Thermal Engineering Univ. of Tokyo 2013. 07. 05 Interaction between Single-walled Carbon Nanotubes and Water Molecules Shohei Chiashi Dept. of Mech. Eng., The Univ. of Tokyo, Japan

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Snowy Range Instruments

Snowy Range Instruments Snowy Range Instruments Cary 81 2000 W Hg Arc JY U-1000 5 W Ar + Laser DL Solution 852 200 mw SnRI CBEx 785 100 mw What is Raman Spectroscopy? Raman spectroscopy is a form of molecular spectroscopy. It

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Rotational Raman Spectra of Diatomic Molecules

Rotational Raman Spectra of Diatomic Molecules Rotational Raman Spectra of Diatomic Molecules Week of March 15, 2010 Modern Physics Laboratory (Physics 6180/7180) The University of Toledo Instructor: Randy Ellingson Chandrasekhra Venkata Raman 1888-1970

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Vibrational states of molecules. Diatomic molecules Polyatomic molecules Vibrational states of molecules Diatomic molecules Polyatomic molecules Diatomic molecules V v 1 v 0 Re Q Birge-Sponer plot The solution of the Schrödinger equation can be solved analytically for the

More information

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Photophysics of Nano Carbons Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Electronic Structure of Graphene Near the K point E ( ) v F linear relation where and and 0

More information

CHM 424 EXAM 4 CRIB - COVER PAGE FALL

CHM 424 EXAM 4 CRIB - COVER PAGE FALL CHM 44 EXAM 4 CRIB - COVER PAGE FALL 007 There are six numbered pages with five questions. Answer the questions on the exam. Exams done in ink are eligible for regrade, those done in pencil will not be

More information

Experiment AM3b: Raman scattering in transparent solids and liquids

Experiment AM3b: Raman scattering in transparent solids and liquids Physics 6180: Graduate Physics Laboratory Experiment AM3b: Raman scattering in transparent solids and liquids Objectives: To learn the essentials of inelastic light scattering, particularly Raman scattering

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

FMM, 15 th Feb Simon Zihlmann

FMM, 15 th Feb Simon Zihlmann FMM, 15 th Feb. 2013 Simon Zihlmann Outline Motivation Basics about graphene lattice and edges Introduction to Raman spectroscopy Scattering at the edge Polarization dependence Thermal rearrangement of

More information

Specialized Raman Techniques. Strictly speaking the radiation-induced dipole moment should be expressed as

Specialized Raman Techniques. Strictly speaking the radiation-induced dipole moment should be expressed as Nonlinear effects Specialized Raman Techniques Strictly speaking the radiation-induced dipole moment should be expressed as M = E + ½E 2 + (1/6)E 3 +... Where and are the first and second hyperpolarizabilities.

More information

Chem 452 Exam III April 8, Cover Sheet Closed Book, Closed Notes

Chem 452 Exam III April 8, Cover Sheet Closed Book, Closed Notes Last Name: First Name: PSU ID#: (last 4 digit) Chem 452 Exam III April 8, 2009 Cover Sheet Closed Book, Closed Notes There are 6 problems. The point value of each part of each problem is indicated. Useful

More information

Spectra of Atoms and Molecules, 3 rd Ed., Peter F. Bernath, Oxford University Press, chapter 5. Engel/Reid, chapter 18.3 / 18.4

Spectra of Atoms and Molecules, 3 rd Ed., Peter F. Bernath, Oxford University Press, chapter 5. Engel/Reid, chapter 18.3 / 18.4 Last class Today Atomic spectroscopy (part I) Absorption spectroscopy Bohr model QM of H atom (review) Atomic spectroscopy (part II)-skipped Visualization of wave functions Atomic spectroscopy (part III)

More information

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 A QUANTUM MECHANICAL VIEW OF THE BASICS OF N ONLINEAR OPTICS 46 In what follows we draw on

More information

Chirality and energy dependence of first and second order resonance Raman intensity

Chirality and energy dependence of first and second order resonance Raman intensity NT06: 7 th International Conference on the Science and Application of Nanotubes, June 18-23, 2006 Nagano, JAPAN Chirality and energy dependence of first and second order resonance Raman intensity R. Saito

More information

Wire%4%Training%Modules%Compilation%! The!following!modules!are!in!this!compilation:!! TM001!! Introduction!to!Raman!Spectroscopy! TM002!!

Wire%4%Training%Modules%Compilation%! The!following!modules!are!in!this!compilation:!! TM001!! Introduction!to!Raman!Spectroscopy! TM002!! Wire%4%Training%Modules%Compilation% Thefollowingmodulesareinthiscompilation: TM001 IntroductiontoRamanSpectroscopy TM002 IntroductiontoWiReandSystemstart?up TM003 Sampleviewingandconfigurationchange TM004

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Phonon populations and electrical power dissipation in carbon nanotube transistors Supplemental Information Mathias Steiner 1, Marcus Freitag 1, Vasili Perebeinos 1, James C.

More information

Chap 4 Optical Measurement

Chap 4 Optical Measurement Chap 4 Optical Measurement 4.1 Light Solid Interaction E-M Wave permittivity, permeability Refractive index, extinction coefficient propagation absorption Refraction Absorption Scattering, Rayleigh Scattering

More information

Chapter 1. Introduction. Concepts of Raman spectroscopy

Chapter 1. Introduction. Concepts of Raman spectroscopy Chapter 1. Introduction Concepts of Raman spectroscopy 11 1.1 Light scattering and the Raman effect Types of electromagnetic scattering When photons from a monochromatic light source such as a laser illuminate

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

Science Drivers. Spectroscopic Sensors. In Situ Sensors. Development of autonomous and remote platforms

Science Drivers. Spectroscopic Sensors. In Situ Sensors. Development of autonomous and remote platforms Science Drivers In Situ Sensors Spectroscopic Sensors Development of autonomous and remote platforms ROVs, AUVs Cabled observatories Desire to analyze targets with discrete stability regions in the deep

More information

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics J Moger and C P Winlove Relating Structure to Function Biochemistry Raman microspectrometry Surface enhanced Raman spectrometry (SERS)

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Raman: it s not just for noodles anymore

Raman: it s not just for noodles anymore Raman: it s not just for noodles anymore Mario Affatigato Physics Department Coe College Outline - Lecture 1 1. Introduction 2. Theory Role of polarizability; mathematical models Depolarization ratio Temperature

More information

BioMolecular Optical Spectroscopy:

BioMolecular Optical Spectroscopy: BioMolecular Optical Spectroscopy: Part 1: Infrared and Raman Vibrational Spectra Background Special Lectures for Chem 344 Fall, 2007 im Keiderling University of Illinois at Chicago tak@uic.edu Vibrational

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus Quantum Transport and Dynamics in Nanostructures The 4 th Windsor Summer School on Condensed Matter Theory 6-18 August 2007, Great Park Windsor (UK) Physics of Nanotubes, Graphite and Graphene Mildred

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Instrumentelle Analytik in den Geowissenschaften (PI)

Instrumentelle Analytik in den Geowissenschaften (PI) 280061 VU MA-ERD-2 Instrumentelle Analytik in den Geowissenschaften (PI) Handoutmaterial zum Vorlesungsteil Spektroskopie Bei Fragen bitte zu kontaktieren: Prof. Lutz Nasdala, Institut für Mineralogie

More information

Laser Detection Techniques

Laser Detection Techniques Laser Detection Techniques K.-H. Gericke Institute for Physical Chemistry University Braunschweig E 2 E 1 = hn, λ = c /n Lambert-Beer Law Transmittance of the sample:: T = I / I 0 T = e -snl = e -α, where

More information

Techniken der Oberflächenphysik

Techniken der Oberflächenphysik Techniken der Oberflächenphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik 18.01.2018 Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau

More information

Resonance Raman measurements utilizing a deep UV source

Resonance Raman measurements utilizing a deep UV source Resonance Raman measurements utilizing a deep UV source Adam Willitsford a, C. Todd Chadwick b, Hans Hallen b, and C. Russell Philbrick a a The Pennsylvania State University, Department of Electrical Engineering,

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

Low-Frequency Raman Spectra of Carbon Nanotubes Measured with an Astigmatism-Free Schmidt-Czerny-Turner Spectrograph

Low-Frequency Raman Spectra of Carbon Nanotubes Measured with an Astigmatism-Free Schmidt-Czerny-Turner Spectrograph Low-Frequency Raman Spectra of Carbon Nanotubes Measured with an Astigmatism-Free Schmidt-Czerny-Turner Spectrograph Abstract Traditional Czerny-Turner (CT) spectrographs suffer from the optical aberration

More information

Supporting Information: Theory of Graphene Raman Scattering

Supporting Information: Theory of Graphene Raman Scattering Supporting Information: Theory of Graphene Raman Scattering Eric J. Heller, 1,2 Yuan Yang, 2 Lucas Kocia, 2 Wei Chen, 1 Shiang Fang, 1 Mario Borunda, 3 Efthimios Kaxiras, 1 1 Department of Physics, Harvard

More information

χ (3) Microscopic Techniques

χ (3) Microscopic Techniques χ (3) Microscopic Techniques Quan Wang Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 Microscopic techniques that utilize the third order non-linearality (χ (3) ) of the

More information

Observation of Optical Phonon in Palladium Hydrides Using Raman Spectroscopy

Observation of Optical Phonon in Palladium Hydrides Using Raman Spectroscopy Tsuchiya, K., et al. Observation of Optical Phonon in Hydrogen Storage Pd Using Raman Spectroscopy. in ICCF- 14 International Conference on Condensed Matter Nuclear Science. 2008. Washington, DC. Observation

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

Mossbauer Spectroscopy

Mossbauer Spectroscopy Mossbauer Spectroscopy Emily P. Wang MIT Department of Physics The ultra-high resolution ( E = E 10 12 ) method of Mossbauer spectroscopy was used to probe various nuclear effects. The Zeeman splittings

More information

Laser Raman Spectroscopy: Vibrational Spectrum of CCl 4

Laser Raman Spectroscopy: Vibrational Spectrum of CCl 4 PHYSICS 360/460 MODERN PHYSICS LABORATORY EXPERIMENT #22 Laser Raman Spectroscopy: Vibrational Spectrum of C 4 Introduction Determine the vibrational frequencies of carbon tetrachloride using inelastic

More information

Session #1: Theoretical background and computer simulations of molecular vibrations.

Session #1: Theoretical background and computer simulations of molecular vibrations. Raman Spectroscopy Session #1: Theoretical background and computer simulations of molecular vibrations. Goals: Understand the origin of the Raman effect. Understand the vibrational normal modes of molecules.

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Exciton Photophysics of Carbon Nanotubes

Exciton Photophysics of Carbon Nanotubes Annu. Rev. Phys. Chem. 27.58:719-747. Downloaded from arjournals.annualreviews.org Annu. Rev. Phys. Chem. 27. 58:719 47 First published online as a Review in Advance on January 2, 27 The Annual Review

More information

Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule

Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule Physical chemistry advanced laboratory course Raman spectroscopy of the CCl 4 molecule Tiina Kiviniemi April 11, 2008 1 Introduction The object of this excercise is to familiarize you with the basics and

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information