Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Size: px
Start display at page:

Download "Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder."

Transcription

1 PASSBAND DIGITAL MODULATION TECHNIQUES Consder the followng passband dgtal communcaton system model. cos( ω + φ ) c t message source m sgnal encoder s modulator s () t communcaton xt () channel t r a n s m t t e r xt () detector X sgnal decoder m ˆ recever Passband dgtal communcaton system

2 Assumptons about the channel:. The channel s lnear wth bandwdth wde enough to accommodate the transmsson bandwdth of s(t) to mnmze sgnal dstorton at the recever. N. The channel nose s of the AWGN type wth p.s.d. SW ( f) =, f. Although there s a wde varety of modulaton schemes, we shall manly be concerned wth Ampltude-Shft Keyng (ASK), Phase-Shft Keyng (PSK), Frequency-Shft Keyng (FSK), and ther varants. In the followng fgure, bnary OOK s a form of ASK where the absence of sgnal means the transmsson of a logcal.

3 Passband dgtal modulaton examples

4 At the recever end, we shall consder both coherent and noncoherent detectors. The former type needs to know both carrer frequency and phase nformaton of the modulated waveform s(t), n order to demodulate the message sgnal. The latter type does not need to know the exact carrer frequency and phase values to demodulate the sgnal. The penalty pad by the noncoherent detector s that ts performance s nferor than that of the coherent detector. Bandwdth Effcency Consder M-ary sgnalng, wth M = n. If we transmt blocks of n bts, then the symbol duraton s Ts = ntb and the requred bandwdth s proportonal to /( ntb). Ths mples that transmsson bandwdth can be reduced by the factor n. Def. Bandwdth effcency s the rato of the data rate n bts/s to the effectvely utlzed bandwdth. R B Example: ρ for BPSK, QPSK, 6-QAM, FSK, MSK s,, 4, <,.35, respectvely. b Let Rb be the bt rate and B be the effectve channel bandwdth, then ρ = [ bts / s / Hz ] 3

5 PULSE AMPLITUDE MODULATION (PAM) AWGN Channel: Consder the followng PAM communcaton system wth coherent demodulaton { b } n s () pb t T s { r m} Map Σ ( ) dt PAM o Decson { s ˆ } cos c T s ( ω t + θ) Wt () cos c T s ( ω t + θ) where {b m } s a stream of bnary symbols, s () t s the band pass PAM transmtted N sgnal, Wt () s WGN wth power spectral densty SW ( f) =, f, {r m } s a sequence of observed samples, and { s ˆ } s a sequence of estmated symbols. pb 4

6 Let s,,, M, be a PAM symbol that can take on M possble values, wth M an arbtrary postve nteger. Then the modulated waveform s descrbed by s () t = s cos t+ = s (), t () t = cos t+, ( ω θ) φ φ ( ω θ) pb c c Ts Ts where s s the baseband sgnal (symbol) that takes on the values ( ) M d s =, =,, M wth d the ntra-symbol dstance. Let M be an even postve nteger. Consder the followng sgnal constellaton for the PAM modulator 5

7 After down converson, the detector s descrbed by an M-level mdrse quantzer. The decson varable at the output of the detector s descrbed by r = s + W, m N where W G, mples fw ( w) e π N N = and w fr ( ) m s r m s e π N ( r s ) m N =. The quantzer recever s equvalent to the mnmum dstance recever when the ML decson crteron s appled. Therefore, for the nner ponts ( =,, M ), the probablty of a correct decson (cd) gven that s was transmtted s gven by d s + ( r ) m s N = R s m m= m R d π N s { } ( ) m P cd s f r s dr e dr d d N N u = u u e du e du e du π = + d π d N N d = Q, =,, M. N 6

8 Where t has been assumed that all symbols occur wth equal probablty,.e., P{ S} =, =,, M (the decson regons boundares are equdstant for the M- M nnermost constellaton ponts). For = : d s + d N r s N u d ( ) m P{ cd s } = fr ( ). m s rm s drm = e drm = e du Q πn = π N R Lkewse, for = M, d P{ cd sm } = P{ cd s} = Q. N Let P P{ cd}, then usng the total probablty theorem, we get cd M M M P = P cd, s = P cd s P S = P cd s. { } { } { } { } cd = = M = 7

9 The probablty of a correct decson s then gven by M { } { } P = P cd S P S cd = { } { } { } { } = P cd S P S + P cd S P S M = M d d = Q P{ S} + Q P{ S}. N = N Rewrtng the last equaton, we get M M d Pcd = P{ S} + P{ S} P{ S} P{ S} + Q. = = N 8

10 M d d Pcd = P{ S} + P{ S} P{ S} Q = Q. = N M N The symbol error probablty s therefore d M d Pse = Pcd = Q Q, M = N M N Now, let s compute the average symbol energy Es. M M M ( ) M d E = E S = s P S = s P S = d P S = M M { } { } { } { } ( ) s = = = 4 M = M Let K ( M), then ( ) M K = ( M + ) M M + + = 3, d M E symbol error probablty can be rewrtten as P = Q. se s M KN s = E and the K 9

11 For M = 6, K = 4.5 and 5 4E b E b Pse = Q.875Q.94 8 =. 4.5N N - - Symbol error probablty E b /N n db

12 QUADRATURE AMPLITUDE MODULATION (QAM) AWGN Channel: In quadrature ampltude modulaton both ampltude and phase are modulated. Hence, the resultng waveform wll have both an n-phase and a quadrature component. As before, ncreasng the dstance between constellaton ponts wll mprove system performance at the expense of hgher average transmtted power. Let the passband transmtted sgnal be descrbed by j( ωct+ θc) {( ) } ( ω θ ) ( ω θ ) s ( t) =R e a + jb e = a cos t + b sn t +, nt t ( n + ) T Pb c c c c s s where a and b are the n-phase and quadrature components, respectvely, of the th symbol, =,,M. An 8-QAM sgnal constellaton s shown n the next fgure.,

13 8-QAM sgnal constellaton

14 A sample 8-QAM waveform s shown next. It s clear from the fgure that the QAM modulated waveform does not have constant envelope. Hence, the transmtter needs to use a hghly lnear power amplfer and the recever needs an automatc gan control crcut to compensate for the ampltude varatons due to channel mperfectons. Unmodulated carrer and 8-QAM modulated sgnals 3

15 A 64-QAM sgnal constellaton s shown below. 64-QAM sgnal constellaton 4

16 Let the complex equvalent baseband transmtted sgnal be descrbed by ( ) s () t = a + jb, nt t n + T. bb s s Then, the complex equvalent baseband sgnal seen at the nput of the recever decson devce (after bandpass flterng and down converson) s descrbed by r () t = a + jb + n (), t ( ) = a + ni() t + j b + nq() t, nts t n + Ts. Performance wll depend on the type (shape) of constellaton that s used at the transmtter and on the detecton scheme used at the recever. Regardless of the constellaton shape, f the detector selects symbol sj when the observed measurement rt () les on regon R j of the observaton space (equvalent to mnmum Eucldean dstance detecton), then the system performance can be obtaned as follows: 5

17 Suppose that at the n th observaton nterval rt () falls on decson regon R. Then the probablty of a correct decson s descrbed by (gven that symbol s was transmtted) { = } = ( = ) P cd S s f r, r S s drdr, where R { } { } r R e r() t = a + n ( nt ) I s r Im r( t) = b + n ( nt ). Q s Let r r r and n ni ni( nts) n Q nq( nts) Wth E{ ni} = E{ nq} =, E{ ni } = E{ nq } = N and E{ nn I Q} =. Defne { } { } j j P cd S = s P r s r s S = s, j ;, j =,, M as the probablty that the observed vector r s closer to constellaton pont s than to s j, gven that symbol s was transmtted. 6

18 Conversely, defne the probablty of an ncorrect decson (d), gven that symbol s was transmtted as { } { } j j P d s P r s > r s s, j ;, j =,, M But, when symbol s s transmtted, r s = n = ni + nq and r s = ( a a ) + ( b b ) + ( a a ) n + ( b b ) n + n + n j j j j I j Q I Q Hence, { r s } > r sj s mples ( ) ( ) ( ) ( ) ni + nq > a aj + b bj + a aj ni b bj n + Q + ni + nq or ( aj a) ni + ( bj b) nq > ( a aj) + ( b bj) = ( aj a) + ( bj b). The left hand sde of the last equaton s a lnear combnaton of zero-mean Gaussan random varables. 7

19 Let ν j ( aj a ) ni + ( bj b ) nq and C j ( aj a ) + ( bj b ) ν (, σ ) j G ν j, where the varance ( ) ( ) σν = j j + j a a b b N = C N. j then σ ν j s gven by Hence, σ P{ d s } = P{ ν > C } = e dv j πσ and j j j ν C { } j j v j ( aj a) ( bj b) C j C + j = Q = Q = Q σ ν N 4N j P error s, j ;, j =,..., M j M { } { } P error s P error s, =,, M. j j= j j ν 8

20 Fnally, an upper bound of the average symbol error rate for QAM s gven by M M M C P = P error s P S Q P S j { } { } { } se = = j= σ ν j j Note that ths last equaton s an upper bound of the symbol error probablty when the decson metrc s the mnmum Eucldean dstance and the probablty of symbol transmsson s arbtrary. Also, M can be an arbtrary odd or even postve nteger. 9

21 Consder now a rectangular 6-QAM sgnal constellaton. Let the dstance to the nearest neghbor be d = a. Then the constellaton dagram s shown n the next fgure. 6-QAM rectangular constellaton

22 Suppose all 6 symbols are transmtted wth equal probablty,.e. { } P m =, =,,,6, then the average transmtted energy per symbol can be 6 computed as follows: E = E P{ m} 6 s, av =, where E = d s the energy assocated wth the th symbol and d s the dstance from the orgn to the th pont on the constellaton. From the fgure we can see that the 4 nnermost ponts have the same dstance d, the outer 8 rectangle ponts along the φ and φ axes have dstance d, and the outer 4 corner ponts have dstance d 3, where d a a a = ( ) + =, and ( ) ( ) d 3a a a = + =, d3 = 3a + 3a = 8a. The average transmtted energy per symbol s therefore Es, av = 4 ( a ) + 8 ( a ) + 4 ( 8a ) a a a a. = + + = 6

23 The nearest neghbor ntra-symbol dstance s d = a. Hence, Es, av.5 =. = d and d E, 5 s av System performance n AWGN can now be assessed. Assumng equal probablty of symbol transmsson, we can use the maxmum lkelhood detecton approach (mnmzaton of dstance). In ths case, the decson regon for one of the nner ponts (symbols) s shown n the next fgure. Decson regon for symbol m when all symbols occur wth equal probablty.

24 The probablty of a correct decson, gven that ths symbol was transmtted s descrbed by { correct decson gven } X( ) P m f x m dx dx = Let P c be the average probablty of a correct decson. Then 6 6 R { choose sent} { choose sent } { sent}. P = P m m = P m m P m c = = sent =,, then Pc = P choose m m sent = P X R m sent 6 6 If P{ m } { } { }. = = But, P{ X R m sent} P{ X R m sent} =. Therefore, 6 6 P = P X R m = P X R m ( { sent} ) { sent}. c 6 = 6 = 3

25 Let P e be the average probablty of symbol error (SER), then 6 SER = P = P{ symbol error} = P = P{ X R m sent}. e c 6 = For a suffcently hgh SNR, an error wll occur f m s confused wth one of ts nearest neghbors. Let R j be the decson regon of one of the nearest neghbors of symbol m. Then, for the 4 nnermost ponts of the constellaton (symbols) j =,, 3, 4; for the 8 edge ponts (excludng the corner ponts) j =,, 3; and for the 4 corner ponts j =,. 4

26 Consder now the 4 nnermost ponts. Then usng the unon bound, we get 4 4 P{ X R m sent } P X Rj m sent P{ X Rj m sent} j=. j= For the 8 edge ponts, 3 3 P{ X R m sent } P X Rj m sent P{ X Rj m sent} j=. j= For the 4 corner ponts, P{ X R m sent } P X Rj m sent P{ X Rj m sent} j=. j= In concluson, for any pont on the 6-QAM constellaton, a loose upper bound for the symbol error rate (SER) for hgh SNR s gven by 4 { sent } { j sent} P X R m P X R m. j= 5

27 Assumng Grey encodng of the QAM symbols, P{ X Rj m sent} s the same as the par-wse bt error probablty,.e. d d P{ X Rj m sent } = P X > = P X <, =, E d s, av 5 E s, av 4E b, av =Q = Q = Q = Q. N N 5N 5N and 4 4E b, av 4E b, av P{ X R m sent} Q = 4Q. j= 5N 5N Fnally, the average symbol error probablty (SER) s upper bounded by 4E 4E SER = Pe Q = Q b, av b, av 4 4. j= N N 6

28 In general, for M = k and a rectangular sgnal constellaton wth symbols transmtted wth equal probablty and Grey encodng, d SER = Pe 4 Q, N where d s the s the nearest neghbor ntra-symbol dstance, whch can be expressed n terms of the average symbol energy Es, whch must be computed for every specfc sgnal constellaton. Other tghter upper bounds can be found n the lterature. The followng fgure shows the SER performance of 6 QAM that uses a rectangular constellaton that has the same ntra-symbol dstance d. 7

29 - - SER SNR n db 6- QAM SER performance n AWGN 8

Differential Phase Shift Keying (DPSK)

Differential Phase Shift Keying (DPSK) Dfferental Phase Shft Keyng (DPSK) BPSK need to synchronze the carrer. DPSK no such need. Key dea: transmt the dfference between adjacent messages, not messages themselves. Implementaton: b = b m m = 1

More information

Assuming that the transmission delay is negligible, we have

Assuming that the transmission delay is negligible, we have Baseband Transmsson of Bnary Sgnals Let g(t), =,, be a sgnal transmtted over an AWG channel. Consder the followng recever g (t) + + Σ x(t) LTI flter h(t) y(t) t = nt y(nt) threshold comparator Decson ˆ

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Signal space Review on vector space Linear independence Metric space and norm Inner product

Signal space Review on vector space Linear independence Metric space and norm Inner product Sgnal space.... Revew on vector space.... Lnear ndependence... 3.3 Metrc space and norm... 4.4 Inner product... 5.5 Orthonormal bass... 7.6 Waveform communcaton system... 9.7 Some examples... 6 Sgnal space

More information

Digital Modems. Lecture 2

Digital Modems. Lecture 2 Dgtal Modems Lecture Revew We have shown that both Bayes and eyman/pearson crtera are based on the Lkelhood Rato Test (LRT) Λ ( r ) < > η Λ r s called observaton transformaton or suffcent statstc The crtera

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

TLCOM 612 Advanced Telecommunications Engineering II

TLCOM 612 Advanced Telecommunications Engineering II TLCOM 62 Advanced Telecommuncatons Engneerng II Wnter 2 Outlne Presentatons The moble rado sgnal envronment Combned fadng effects and nose Delay spread and Coherence bandwdth Doppler Shft Fast vs. Slow

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations

Application of Nonbinary LDPC Codes for Communication over Fading Channels Using Higher Order Modulations Applcaton of Nonbnary LDPC Codes for Communcaton over Fadng Channels Usng Hgher Order Modulatons Rong-Hu Peng and Rong-Rong Chen Department of Electrcal and Computer Engneerng Unversty of Utah Ths work

More information

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System

Performing Modulation Scheme of Chaos Shift Keying with Hyperchaotic Chen System 6 th Internatonal Advanced echnologes Symposum (IAS 11), 16-18 May 011, Elazığ, urkey Performng Modulaton Scheme of Chaos Shft Keyng wth Hyperchaotc Chen System H. Oğraş 1, M. ürk 1 Unversty of Batman,

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

EGR 544 Communication Theory

EGR 544 Communication Theory EGR 544 Communcaton Theory. Informaton Sources Z. Alyazcoglu Electrcal and Computer Engneerng Department Cal Poly Pomona Introducton Informaton Source x n Informaton sources Analog sources Dscrete sources

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Low Complexity Soft-Input Soft-Output Hamming Decoder

Low Complexity Soft-Input Soft-Output Hamming Decoder Low Complexty Soft-Input Soft-Output Hammng Der Benjamn Müller, Martn Holters, Udo Zölzer Helmut Schmdt Unversty Unversty of the Federal Armed Forces Department of Sgnal Processng and Communcatons Holstenhofweg

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3. ECE 6440 Summer 003 Page 1 Homework Assgnment No. 7 s Problem 1 (10 ponts) A fourstage rng oscllator used as the VCO n a PLL s shown. Assume that M1 and M are matched and M3 and M4 are matched. Also assume

More information

Chapter 8 SCALAR QUANTIZATION

Chapter 8 SCALAR QUANTIZATION Outlne Chapter 8 SCALAR QUANTIZATION Yeuan-Kuen Lee [ CU, CSIE ] 8.1 Overvew 8. Introducton 8.4 Unform Quantzer 8.5 Adaptve Quantzaton 8.6 Nonunform Quantzaton 8.7 Entropy-Coded Quantzaton Ch 8 Scalar

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

OFDM is a good candidate for wireless multimedia communication

OFDM is a good candidate for wireless multimedia communication Detecton of OFDM-CPM Sgnals over Multpath Channels Imran A. Tasadduq and Raveendra K. Rao Department of Electrcal & Computer Engneerng Elborn College, 11 Western Road The Unversty of Western Ontaro London,

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communcaton Scences Handout 0 Prncples of Dgtal Communcatons Solutons to Problem Set 4 Mar. 6, 08 Soluton. If H = 0, we have Y = Z Z = Y

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

X b s t w t t dt b E ( ) t dt

X b s t w t t dt b E ( ) t dt Consider the following correlator receiver architecture: T dt X si () t S xt () * () t Wt () T dt X Suppose s (t) is sent, then * () t t T T T X s t w t t dt E t t dt w t dt E W t t T T T X s t w t t dt

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Monte Carlo Simulation and Generation of Random Numbers

Monte Carlo Simulation and Generation of Random Numbers S-7.333 Postgraduate Course n Radocommuncatons Sprng 000 Monte Carlo Smulaton and Generaton of Random umbers Dmtr Foursov Dmtr.Foursov@noka.com Contents. Introducton. Prncple of Monte Carlo Smulaton 3.

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

Power Allocation for Distributed BLUE Estimation with Full and Limited Feedback of CSI

Power Allocation for Distributed BLUE Estimation with Full and Limited Feedback of CSI Power Allocaton for Dstrbuted BLUE Estmaton wth Full and Lmted Feedback of CSI Mohammad Fanae, Matthew C. Valent, and Natala A. Schmd Lane Department of Computer Scence and Electrcal Engneerng West Vrgna

More information

a. (All your answers should be in the letter!

a. (All your answers should be in the letter! Econ 301 Blkent Unversty Taskn Econometrcs Department of Economcs Md Term Exam I November 8, 015 Name For each hypothess testng n the exam complete the followng steps: Indcate the test statstc, ts crtcal

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

An Application of Fuzzy Hypotheses Testing in Radar Detection

An Application of Fuzzy Hypotheses Testing in Radar Detection Proceedngs of the th WSES Internatonal Conference on FUZZY SYSEMS n pplcaton of Fuy Hypotheses estng n Radar Detecton.K.ELSHERIF, F.M.BBDY, G.M.BDELHMID Department of Mathematcs Mltary echncal Collage

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

State Amplification and State Masking for the Binary Energy Harvesting Channel

State Amplification and State Masking for the Binary Energy Harvesting Channel State Amplfcaton and State Maskng for the Bnary Energy Harvestng Channel Kaya Tutuncuoglu, Omur Ozel 2, Ayln Yener, and Sennur Ulukus 2 Department of Electrcal Engneerng, The Pennsylvana State Unversty,

More information

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI 2017 2nd Internatonal Conference on Electrcal and Electroncs: echnques and Applcatons (EEA 2017) ISBN: 978-1-60595-416-5 Study on Actve Mcro-vbraton Isolaton System wth Lnear Motor Actuator Gong-yu PAN,

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

ECE 6602 Assignment 6 Solutions for Spring 2003

ECE 6602 Assignment 6 Solutions for Spring 2003 ECE 660 Assgnment 6 Solutons for Sprng 003 1. Wrte a matlab ode to do the modulaton and demodulaton for a bnary FSK usng a) oherent detetor and b) a nonoherent detetor. Modfy the programs that are posted

More information

S Advanced Digital Communication (4 cr) Targets today

S Advanced Digital Communication (4 cr) Targets today S.72-3320 Advanced Dtal Communcaton (4 cr) Convolutonal Codes Tarets today Why to apply convolutonal codn? Defnn convolutonal codes Practcal encodn crcuts Defnn qualty of convolutonal codes Decodn prncples

More information

Asymptotic Quantization: A Method for Determining Zador s Constant

Asymptotic Quantization: A Method for Determining Zador s Constant Asymptotc Quantzaton: A Method for Determnng Zador s Constant Joyce Shh Because of the fnte capacty of modern communcaton systems better methods of encodng data are requred. Quantzaton refers to the methods

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

FAST CONVERGENCE ADAPTIVE MMSE RECEIVER FOR ASYNCHRONOUS DS-CDMA SYSTEMS

FAST CONVERGENCE ADAPTIVE MMSE RECEIVER FOR ASYNCHRONOUS DS-CDMA SYSTEMS Électronque et transmsson de l nformaton FAST CONVERGENCE ADAPTIVE MMSE RECEIVER FOR ASYNCHRONOUS DS-CDMA SYSTEMS CĂLIN VLĂDEANU, CONSTANTIN PALEOLOGU 1 Key words: DS-CDMA, MMSE adaptve recever, Least

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

DESIGN AND ANALYSIS OF WIRELESS DIVERSITY SYSTEMS

DESIGN AND ANALYSIS OF WIRELESS DIVERSITY SYSTEMS DESIGN AND ANALYSIS OF WIRELESS DIVERSITY SYSTEMS ZHANG SONGHUA NATIONAL UNIVERSITY OF SINGAPORE 4 DESIGN AND ANALYSIS OF WIRELESS DIVERSITY SYSTEMS ZHANG SONGHUA (B. Eng., Huazhong Unversty of Scence

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas

Rethinking MIMO for Wireless Networks: Linear Throughput Increases with Multiple Receive Antennas Retnng MIMO for Wreless etwors: Lnear Trougput Increases wt Multple Receve Antennas ar Jndal Unversty of Mnnesota Unverstat Pompeu Fabra Jont wor wt Jeff Andrews & Steven Weber MIMO n Pont-to-Pont Cannels

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION

Sampling Theory MODULE V LECTURE - 17 RATIO AND PRODUCT METHODS OF ESTIMATION Samplng Theory MODULE V LECTURE - 7 RATIO AND PRODUCT METHODS OF ESTIMATION DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOG KANPUR Propertes of separate rato estmator:

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Memory ecient adaptation of vector quantizers to time-varying channels

Memory ecient adaptation of vector quantizers to time-varying channels Sgnal Processng 83 (3) 59 58 www.elsever.com/locate/sgpro Memory ecent adaptaton of vector quantzers to tme-varyng channels orbert Gortz a;,jorg Klewer b a Insttute for Communcatons Engneerng (LT), Munch

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

be a second-order and mean-value-zero vector-valued process, i.e., for t E

be a second-order and mean-value-zero vector-valued process, i.e., for t E CONFERENCE REPORT 617 DSCUSSON OF TWO PROCEDURES FOR EXPANDNG A VECTOR-VALUED STOCHASTC PROCESS N AN ORTHONORMAL WAY by R. GUTkRREZ and M. J. VALDERRAMA 1. ntroducton Snce K. Karhunen [l] and M. Lo&e [2]

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

THROUGHPUT OPTIMIZATION FOR WIRELESS DATA TRANSMISSION THESIS. Submitted in Partial Fulfillment. of the REQUIREMENTS for the.

THROUGHPUT OPTIMIZATION FOR WIRELESS DATA TRANSMISSION THESIS. Submitted in Partial Fulfillment. of the REQUIREMENTS for the. THROUGHPUT OPTIMIZATION FOR WIRELESS DATA TRANSMISSION THESIS Submtted n Partal Fulfllment of the REQUIREMENTS for the Degree of MASTER OF SCIENCE (Telecommuncatons Networks) at the POLYTECHNIC UNIVERSITY

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Problem Set 6: Trees Spring 2018

Problem Set 6: Trees Spring 2018 Problem Set 6: Trees 1-29 Sprng 2018 A Average dstance Gven a tree, calculate the average dstance between two vertces n the tree. For example, the average dstance between two vertces n the followng tree

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world observatons decson functon L[,y] loss of predctn y wth the epected value of the

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information