Last Lecture. Biostatistics Statistical Inference Lecture 16 Evaluation of Bayes Estimator. Recap - Example. Recap - Bayes Estimator

Size: px
Start display at page:

Download "Last Lecture. Biostatistics Statistical Inference Lecture 16 Evaluation of Bayes Estimator. Recap - Example. Recap - Bayes Estimator"

Transcription

1 Last Lecture Biostatistics 60 - Statistical Iferece Lecture 16 Evaluatio of Bayes Estimator Hyu Mi Kag March 14th, 013 What is a Bayes Estimator? Is a Bayes Estimator the best ubiased estimator? Compared to other estimators, what are advatages of Bayes Estimator? What is cojugate family? What are the cojugate families of Biomial, oisso, ad Normal distributio? Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, 013 / 8 - Bayes Estimator - Example θ : parameter π(θ) : prior distributio θ f (x θ) : samplig distributio osterior distributio of θ x Joit π(θ x) Margial f (x θ)π(θ) m(x) m(x) f(x θ)π(θ)dθ (Bayes rule) Bayes Estimator of θ is E(θ x) θπ(θ x)dθ θ 1,, iid Beroulli(p) π(p) Beta(α, β) rior guess : ˆp α α+β osterior distributio : π(p x) Beta( x i + α, x i + β) Bayes estimator ˆp α + x i α + β + xi α + β + + α α + β α + β α + β + Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

2 Loss Fuctio Optimality Loss Fuctio Let L(θ, ˆθ) be a fuctio of θ ad ˆθ Squared error loss The mea squared error (MSE) is defied as MSE(ˆθ) Eˆθ θ Let ˆθ is a estimator If ˆθ θ, it makes a correct decisio ad loss is 0 If ˆθ θ, it makes a mistake ad loss is ot 0 L(ˆθ, θ) (ˆθ θ) MSE Average Loss EL(θ, ˆθ) which is the expectatio of the loss if ˆθ is used to estimate θ Absolute error loss L(ˆθ) ˆθ θ A loss that pealties overestimatio more tha uderestimatio L(θ, ˆθ) (ˆθ θ) I(ˆθ < θ) + 10(ˆθ θ) I(ˆθ θ) Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Risk Fuctio - Average Loss Alterative defiitio of R(θ, ˆθ) EL(θ, ˆθ()) θ If L(θ, ˆθ) (ˆθ θ), R(θ, ˆθ) is MSE A estimator with smaller R(θ, ˆθ) is preferred Defiitio : Bayes risk is defied as the average risk across all values of θ give prior π(θ) R(θ, ˆθ)π(θ)dθ The Bayes rule with respect to a prior π is the optimal estimator with respect to a Bayes risk, which is defied as the oe that miimize the Bayes risk R(θ, ˆθ)π(θ)dθ EL(θ, ˆθ())π(θ)dθ f(x θ)l(θ, ˆθ(x))dx π(θ)dθ f(x θ)l(θ, ˆθ(x))π(θ)dx dθ π(θ x)m(x)l(θ, ˆθ(x))dx dθ L(θ, ˆθ())π(θ x)dθ m(x)dx Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

3 osterior Expected Loss Bayes Estimator based o squared error loss osterior expected loss is defied as π(θ x)l(θ, ˆθ(x))dθ L(ˆθ, θ) (ˆθ θ) osterior expected loss (θ ˆθ) π(θ x)dθ E(θ ˆθ) x So, the goal is to miimize E(θ ˆθ) x A alterative defiitio of Bayes rule estimator is the estimator that miimizes the posterior expected loss E (θ ˆθ) x E (θ E(θ x) + E(θ x) ˆθ) x E (θ E(θ x)) x + E E (θ E(θ x)) x + (E(θ x) ˆθ) x E(θ x) ˆθ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 which is miimized whe ˆθ E(θ x) Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 so far Bayes Estimator based o absolute error loss Loss fuctio L(θ, ˆθ) eg (ˆθ θ), ˆθ θ Risk fuctio R(θ, ˆθ) is average of L(θ, ˆθ) across all x For squared error loss, risk fuctio is the same to MSE Bayes risk Average risk across all θ, based o the prior of θ Alteratively, average posterior error loss across all x Bayes estimator ˆθ Eθ x Based o squared error loss, Miimize Bayes risk Miimize osterior Expected Loss Suppose that L(θ, ˆθ) θ ˆθ The posterior expected loss is EL(θ, ˆθ(x)) θ ˆθ(x) π(θ x)dθ E θ ˆθ x ˆθ (θ ˆθ)π(θ x)dθ + ˆθ EL(θ, ˆθ(x)) 0, ad ˆθ is posterior media ˆθ (θ ˆθ)π(θ x)dθ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

4 Two Bayes Rules Example Cosider a poit estimatio problem for real-valued parameter θ For squared error loss, the posterior expected loss is (θ ˆθ) π(θ x)dθ E(θ ˆθ) x This expected value is miimized by ˆθ E(θ x) So the Bayes rule estimator is the mea of the posterior distributio For absolute error loss, the posterior expected loss is E( θ ˆθ x) As show previously, this is miimized by choosig ˆθ as the media of π(θ x) 1,, iid Beroulli(p) π(p) Beta(α, β) The posterior distributio follows Beta( x i + α, x i + β) Bayes estimator that miimizes posterior expected squared error loss is the posterior mea xi + α ˆp α + β + Bayes estimator that miimizes posterior expected absolute error loss is the posterior media ˆθ 0 Γ(α + β + ) Γ( x i + α)γ( x i + β) p x i +α 1 (1 p) xi +β 1 dp 1 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Asymptotic Evaluatio of oit Estimators Tools for provig cosistecy Whe the sample size approaches ifiity, the behaviors of a estimator are ukow as its asymptotic properties Defiitio - Let W W ( 1,, ) W () be a sequece of estimators for τ(θ) We say W is cosistet for estimatig τ(θ) if W τ(θ) uder θ for every θ W τ(θ) (coverges i probability to τ(θ)) meas that, give ay ϵ > 0 lim τ(θ) ϵ) 0 lim τ(θ) < ϵ) 1 Whe W τ(θ) < ϵ ca also be represeted that W is close to τ(θ) implies that the probability of W close to τ(θ) approaches to 1 as goes to Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Use defiitio (complicated) Chebychev s Iequality r( W τ(θ) ϵ) r((w τ(θ)) ϵ ) EW τ(θ) ϵ MSE(W ) ϵ Bias (W ) + Var(W ) ϵ Need to show that both Bias(W ) ad Var(W ) coverges to zero Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

5 Theorem for cosistecy Weak Law of Large Numbers Theorem 1013 If W is a sequece of estimators of τ(θ) satisfyig lim > Bias(W ) 0 lim > Var(W ) 0 for all θ, the W is cosistet for τ(θ) Theorem 55 Let 1,, be iid radom variables with E() µ ad Var() σ < The coverges i probability to µ ie µ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Cosistet sequece of estimators Example Theorem 1015 Let W is a cosistet sequece of estimators of τ(θ) Let a, b be sequeces of costats satisfyig 1 lim a 1 lim b 0 The U a W + b is also a cosistet sequece of estimators of τ(θ) Cotiuous Map Theorem If W is cosistet for θ ad g is a cotiuous fuctio, the g(w ) is cosistet for g(θ) roblem 1,, are iid samples from a distributio with mea µ ad variace σ < 1 Show that is cosistet for µ Show that 1 i1 ( i ) is cosistet for σ 3 Show that 1 1 i1 ( i ) is cosistet for σ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

6 Example - Solutio Solutio - cosistecy for σ roof: is cosistet for µ By law of large umbers, is cosistet for µ Bias( ) E( ) µ µ µ 0 ( ) i1 Var( ) Var i 1 i1 Var( i) σ / σ lim Var() lim 0 By Theorem 1013 is cosistet for µ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 (i ) By law of large umbers, 1 i ( i + i ) i + i1 i i E µ + σ Note that is a fuctio of Defie g(x) x, which is a cotiuous fuctio The g() is cosistet for µ Therefore, (i ) i (µ + σ ) µ σ Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, 013 / 8 Solutio - cosistecy for σ (cot d) Example - Expoetial Family From the preious slide, ( i ) / is cosistet for σ Defie S 1 1 (i ), ad (S ) 1 (i ) S 1 (i ) (S 1 ) 1 Because (S ) was show to be cosistet for σ previously, ad a 1 1 as, by Theorem 1015, S is also cosistet for σ roblem iid Suppose 1,, Expoetial(β) 1 ropose a cosistet estimator of the media ropose a cosistet estimator of r( c) where c is costat Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

7 Cosistet estimator for the media Cosistet estimator of r( c) First, we eed to express the media i terms of the parameter β m 0 1 β e x/β dx 1 e x/β m e m/β 1 media m β log By law of large umbers, is cosistet for E β Applyig cotiuous mappig Theorem to g(x) x log, g() log is cosistet for g(β) β log (media) r( c) c 0 1 β e x/β dx 1 e c/β As is cosistet for β, 1 e c/β is cotiuous fuctio of β By cotiuous mappig Theorem, g() 1 e c/ is cosistet for r( c) 1 e c/β g(β) Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Cosistet estimator of r( c) - Alterative Method Defie Y i I( i c) The Y i iid Beroulli(p) where p r( c) Y 1 Y i 1 i1 I( i c) i1 is cosistet for p by Law of Large Numbers Today Fuctios Law of Large Numbers Next Lecture Cetral Limit Theorem Slutsky Theorem Delta Method Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8 Hyu Mi Kag Biostatistics 60 - Lecture 16 March 14th, / 8

Summary. Recap. Last Lecture. Let W n = W n (X 1,, X n ) = W n (X) be a sequence of estimators for

Summary. Recap. Last Lecture. Let W n = W n (X 1,, X n ) = W n (X) be a sequence of estimators for Last Lecture Biostatistics 602 - Statistical Iferece Lecture 17 Asymptotic Evaluatio of oit Estimators Hyu Mi Kag March 19th, 2013 What is a Bayes Risk? What is the Bayes rule Estimator miimizig square

More information

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values of the secod half Biostatistics 6 - Statistical Iferece Lecture 6 Fial Exam & Practice Problems for the Fial Hyu Mi Kag Apil 3rd, 3 Hyu Mi Kag Biostatistics 6 - Lecture 6 Apil 3rd, 3 / 3 Rao-Blackwell

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

Summary. Recap ... Last Lecture. Summary. Theorem

Summary. Recap ... Last Lecture. Summary. Theorem Last Lecture Biostatistics 602 - Statistical Iferece Lecture 23 Hyu Mi Kag April 11th, 2013 What is p-value? What is the advatage of p-value compared to hypothesis testig procedure with size α? How ca

More information

Last Lecture. Wald Test

Last Lecture. Wald Test Last Lecture Biostatistics 602 - Statistical Iferece Lecture 22 Hyu Mi Kag April 9th, 2013 Is the exact distributio of LRT statistic typically easy to obtai? How about its asymptotic distributio? For testig

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

An Introduction to Asymptotic Theory

An Introduction to Asymptotic Theory A Itroductio to Asymptotic Theory Pig Yu School of Ecoomics ad Fiace The Uiversity of Hog Kog Pig Yu (HKU) Asymptotic Theory 1 / 20 Five Weapos i Asymptotic Theory Five Weapos i Asymptotic Theory Pig Yu

More information

Last Lecture. Unbiased Test

Last Lecture. Unbiased Test Last Lecture Biostatistics 6 - Statistical Iferece Lecture Uiformly Most Powerful Test Hyu Mi Kag March 8th, 3 What are the typical steps for costructig a likelihood ratio test? Is LRT statistic based

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution Large Sample Theory Covergece Covergece i Probability Covergece i Distributio Cetral Limit Theorems Asymptotic Distributio Delta Method Covergece i Probability A sequece of radom scalars {z } = (z 1,z,

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS

January 25, 2017 INTRODUCTION TO MATHEMATICAL STATISTICS Jauary 25, 207 INTRODUCTION TO MATHEMATICAL STATISTICS Abstract. A basic itroductio to statistics assumig kowledge of probability theory.. Probability I a typical udergraduate problem i probability, we

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Point Estimation: properties of estimators 1 FINITE-SAMPLE PROPERTIES. finite-sample properties (CB 7.3) large-sample properties (CB 10.

Point Estimation: properties of estimators 1 FINITE-SAMPLE PROPERTIES. finite-sample properties (CB 7.3) large-sample properties (CB 10. Poit Estimatio: properties of estimators fiite-sample properties CB 7.3) large-sample properties CB 10.1) 1 FINITE-SAMPLE PROPERTIES How a estimator performs for fiite umber of observatios. Estimator:

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

1. Parameter estimation point estimation and interval estimation. 2. Hypothesis testing methods to help decision making.

1. Parameter estimation point estimation and interval estimation. 2. Hypothesis testing methods to help decision making. Chapter 7 Parameter Estimatio 7.1 Itroductio Statistical Iferece Statistical iferece helps us i estimatig the characteristics of the etire populatio based upo the data collected from (or the evidece 0produced

More information

Probability and Statistics

Probability and Statistics ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Lecture 9: September 19

Lecture 9: September 19 36-700: Probability ad Mathematical Statistics I Fall 206 Lecturer: Siva Balakrisha Lecture 9: September 9 9. Review ad Outlie Last class we discussed: Statistical estimatio broadly Pot estimatio Bias-Variace

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts Basics of Iferece Lecture 21: Sta230 / Mth230 Coli Rudel Aril 16, 2014 U util this oit i the class you have almost exclusively bee reseted with roblems where we are usig a robability model where the model

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Lecture 15: Density estimation

Lecture 15: Density estimation Lecture 15: Desity estimatio Why do we estimate a desity? Suppose that X 1,...,X are i.i.d. radom variables from F ad that F is ukow but has a Lebesgue p.d.f. f. Estimatio of F ca be doe by estimatig f.

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 2009 Problems 1: Solution sketches Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Lecture 16: UMVUE: conditioning on sufficient and complete statistics

Lecture 16: UMVUE: conditioning on sufficient and complete statistics Lecture 16: UMVUE: coditioig o sufficiet ad complete statistics The 2d method of derivig a UMVUE whe a sufficiet ad complete statistic is available Fid a ubiased estimator of ϑ, say U(X. Coditioig o a

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED

MATH 472 / SPRING 2013 ASSIGNMENT 2: DUE FEBRUARY 4 FINALIZED MATH 47 / SPRING 013 ASSIGNMENT : DUE FEBRUARY 4 FINALIZED Please iclude a cover sheet that provides a complete setece aswer to each the followig three questios: (a) I your opiio, what were the mai ideas

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

Statistical Theory MT 2008 Problems 1: Solution sketches

Statistical Theory MT 2008 Problems 1: Solution sketches Statistical Theory MT 008 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. a) Let 0 < θ < ad put fx, θ) = θ)θ x ; x = 0,,,... b) c) where α

More information

Let A and B be two events such that P (B) > 0, then P (A B) = P (B A) P (A)/P (B).

Let A and B be two events such that P (B) > 0, then P (A B) = P (B A) P (A)/P (B). 1 Coditioal Probability Let A ad B be two evets such that P (B) > 0, the P (A B) P (A B)/P (B). Bayes Theorem Let A ad B be two evets such that P (B) > 0, the P (A B) P (B A) P (A)/P (B). Theorem of total

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

Mathmatical Statisticals

Mathmatical Statisticals Mathmatical Statisticals Che, L.-A. Chapter 4. Distributio of Fuctio of Radom variables Sample space S : set of possible outcome i a experimet. Probability set fuctio P: ()P (A) 0, A S. ()P (S) =. (3)P

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

TAMS24: Notations and Formulas

TAMS24: Notations and Formulas TAMS4: Notatios ad Formulas Basic otatios ad defiitios X: radom variable stokastiska variabel Mea Vätevärde: µ = X = by Xiagfeg Yag kpx k, if X is discrete, xf Xxdx, if X is cotiuous Variace Varias: =

More information

Lecture Stat Maximum Likelihood Estimation

Lecture Stat Maximum Likelihood Estimation Lecture Stat 461-561 Maximum Likelihood Estimatio A.D. Jauary 2008 A.D. () Jauary 2008 1 / 63 Maximum Likelihood Estimatio Ivariace Cosistecy E ciecy Nuisace Parameters A.D. () Jauary 2008 2 / 63 Parametric

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

4.1 Non-parametric computational estimation

4.1 Non-parametric computational estimation Chapter 4 Resamplig Methods 4.1 No-parametric computatioal estimatio Let x 1,...,x be a realizatio of the i.i.d. r.vs X 1,...,X with a c.d.f. F. We are iterested i the precisio of estimatio of a populatio

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Mathematical Statistics Anna Janicka

Mathematical Statistics Anna Janicka Mathematical Statistics Aa Jaicka Lecture XIV, 5.06.07 BAYESIAN STATISTICS Pla for Today. BayesiaStatistics a priori ad a posteriori distributios Bayesia estimatio: Maximum a posteriori probability(map)

More information

LECTURE 14 NOTES. A sequence of α-level tests {ϕ n (x)} is consistent if

LECTURE 14 NOTES. A sequence of α-level tests {ϕ n (x)} is consistent if LECTURE 14 NOTES 1. Asymptotic power of tests. Defiitio 1.1. A sequece of -level tests {ϕ x)} is cosistet if β θ) := E θ [ ϕ x) ] 1 as, for ay θ Θ 1. Just like cosistecy of a sequece of estimators, Defiitio

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Questions and Answers on Maximum Likelihood

Questions and Answers on Maximum Likelihood Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS

NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS NANYANG TECHNOLOGICAL UNIVERSITY SYLLABUS FOR ENTRANCE EXAMINATION FOR INTERNATIONAL STUDENTS AO-LEVEL MATHEMATICS STRUCTURE OF EXAMINATION PAPER. There will be oe 2-hour paper cosistig of 4 questios.

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1 8. The cetral limit theorems 8.1. The cetral limit theorem for i.i.d. sequeces. ecall that C ( is N -separatig. Theorem 8.1. Let X 1, X,... be i.i.d. radom variables with EX 1 = ad EX 1 = σ (,. Suppose

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

STA Object Data Analysis - A List of Projects. January 18, 2018

STA Object Data Analysis - A List of Projects. January 18, 2018 STA 6557 Jauary 8, 208 Object Data Aalysis - A List of Projects. Schoeberg Mea glaucomatous shape chages of the Optic Nerve Head regio i aimal models 2. Aalysis of VW- Kedall ati-mea shapes with a applicatio

More information