Analysis of shear strength of armourstone based on 1 m 3 direct shear tests

Size: px
Start display at page:

Download "Analysis of shear strength of armourstone based on 1 m 3 direct shear tests"

Transcription

1 Coastal Engineering 341 Analysis of shear strength of armourstone based on 1 m 3 direct shear tests J. Estaire & C. Olalla Laboratorio de Geotecnia (CEDEX, Mº de Fomento) Madrid, Spain Abstract In this paper an analysis of the shear strength of armourstone is made based on the results obtained in 16 direct shear tests made in a 1 m 3 box, belonging to CEDEX, in which 68 probes were broken. The tests were performed with seven types of armourstone coming from different quarries and with different characteristics. The material was placed in the shear box by simple dropping, in some tests, and with light mechanical compaction in other ones. The vertical stresses used in the tests varied from 50 to 800 kpa. The results of the tests were analysed with three different criteria: using the Mohr-Coulomb strength model, with and without cohesion and using parabolic fitting curves. Keywords: shear strength, armourstone, shear test. 1 Introduction Armourstone, as construction material, has a relevant role in the design of coastal structures, such as breakwaters, and of foundation structures such as the ones used in the foundation of caissons. A good design of these structures requires the knowledge of the mechanical properties of the armourstone. The difficulty comes from the great size of the grains or pieces of these materials, which need both test equipment of great dimensions and heavy weight samples. Equipment that fulfils the requirements to perform tests to determine armourstone shear strength is the direct shear test with box of great dimensions, as the one belonging to CEDEX. Due to this difficulty, the aim of this paper is to collect all the results obtained in the direct shear test of 1 m 3, since its construction, performed with

2 342 Coastal Engineering armourstone. The interpretation of the tests makes it possible to have a clear and wide idea of the mechanical characteristics of the armourstone. 2 Test equipment All the tests were performed in a direct shear box of 1 x 1 x 1m 3 of capacity, belonging to the Laboratorio de Geotecnia (CEDEX). The maximum vertical load that can be imposed to the sample is 1000 kn. The maximum horizontal displacement of the tests box is 25 cm. The horizontal load, with a maximum of 1000 kn, can be imposed at a constant speed, ranging from 0.5 to 45 mm/min. Figure 1 shows a photograph of the equipment used in the tests. Figure 1: Equipment used in the tests. 3 Tests performed In this equipment, 16 direct shear tests were performed, in which 68 probes were broken. The tests were performed with seven types of armourstone coming from different quarries and with different characteristics. The material was placed in the shear box by simple pouring, in some tests, and with light mechanical compaction in other ones. The vertical stresses used in the tests varied from 50 to 800 kpa. The principal data of the tests are summarized in Table 1.

3 Coastal Engineering 343 Table 1: Principal data of the tests. Material Number of tests No samples Vertical stress (kpa) Preparation M-1 T Pouring 800 M-2 T-2, T-3, T-4, Pouring T-5, T M-3 T Pouring M-4 T Pouring M-5 T-9, T Pouring M-6 T Pouring M-7 T Pouring M-2 T-13, T-14, Compaction T-15, T Total From 50 to The rocks used in the tests can be identified, in a great number, as limestone. The uniaxial compressive strength of the intact rock pieces ranged from 45 to 75 MPa, with an average value of about 60 MPa. This value corresponds to a strong rock according to ISRM classification (Brown [1]). The density of the material, once placed in the shear box, ranged from 16.5 to 19.0 kn/m 3 with an average value of 17.5 kn/m 3, for the tests performed with poured armourstone. In the case of compacted armourstone tests, density was between 19.0 and 20.8 kn/m 3, being the average value of 20 kn/m 3. The increment in density, obtained with the compaction, is nearly 15%. 4 Test results 4.1 Interpretation using the Mohr-Coulomb strength model The first way to interpret the test results at failure is by using the Mohr-Coulomb model, under associative plasticity theory. Each test is interpreted only using the samples broken in such test. Furthermore, this method of interpretation has been made taking into account two alternatives: assuming an apparent cohesion and without that cohesion, what implies to suppose a purely frictional behaviour. The results obtained with these two alternatives, identified as Hypothesis 1 and 2, respectively, are collected in Table 2, for the tests with poured armourstone, and in Table 3, for the ones prepared with compacted armourstone. All these values have been represented in Figure 2 to make their interpretation easier. The analysis of the results makes it possible to highlight the following experimental aspects:

4 344 Coastal Engineering Table 2: Strength values (Poured armourstone). Test Hypothesis 1 (with cohesion) Hypoth. 2 (without cohesion) c (kpa) φ (º) R 2 c (kpa) φ (º) R 2 T T T T T T T T T T T T Average Maximum Minimum Table 3: Strength values (Compacted armourstone). Test Hypothesis 1 (with cohesion) Hypoth. 2 (without cohesion) c (kpa) φ (º) R 2 c (kpa) φ (º) R 2 T T T T Average Maximum Minimum Both interpretations, considering and not the existence of apparent cohesion, have quite high values of the coefficient of regression, superior to The average values of cohesion and friction angle obtained from the results are: c=50 kpa; φ=43º for the tests performed with poured material and c=108 kpa; φ=46º for the ones corresponding to compacted material. The interpretation of the results assuming a purely frictional behaviour gives a friction angle of 46º, for the tests with poured material, and 51º, for the ones with compacted material. The comparison of the results indicates the beneficial effect of compaction on the strength of armourstone, both in terms of cohesion and friction angle.

5 Coastal Engineering 345 Angle of friction (º) Poured Arm. Poured Arm. (c=0) Compacted Arm. Compacted Arm.(c=0) Cohesion (kpa) Figure 2: Strength values (Mohr-Coulomb model). The second way of interpretation is to analyse the test results in a global way, as if the 68 samples had been broken in a unique test. The results obtained in such a way have been summarized in Table 4. Figures 3 and 4 show all the test results and the curves representative of Mohr envelope lines obtained when it is made a global interpretation of the tests prepared with poured and compacted armourstone, respectively. Table 4: Strength values (Global interpretation). Armourstone Hypothesis 1 (with cohesion) Hypoth. 2 (without cohesion) c (kpa) φ (º) R 2 c (kpa) φ (º) R 2 Poured Compacted The results obtained with the global interpretation of the test values are quite similar to the ones obtained previously, so the same comments can be made. A third way to interpret the test results is to calculate the angle of friction of each sample, when considering absence of cohesion. The results obtained with this way of interpretation are collected in Table 5 and represented in Figure 5. The analysis of the results makes it possible to state the following: The values obtained for secant angle of friction for compacted armourstone are, for all the vertical stress, greater than the ones corresponding to poured armourstone.

6 346 Coastal Engineering It is clearly seen in the figure the non-linear character of the shear strength of armourstone. The secant angle of friction gets smaller for greater vertical stress. The values of the secant angle of friction ranges from about 55º to 45º, for low and high vertical stress, respectively, in the case of poured armourstone. For compacted armourstone, the values range from 60º to 50º, that is to say, about 5º more than poured armourstone. Shear Stress (kpa) Sample preparation: pouring Hyp.2 Hyp.1 Int.1 : τ = ,9893.σ ; R 2 =0,98 Int.2 : τ = 1,0626.σ ; R 2 =0,98 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-11 T Normal Stress (kpa) Figure 3: Intrinsic strength lines (poured armourstone). Shear Stress (kpa) Sample preparation: compaction T-13 T-14 T-15 T-16 Hyp.2 Hyp.1 Int.1 : τ = ,0203.σ ; R 2 =0,96 Int.2 : τ = 1,2173.σ ; R 2 =0, Normal Stress (kpa) Figure 4: Intrinsic strength lines (compacted armourstone).

7 Coastal Engineering 347 Table 5: Secant angles of friction. Vertical stress Number of samples Average φ (º) (kpa) Poured Arm. Comp. Arm Poured Arm. Comp. Arm Angle of friction (º) Poured Arm. Compacted Arm Normal Stress (kpa) Figure 5: Secant angle of friction. 4.2 Interpretation using non linear failure criteria The global interpretation of the test results as coming from a unique test can be also made using parabolic expressions, such as τ = a σ b. The expressions obtained, represented in Figure 6, are the following: Poured armourstone: τ = 2.4 σ 0.87 ; (τ and σ in kpa) R 2 =0.99. Compacted armourstone: τ = 6.05 σ 0.75 ; (τ and σ in kpa) R 2 =0.98.

8 348 Coastal Engineering Shear Stress (kpa) 1000 Sample preparation: pouring Parabolic Curve: τ = 2,3947.σ 0,8713 ; R 2 =0, Test Results Parabolic Curve Normal Stress (kpa) Sample preparation: compaction 800 Shear Stress (kpa) Parabolic Curve: τ = 6,0323.σ 0,7488 ; R 2 =0,9793 Test results Parabolic Curve Normal Stress (kpa) Figure 6: Parabolic curves (compacted and poured armourstone). The principal aspects that can be highlighted from the previous results are: The regression coefficients of these parabolic curves are even higher to the ones corresponding to the linear curves, which indicates a non-linear strength behaviour at failure of these materials. The curve corresponding to the compacted armourstone is less linear than the one corresponding to the poured armourstone, as indicated by the lower value of the exponent. 5 Comparison of results In this section the results obtained with the different interpretations are compared with values published in literature. I) The classical plot of Leps [2], showing the angle of shearing strength as a function of effective normal stress, is shown in Figure 7, with the values deduced in this paper for the test performed with poured armourstone. It can be seen that the results obtained are in the upper part of the range defined by Leps.

9 Coastal Engineering 349 II) The interpretation using parabolic expressions has been performed by several authors. De Mello [3], when interpreted tests performed by Marsal [4], obtained values of the exponent (b) of the parabolic expressions between 0.81 and In a similar way, Matsumoto and Wanatabe [5] fitted 49 triaxial tests and obtained values of b which ranged from 0.77 to 0.97 with an average value of All these values are in good agreement with the one obtained in this paper. Furthermore, Charles and Watts [6] suggested to use a value about 0.75 for the parameter b, to be used when armourstone is compacted. This value is the same as the one deduced from the test results performed for this paper. Figure 7: Shearing strength of armourstone (Leps [2]). III) Hoeg et al [7] performed seven field tests on embankments that were brought to complete breaching. Their interpretation of the results indicate that the angle of shearing resistance of competent and compacted rockfill is higher than conventionally assumed in slope stability analyses as given in Leps s [2]. Although no concrete value of the friction angle to define the shear strength is indicated, this conclusion is the same as obtained with the results of this paper. 6 Summary and conclusions 16 shear direct tests, in which 68 samples were tested, were performed using the 1 m 3 direct shear box belonging to CEDEX. Seven different armourstone were tested, making the samples by pouring and compaction. The values of Mohr-Coulomb strength criterion that best represent the test results, taking into account all the interpretations, are summarized in Table 6.

10 350 Coastal Engineering Table 6: Strength parameters. Armourstone With Cohesion Without Cohesion c(kpa) φ (kpa) c (kpa) φ (kpa) Poured Compacted It has been confirmed the non-linear character of the strength of armourstone, as the secant friction angle gets smaller when normal stress increases its value. The values of the secant angle of friction ranges from about 55º to 45º, for low and high vertical stress, respectively, in the case of poured armourstone. For compacted armourstone, the values range from 60º to 50º, that is to say, about 5º more than poured armourstone. It has been checked that the best fit is got by using parabolic expressions (τ = a. σ b ; in kpa). The values of parameters a and b are 2.4 and 0.85 for poured armourstone and 6.05 and 0.75 for compacted armourstone. Acknowledgement The authors of the paper wish to acknowledge the people who performed the test (Clemente Arias, José L. Gómez and José L. Toledo) for their enthusiastic dedication and effort. References [1] Brown E.T. (Ed). Rock Characterization, Testing and Monitoring ISRM Suggested Methods. Pergamon, Oxford, pp ,1981. [2] Leps, T.M. Review of shearing strength of rockfill. J. Soil Mech.ans Found. Div. ASCE, Vol. 96, No. SM4, pp , [3] De Mello, V. Reflections on Design Conditions of Practical Significance to Embankment Dams. 17th Rankine Lecture. Geotechnique, Vol. 27, No. 3, pp , [4] Marsal, R.J. Mechanical Properties of Rockfill. Embankment Dam Engineering. Casagrande Volume. J. Wiley & Sons, [5] Matsumoto, N. & Wanatabe, K. The Shear Strength of Rockfill Materials. Tsuchi-to-Kiso. ISSMFE. 35, No. 12, 1987, (in Japanese). [6] Charles, J.A. & Watts, K.S. The Influence of Confining Pressure on the Shear Strength of Compacted Rockfill. Geotechnique, Vol. 30, No. 4, pp , [7] Hoeg, K., Lovoll, A. & Vaskinn, K.A.. Stability and breaching of embankment dams: filed tests on 6 m high dams. The International Journal on Hydropower & Dams, Vol. 11, Issue 1, pp , 2004.

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

SOIL MECHANICS Assignment #7: Shear Strength Solution.

SOIL MECHANICS Assignment #7: Shear Strength Solution. 14.330 SOIL MECHANICS Assignment #7: Shear Strength Solution. PROBLEM #1: GIVEN: Direct Shear test results from a SP soil shown in Figure A (from 14.330_2012_Assignment_#8_P1.csv on the course website).

More information

Small and medium scale direct shear test of the Bremanger sandstone rockfill

Small and medium scale direct shear test of the Bremanger sandstone rockfill AES/GE/10-14 Small and medium scale direct shear test of the Bremanger sandstone rockfill July-2010 Xiaoshan Sun Title : Small and medium scale direct shear test of the Bremanger sandstone rockfill Author(s)

More information

Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact in Rock Dump Design

Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact in Rock Dump Design Keynote Address Rock Dumps 2008 A. Fourie (ed) 2008 Australian Centre for Geomechanics, Perth, ISBN 978-0-9804185-3-8 Shear Strength of Rockfill, Interfaces and Rock Joints, and their Points of Contact

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 51 Module 4: Lecture 2 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-coulomb failure

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

both an analytical approach and the pole method, determine: (a) the direction of the

both an analytical approach and the pole method, determine: (a) the direction of the Quantitative Problems Problem 4-3 Figure 4-45 shows the state of stress at a point within a soil deposit. Using both an analytical approach and the pole method, determine: (a) the direction of the principal

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION:

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION: 14.330 SOIL MECHANICS Assignment #8: Shear Strength Solution. PROBLEM #1: GIVEN: A regional residential building contractor is planning on building a custom 4,100 ft² home on Martha s Vineyard, MA. The

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 56 Module 4: Lecture 7 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics

Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics Module 4 Lecture 20 Pore water pressure and shear strength - 4 Topics 1.2.6 Curvature of the Failure Envelope Effect of angularity of soil particles Effect of rate of loading during the test 1.2.7 Shear

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

High-Precision Strength Evaluation of Rock Materials and Stability Analysis for Rockfill Dams

High-Precision Strength Evaluation of Rock Materials and Stability Analysis for Rockfill Dams 1st International Symposium on Rockfill Dams High-Precision Strength Evaluation of Rock Materials and Stability Analysis for Rockfill Dams Hiroki SAKAMOTO Research Engineer Public Works Research Institute,

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

Failure and Failure Theories for Anisotropic Rocks

Failure and Failure Theories for Anisotropic Rocks 17th international Mining Congress and Exhibition of Turkey- IMCET 2001, 2001, ISBN 975-395-417-4 Failure and Failure Theories for Anisotropic Rocks E. Yaşar Department of Mining Engineering, Çukurova

More information

8. STRENGTH OF SOILS AND ROCKS

8. STRENGTH OF SOILS AND ROCKS 8-1 8. STRENGTH OF SOILS AND ROCKS 8.1 COMPRESSIVE STRENGTH The strength of a material may be broadly defined as the ability of the material to resist imposed forces. If is often measured as the maximum

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Modelling Progressive Failure with MPM

Modelling Progressive Failure with MPM Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon

More information

The Second International Symposium on Rockfill Dams

The Second International Symposium on Rockfill Dams EVALUATION OF ROCKFILL PROPERTIES BASED ON INDEX TESTS A. Veiga Pinto 1, M. Quinta-Ferreira 2 1, Executive Director Mecasolos, Rua Xavier Araújo, 11, Núcleo 8-6ºB, 1600-226 Lisboa, Portugal, vpinto@mecasolos.com

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

Soil strength. the strength depends on the applied stress. water pressures are required

Soil strength. the strength depends on the applied stress. water pressures are required Soil Strength Soil strength u Soils are essentially frictional materials the strength depends on the applied stress u Strength is controlled by effective stresses water pressures are required u Soil strength

More information

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS Jérôme Racinais September 15, 215 TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS Table of contents 1. Reminder about pressuremeter tests 2. General behaviour

More information

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Pullout Tests of Geogrids Embedded in Non-cohesive Soil Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

More information

A modified model of a single rock joint s shear behavior in

A modified model of a single rock joint s shear behavior in This paper is accepted for publication in the International Journal of Mining Science and Technology A modified model of a single rock joint s shear behavior in limestone specimens Dindarloo Saeid R a*,

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Stress and Strains in Soil and Rock. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strains in Soil and Rock Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Stress and Strain ε 1 1 2 ε 2 ε Dimension 1 2 0 ε ε ε 0 1 2 ε 1 1 2 ε 2 ε Plane Strain = 0 1 2

More information

A Study of the Rockfill Material Behavior in Large-Scale Tests

A Study of the Rockfill Material Behavior in Large-Scale Tests ISSN: 2322 2093 A Study of the Rockfill Material ehavior in Large-Scale Tests Ghanbari, A. 1*, Hamidi, A. 2 and Abdolahzadeh, N. 3 1 Associate Professor, Department of Civil Engineering, Kharazmi University,

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering and Environmental Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Outline of this Lecture 1. Triaxial rock mechanics test Mohr circle Combination of Coulomb shear

More information

THE VOUSSOIR BEAM REACTION CURVE

THE VOUSSOIR BEAM REACTION CURVE THE VOUSSOIR BEAM REACTION CURVE Yossef H. Hatzor Ben-Gurion University, Department of Geological and Environmental Sciences Beer-Sheva, Israel, 84105 ABSTRACT: The influence of joint spacing (s) on the

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone Rock Mechanics, Fuenkajorn & Phien-wej (eds) 211. ISBN 978 974 533 636 Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone T. Pobwandee & K. Fuenkajorn Geomechanics

More information

Three-Dimensional Failure Criteria Based on the Hoek Brown Criterion

Three-Dimensional Failure Criteria Based on the Hoek Brown Criterion Rock Mech Rock Eng () 45:989 99 DOI.7/s6--77- ISRM SUGGESTED METHOD Three-Dimensional Failure Criteria Based on the Hoek Brown Criterion Stephen Priest Published online: 8 July Ó Springer-Verlag List of

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

SHEAR STRENGTH I YULVI ZAIKA

SHEAR STRENGTH I YULVI ZAIKA SHEAR STRENGTH I YULVI ZAIKA MATERI Keruntuhan mohr coulomb, stress paths, kuat geser tanah non kohesif dan kohesif, evaluasi kuat geser di lapangan, tegangan normal dan tegangan geser pada sebuah bidang

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Pengfei Xu Tongji University August 4, 2015 Outline Introduction Two circular excavations for anchorage foundations 3D

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY

STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY STRENGTH EVALUATION OF ROCKFILL MATERIALS CONSIDERING CONFINING PRESSURE DEPENDENCY Yoshikazu YAMAGUCHI 1, Hiroyuki SATOH 2, Naoyoshi HAYASHI 3, Hisayuki YOSHINAGA 4 1, Dam Structures Research Team(DSRT),

More information

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid

Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid ISGSR7 First International Symposium on Geotechnical Safety & Risk Oct. 8~9, 7 Shanghai Tongji University, China Analysis of Load-Settlement Relationship for Unpaved Road Reinforced with Geogrid Y. C.

More information

STRENGTH PROPERTIES OF ROCKS AND ROCK MASSES 4. FAILURE CRITERIA FOR INTACT ROCKS AND ROCK MASSES

STRENGTH PROPERTIES OF ROCKS AND ROCK MASSES 4. FAILURE CRITERIA FOR INTACT ROCKS AND ROCK MASSES STRENGTH PROPERTIES OF ROCKS AND ROCK MASSES 1. INTRODUCTION 2. TESTING OF INTACT ROCK FOR STRENGTH 2.1 Uniaxial Compression 2.2 Point Load Testing 2.3 Uniaxial Tension 2.4 Indirect Tension Tests 2.5 Shear

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Seismic Evaluation of Tailing Storage Facility

Seismic Evaluation of Tailing Storage Facility Australian Earthquake Engineering Society 2010 Conference, Perth, Western Australia Seismic Evaluation of Tailing Storage Facility Jonathan Z. Liang 1, David Elias 2 1 Senior Geotechnical Engineer, GHD

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

A study on the bearing capacity of steel pipe piles with tapered tips

A study on the bearing capacity of steel pipe piles with tapered tips Japanese Geotechnical Society Special Publication The 6th Japan-China Geotechnical Symposium A study on the bearing capacity of steel pipe piles with tapered tips Hironobu Matsumiya i), Yoshiro Ishihama

More information

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES

INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES INTERPRETATION OF UNDRAINED SHEAR STRENGTH OF UNSATURATED SOILS IN TERMS OF STRESS STATE VARIABLES S. K. Vanapalli and D.G. Fredlund Department of Civil Engineering University of Saskatchewan, Saskatoon

More information

Effect of buttress on reduction of rock slope sliding along geological boundary

Effect of buttress on reduction of rock slope sliding along geological boundary Paper No. 20 ISMS 2016 Effect of buttress on reduction of rock slope sliding along geological boundary Ryota MORIYA *, Daisuke FUKUDA, Jun-ichi KODAMA, Yoshiaki FUJII Faculty of Engineering, Hokkaido University,

More information

Drucker-Prager yield criterion application to study the behavior of CFRP confined concrete under compression

Drucker-Prager yield criterion application to study the behavior of CFRP confined concrete under compression XXXVII IAHS World ongress on Housing October 6 9, 00, Santander, Spain Drucker-Prager yield criterion application to study the behavior of FRP confined concrete under compression Salvador Ivorra, Ramón

More information

NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH. Y. F. Wei, a,1 W. X. Fu, b UDC and D. X. Nie a

NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH. Y. F. Wei, a,1 W. X. Fu, b UDC and D. X. Nie a DOI 10.1007/s11223-015-9649-8 Strength of Materials, Vol. 47, No. 1, January, 2015 NONLINEARITY OF THE ROCK JOINT SHEAR STRENGTH Y. F. Wei, a,1 W. X. Fu, b UDC 539.4 and D. X. Nie a The triaxial testing

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST

SHEAR STRENGTH OF SOIL UNCONFINED COMPRESSION TEST SHEAR STRENGTH OF SOIL DEFINITION The shear strength of the soil mass is the internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it. INTRODUCTION

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Finite Element analysis of Laterally Loaded Piles on Sloping Ground Indian Geotechnical Journal, 41(3), 2011, 155-161 Technical Note Finite Element analysis of Laterally Loaded Piles on Sloping Ground K. Muthukkumaran 1 and N. Almas Begum 2 Key words Lateral load, finite

More information

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents

PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK. Contents PLANES OF WEAKNESS IN ROCKS, ROCK FRCTURES AND FRACTURED ROCK Contents 7.1 Introduction 7.2 Studies On Jointed Rock Mass 7.2.1 Joint Intensity 7.2.2 Orientation Of Joints 7.2.3 Joint Roughness/Joint Strength

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Reliability analyses of rock slope stability

Reliability analyses of rock slope stability Reliability analyses of rock slope stability C. Cherubini & G. Vessia Politecnico di Bari, Bari, Italy ABSTRACT: The benchmark proposed is related to the topic of instability analyses in anchored rock

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

The Role of Slope Geometry on Flowslide Occurrence

The Role of Slope Geometry on Flowslide Occurrence American Journal of Environmental Sciences 3 (3): 93-97, 27 ISSN 1553-345X 27 Science Publications Corresponding Author: The Role of Slope Geometry on Flowslide Occurrence Chiara Deangeli DITAG, Politecnico

More information

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength

Shear strength. Common cases of shearing In practice, the state of stress in the ground will be complex. Common cases of shearing Strength Shear strength Common cases of shearing Strength Near any geotechnical construction (e.g. slopes, excavations, tunnels and foundations) there will be both mean and normal stresses and shear stresses. The

More information

7. STRESS ANALYSIS AND STRESS PATHS

7. STRESS ANALYSIS AND STRESS PATHS 7-1 7. STRESS ANALYSIS AND STRESS PATHS 7.1 THE MOHR CIRCLE The discussions in Chapters and 5 were largely concerned with vertical stresses. A more detailed examination of soil behaviour requires a knowledge

More information

Measurement of effective stress shear strength of rock

Measurement of effective stress shear strength of rock Measurement of effective stress shear strength of rock R. A. Failmezger, P.E., F. ASCE In-Situ Soil Testing, L.C., Lancaster, Virginia USA D. J. White, Ph. D., P.E. Iowa State University, Ames, Iowa USA

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

Lecture #8: Ductile Fracture (Theory & Experiments)

Lecture #8: Ductile Fracture (Theory & Experiments) Lecture #8: Ductile Fracture (Theory & Experiments) by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Ductile

More information

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS Upul ATUKORALA 1, Dharma WIJEWICKREME 2 And Norman MCCAMMON 3 SUMMARY The liquefaction susceptibility of silty soils has not received

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

PILE-SUPPORTED RAFT FOUNDATION SYSTEM

PILE-SUPPORTED RAFT FOUNDATION SYSTEM PILE-SUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has

More information

Powder Technology 205 (2011) Contents lists available at ScienceDirect. Powder Technology. journal homepage:

Powder Technology 205 (2011) Contents lists available at ScienceDirect. Powder Technology. journal homepage: Powder Technology 25 (211) 15 29 Contents lists available at ScienceDirect Powder Technology journal homepage: www.elsevier.com/locate/powtec Numerical simulation of particle breakage of angular particles

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

Rock Joint and Rock Mass Shear Strength

Rock Joint and Rock Mass Shear Strength Rock Joint and Rock Mass Shear Strength GEO-SLOPE International Ltd. www.geo-slope.com 1400, 633-6th Ave SW, Calgary, AB, Canada T2P 2Y5 Main: +1 403 269 2002 Fax: +1 403 266 4851 Introduction SLOPE/W

More information

PLASTICITY FOR CRUSHABLE GRANULAR MATERIALS VIA DEM

PLASTICITY FOR CRUSHABLE GRANULAR MATERIALS VIA DEM Plasticity for crushable granular materials via DEM XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate, D.R.J. Owen, D. Peric and M. Chiumenti

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

Experimental study of mechanical and thermal damage in crystalline hard rock

Experimental study of mechanical and thermal damage in crystalline hard rock Experimental study of mechanical and thermal damage in crystalline hard rock Mohammad Keshavarz Réunion Technique du CFMR - Thèses en Mécanique des Roches December, 3 nd 2009 1 Overview Introduction Characterization

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy

Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 00 Modelling of particle breakage of coarse aggregates incorporating strength

More information

Introduction to Geotechnical Engineering. ground

Introduction to Geotechnical Engineering. ground Introduction to Geotechnical Engineering ground 1 Typical Geotechnical Project Geo-Laboratory ~ for testing soil properties Design Office ~ for design & analysis construction site 2 Shallow Foundations

More information

GROUND IMPROVEMENT WORKSHOP JUNE 2010 PERTH, AUSTRALIA. CHAIRMAN OF T.C. Ground Improvement

GROUND IMPROVEMENT WORKSHOP JUNE 2010 PERTH, AUSTRALIA. CHAIRMAN OF T.C. Ground Improvement GROUND IMPROVEMENT WORKSHOP 11-12 JUNE 2010 PERTH, AUSTRALIA GROUND IMPROVEMENT IN EXTREME GROUND CONDITIONS Presented by Serge VARAKSIN CHAIRMAN OF T.C. Ground Improvement EPEC Bang Bo: Works Procedure

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information