arxiv: v1 [math.ap] 6 Jan 2016

Size: px
Start display at page:

Download "arxiv: v1 [math.ap] 6 Jan 2016"

Transcription

1 THE VLASOV-POISSON-BOLTZMANN SYSTEM FO A DISPAATE MASS BINAY MIXTUE ENJUN DUAN AND SHUANGQIAN LIU arxiv: v1 [mah.ap] 6 Jan 016 Absrac. Th Vlasov-Poisson-Bolzmann sysm is ofn usd o govrn h moion of plasmas consising of lcrons and ions wih dispara masss whn collisions of chargd paricls ar dscribd by h wo-componn Bolzmann collision opraor. Th prurbaion hory of h sysm around global Maxwllians rcnly has bn wll sablishd in [4]. I should b mor inrsing o furhr sudy h xisnc and sabiliy of nonrivial larg im asympoic profils for h sysm vn wih slab symmry in spac, paricularly undrsanding h ffc of h slf-consisn ponial on h non-rivial long-rm dynamics of h binary sysm. In h papr, w considr h problm in h sing of rarfacion wavs. Th analyical ool is basd on h macro-micro dcomposiion inroducd in [59] ha w can b abl o dvlop ino h cas for h wo-componn Bolzmann quaions around local bi-maxwllians. Our focus is o xplor how h dispara masss and chargs of paricls play a rol in h analysis of h approach of h complx coupling sysm im-asympoically oward a nonconsan quilibrium sa whos macroscopic quaniis saisfy h quasinural nonisnropic Eulr sysm. Conns 1. Inroducion 1.1. Prsnaion of h problm 1.. Liraur and background Main rsul Oulin and ky poins of h proof 8. Two-componn macro-micro dcomposiion 9.1. Elmnary propris of collisions 9.. Dcomposiion around local bi-maxwllian Diffusion and ha-conduciviy Quasinural Eulr quaions and rarfacion wavs 0 4. Prliminary simas on wo-componn collision opraor 3 5. Proof of h main rsul 7 6. A priori simas on h fluid par Esima on zro-ordr nrgy Esima on firs-ordr dissipaion Esima on firs-ordr nrgy A priori simas on h non-fluid par Esima on zro-ordr dissipaion Esima on high-ordr nrgy Esima on nrgy wih mixd drivaivs 60 frncs Mahmaics Subjc Classificaion. Primary: 35Q0, 76P05; Scondary: 35B35, 35B40. Ky words and phrass. Vlasov-Poisson-Bolzmann sysm, dispara mass, wo-componn collision, bi-maxwllian, macro-micro dcomposiion, diffusion, ha-conduciviy, quasinural Eulr sysm, rarfacion wav, im-asympoic sabiliy, nrgy mhod, a priori simas.

2 .-J. DUAN AND S.-Q. LIU 1. Inroducion 1.1. Prsnaion of h problm. In h papr w ar concrnd wih h nonrivial long-im dynamics of h Vlasov-Poisson-Bolzmann VPB for shor sysm usd for dscribing h moion of chargd paricls in plasma.g., ions and lcrons whn collisions bwn paricls ar akn ino accoun, cf. [15, 56]. Compard o h clos-o-consan-quilibrium framwork cf. [4], h prurbaion hory around h non-consan quilibrium sa would b mor inrsing and difficul du o h apparanc of dispara masss and chargs for gas mixurs, cf. [1,, 73, 74]. In h cas of hr spac dimnsions wih slab symmry, h govrning quaions ak h form of F i + ξ 1 x F i q i m i x φ ξ1 F i = Q ii F i,f i + Q i F i,f, F + ξ 1 x F q m x φ ξ1 F = Q F,F + Q i F,F i. Th slf-consisn ponial funcion φ = φ, x saisfis h Poisson quaion x φ = q i F i dξ +q F dξ. 1. Hr F i,x,ξ and F i,x,ξ sand for h nonngaiv numbr disribuion funcions for ions and lcrons which hav posiion x and vlociy ξ = ξ 1,ξ,ξ 3 a im 0. Ions and lcrons ar assumd o hav masss m i > 0, m > 0 and chargs q i > 0, q < 0, rspcivly. Wihou loss of gnraliy w suppos m i m which is consisn wih h physical siuaion whr ions ar much havir han lcrons. garding h binary collisions bwn lik or unlik paricls on h righ-hand sid of 1.1, w assum ha hy ar dscribd by h Bolzmann opraor for h hard-sphr modl whos xac form rads Q AB F A,F B = B AB ξ ξ,ω[f A ξ F B ξ F AξF B ξ ]dξ dω, 1.3 S for A,B {i,}. Hr S is h uni sphr of. Th collision krnl is givn by B AB = σ A +σ B ξ ξ ω, 4 wih σ A > 0 dnoing h dimr of paricls of A spcis, and hrough h papr w always ak σ A = σ B = σ wihou loss of gnraliy. Th pr-collisional vlociy pair ξ,ξ and h pos-collisional vlociy pair ξ,ξ corrsponding o h ingrand of 1.3 saisfy h rlaionship ξ = ξ m B m A +m B [ξ ξ ω]ω, ξ = ξ + m A m A +m B [ξ ξ ω]ω, which follows from convrsaion of momnum and nrgy m A ξ +m B ξ = m A ξ +m B ξ, m A ξ +m B ξ = m A ξ +m B ξ, for wo colliding paricls A and B. No ha collisions bwn paricls in plasma physics ar ofn modlld by h long-rang collision opraor, for insanc, h Bolzmann opraor for sof ponials or h Landau opraor for h Coulomb ponial, cf. [80]. On may xpc ha h chniqus of analysis dvlopd in h papr oghr wih h ons in [4, 31, 3, 44] could also b applid o hos mor physical siuaions. For noaional convninc, as in [41], w dno in h squl [ ] Fi,x,ξ F,x,ξ =. F,x,ξ 1.1

3 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 3 Th sysm 1.1, 1. is supplmnd wih iniial daa [ ] F0i x,ξ F0,x,ξ = F 0 x,ξ =, 1.4 F 0 x,ξ and wih boundary daa a far filds lim F 0x,ξ = F 0± ξ, 1.5 x ± and lim φ,x = φ ±. 1.6 x ± Through h papr, du o h basic propry of h wo-componn Bolzmann collision opraor as discussd in h nx scion, w assum ha F 0± ξ ar h spaially homognous bi-maxwllians whos xac dfiniion will b inroducd in. and.1, ha is, [ ] M[ni±,u ±,θ ± ;m i ]ξ F 0± = M ± =, 1.7 M [n±,u ±,θ ± ;m ]ξ whr n i± > 0, n ±, u ± = u 1±,0,0, θ ± > 0 ar givn consans, wih h quasinural assumpion For lar us, for brviy w always ak q i n i± +q n ± = 0. n ± = n ±, n i± = q n ±, q i wih givn consans n ± > 0. A gnral qusion is o invsiga h xisnc, uniqunss, rgulariy and larg-im bhavior of soluions o h Cauchy problm on h abov VPB sysm in rms of givn iniial daa wih gnral far filds. No ha h far-fild daa a x = ± could b disinc, and hnc h long-rm dynamics could b nonrivial wih spaial variaion along h dircion of x variabl. 1.. Liraur and background. In wha follows w rviw som rlvan liraur. Firs of all, in gnral sings for larg iniial daa, h Cauchy problm or h IBVP on h VPB sysm rlad o is on-dimnsional vrsion 1.1, 1. has bn sudid by many popl. Among hm, w would only mnion Dsvills-Dolbaul [] for h long im asympoics of h sysm, Brnis-Dsvills [4] for h propagaion of rgulariy of soluions, Mischlr [66] for h iniial boundary valu problm, Bosan-Gamba-Goudon-Vassur [9] for h saionary problm on h boundd domain, and Guo [43] for global xisnc of classical soluions nar vacuum. No ha h xisnc of rnormalisd soluions of h much mor complx Vlasov-Maxwll-Bolzmann sysm wih a dfc masur has bn rcnly sudid in Arsnio-Sain-aymond [3]. In prurbaion rgim around global Maxwllians on h spaially priodic domain T 3, a numbr of progrsss hav bn mad by Guo [41, 4, 44]. His approach is basd on h robus nrgy mhod hrough consrucing h appropria nrgy funcional and nrgy dissipaion ra funcional so ha h nonlinar collision rms can b conrolld along h linarisd dynamics undr smallnss assumpion, whr h mahmaical analysis srongly rlis on boh h srucur of h sysm and h dissipaiv propry of h linarisd opraor. A gnral chniqu in h proof is o dsign good vlociy wigh funcions for closing h a priori simas. In h cas of h whol spac, h Poincaré inqualiy fails o capur h dissipaion of soluions ovr h low-frquncy domain, and hnc h nrgy mhod is also xn o furhr sudy h local sabiliy and convrgnc ras of soluions around global Maxwllians in, for insanc, Srain [70], Duan-Srain [9], Srain-Zhu [71], Wang [76], Duan-Liu [7], Duan-Li-Yang-Zhao [4], and many rfrncs hrin. cnly, h dcay srucur of h linarizd sysm is characrizd by h spcral analysis in Li-Yang-Zhong [57] and Huang [51] following h classical works by Ellis-Pinsky [33] and Ukai [75]; s also Glassy-Sruass [36] for an arly sudy of spcrum of h VPB sysm. W should poin ou ha h apparanc of h slf-consisn lcric fild or h magnic fild maks h dissipaiv srucur of sysm mor complicad.

4 4.-J. DUAN AND S.-Q. LIU A common faur in mos of works in prurbaiv rgim mniond abov is ha h larg-im bhavior of soluions o h VPB sysm is rivial, namly, F i,,x,ξ ar global Maxwllians and φ, x is a consan. Unforunaly, his propry may no b ru in h gnral siuaion whr rgarding h VPB sysm 1.1 and 1., ihr iniial daa F 0α x,ξ wih α = i, nd o wo disinc global Maxwllians 3/ mα M [nα±,u ±,θ ± ;m α]ξ = n α± xp{ m α ξ 1 u ± + ξ + ξ 3 }, πk B θ ± k B θ ± for a binary gas-mixur or φ,x nds o wo disinc consan sas φ ±, as x gos o ±, whr k B > 0 is h Bolzmann consan. Hr, as poind ou bfor, h fac ha wo Maxwllians hav h sam bulk vlociis and h sam mpraurs is du o h Bolzmann s H-horm in h wocomponn siuaion; s dails in h nx scion. In such cass, from h local macroscopic balanc laws, F α,x,ξ and φ,x ar no longr global Maxwllians and consan in larg im, rspcivly. This is h siuaion considrd in h papr, and our main objciv is o consruc h non-rivial rarfacion wav profil undr crain compaibiliy condiions on far-fild daa, and furhr show h local im-asympoic sabiliy. As a byproduc, hos rsuls in h cas of h consan-quilibrium sa cf. [4] can b rcovrd whn h srngh of rarfacion wav rducs o zro. W furhr rcall a fw liraurs for h xisnc and sabiliy of wav parns in h conn of h pur Bolzmann quaion wihou any forc as on may xpc o xnd hm o h VPB sysm undr considraion. Ths includ h shock wav cf., Caflisch-Nicolanko [1], Liu-Yu [61], Yu [79], Liu-Yu [6], rarfacion wav cf., Liu-Yang-Yu-Zhao [60], Xin-Yang-Yu [77], conac disconinuiy cf., Huang-Xin-Yang [53]; s also many ohr rfrncs hrin. No ha h consrucion of soluions wih a gnral BV daa corrsponding o h clbrad work Bianchini-Brssan [6] on h fini-dimnsional consrvaion laws a h fluid lvl is a big opn problm, cf. [67]. garding h rarfacion wav of h pur Bolzmann quaion, on can ak i as a local Maxwllian wih h macroscopic fluid quaniis solving h imann problm on h corrsponding Eulr sysm wih iniial daa givn by boh far-fild global Maxwllians. For 1.1, 1. w will xplain lar on how o consruc h rarfacion wav hrough h quasinural Eulr quaions. To sudy h local sabiliy of such local Maxwllian, anohr yp of nrgy mhod is proposd in Liu-Yu [61] and dvlopd by Liu-Yang-Yu [59]. Hr, diffrn from h prvious approach by sing prurbaions around global Maxwllians, h ky ida in [61, 59] is o mak h macro-micro dcomposiion for h singlcomponn Bolzmann quaion F,x,ξ = M,x,ξ+G,x,ξ, wih h local Maxwllian M,x,ξ drmind by h soluion F,x,ξ islf hrough consrvaion laws of mass, momnum and nrgy, and hnc wri h Bolzmann quaion in h form of h comprssibl Navir-Soks quaions coupling o high-ordr momns of h microscopic par G, x, ξ. A priori simas can b mad by a combinaion of h sabiliy analysis of fluid dynamic quaions and h kinic dissipaion of G, x, ξ from h H-horm. W no ha h nonlinar sabiliy in larg im of wav parns for h viscous comprssibl fluid on h whol lin has bn wll sudid, for insanc, Goodman [39], Masumura-Nishihara [63, 64, 65], Huang-Xin-Yang [53], s also h monograph [19] for h gnral hory. Morovr, hydrodynamic limis of h Bolzmann quaion o h classical Eulr or Navir-Soks quaions hav bn also xnsivly sudid by many popl in diffrn sings, for insanc, s h rcn works [46, 5] in prurbaion framwork and h monograph [67] in non prurbaion framwork. Whn hr is a slf-consisn forc, fw rsuls ar known on h sabiliy of wav parns for h kinic quaion. A naural saring poin is o look a h corrsponding fluid dynamic approxima quaions. In wha follows, l us mainly focus on h rarfacion wav; h issu on h shock wav or conac disconinuiy, vn only rgarding h xisnc, should b a complly diffrn problm; s h Son s book [68] and rfrnc hrin. In [30], Duan-Yang proposd o sudy h following

5 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 5 wo-fluid sysm in h isohrmal cas n α + x n α u α = 0, m α n α u α +u α x u α +T α x n α +q α n α x φ = µ α x u α, α = i,, x φ = q in i +q n, which is calld h Navir-Soks-Poisson sysm du o h apparanc of diffusion rms. Hr T α > 0, µ α > 0 ar consan mpraurs and viscosiy cofficins, rspcivly. No, as poind ou in [17], ha for a collisionlss fluid plasma, h Eulr-Poisson sysm is nough o dscrib h moniion of chargd paricls, and h global xisnc of classical soluions clos o consan sady sa has bn rcnly provd in Guo-Ionscu-Pausadr [45] in h cas of h whol spac. Sinc w ar inrsd in h sudy of 1.1, 1. in h conx of collisional plasma, i could bagood way o mak us of h hory of h viscous comprssibl fluid wih slf-consisn forcs. W sablishd in [30] h global-in-im sabiliy of h rarfacion wav and h boundary layr for h ouflow problm on 1.8 on h half lin. A drawback of h rsul is ha h larg-im bhavior of h lcric fild is zro, du o an arificial choic of physical consans, namly, m i = m, T i = T, µ i = µ, q i +q = 0, and hnc h dynamics of h wo-fluid NSP sysm is h sam as h on of h singl NS sysm. Howvr, w rcovrd a good dissipaiv propry of h lcric fild, ha is, alhough x φ is no im-spac ingrabl, i can b ru for x u r 1/ x φ by using h wo-fluid coupling propry, whr x u r > 0 has a good sign. cnly, w rmovd in [5] h rsricions on hos physical consans. Paricularly, i is found ha as long as iniial daa saisfy som compaibiliy condiions rlad o h consrucion of h rarfacion wav, h dynamics of sysm 1.8 can b dscribd in larg im by h corrsponding quasinural Eulr sysm n α + x n α u α = 0, m α n α u+u x u+t α x n α +q α n α x φ = 0, α = i,, q i n i +q n = 0, by formally assuming u i = u = u and ignoring all h scond-ordr drivaiv rms. No ha by ling n = n and n i = q q i n, h abov quasinural Eulr sysm can furhr rduc o h form of n+ x nu = 0, wih h ponial funcion φ givn by n u+u x u+ T i q +T q i m i q +m q i xn = 0, φ = m it m T i m i q +m q i lnn. Th similar rsul has bn also xn o h non-isnropic wo-fluid cas in [8] wih som chnical rsricion on h raio of masss of wo fluids. Furhrmor, in a paralll work [6] w also mak us of h sam ida o furhr hav sudid h sabiliy of h rarfacion wav of h VPB sysm for ions dynamics govrnd by h modl of h form F i +ξ 1 x F i q i x φ ξ1 F i = Q ii F i,f i, m i x φ = q i F i dξ +q n, whr compard o h wo-componn VPB sysm 1.1, h dynamical quaion of lcrons and h ions-lcrons collisions hav bn omid, and h numbr dnsiy n = f dξ has bn rplacd 1.8

6 6.-J. DUAN AND S.-Q. LIU by an analogu of h classical Bolzmann rlaion n = xp{φ/t }, or a gnral funcion dpnding on h ponial funcion φ. W rmark ha h Bolzmann rlaion has bn rcnly xnsivly visid in a lo of sudis of kinic and rlad fluid dynamic quaions, for insanc, [16, 47, 48, 49, 50, 7]. Inspird by our prvious works [5, 6, 8], w xpc in h papr o furhr considr h much mor physical wo-componn VPB sysm, paricularly xnding h rsuls in [4, 44] o h cas of prurbaions of h non-consan quilibrium sa. In fac, bsids is own imporanc in physics, h wo-componn collisional kinic sysm njoys mor complx dissipaion srucur compard o ihr h modlling sysm sudid in [8] or h singl-componn kinic sysm, cf. [1, 18, 0, 1, 34, 35, 37, 69]. For h numrical and mahmaical invsigaions on non-rivial profils of a gas mixur wih h Bolzmann collision, w would mnion [, 8, 11, 55, 73, 74] and rfrnc hrin; s also discussions in [5, 7, 3, 54] on h limi of h gas mixur kinic quaions o h fluid dynamical quaions. For h wo-componn VPB sysm 1.1, 1. undr considraion, dispara masss and chargs play a ky rol in h sabiliy analysis of non-consan im-asympoic profils, which is diffrn from h on for considring prurbaions around consan quilibrium sas whr all physical consans can b normalisd o b on wihou loss of gnraliy, cf. [41]. Morovr, as discussd in [37], h dissipaion by h wo-componn Bolzmann collisions bhavs in a complx way, and h approach o quilibrium can b dividd roughly ino wo procsss: on is calld h Maxwllizaion which occurs du o ihr slf-collisions alon, or cross-collisions, or a combinaion of boh, and h ohr is calld quilibraion of wo spcis, i.., h vanishing of diffrncs in vlociy and mpraur in h spcis. In h papr, w xpc o provid an analyical viw o his issu by furhr dvloping h macro-micro dcomposiion in h wo-componn cas Main rsul. W now bgin o sa h main rsul of h papr. Bfor doing ha, w firs inroduc som noaions. L [n x/,u x/,θ x/] and [n r,x,u r,x,θ r,x] wih u = u 1,0,0 and ur = u r 1,0,0, whr h far-fild daa a x = ± ar givn by [n ±,u 1±,θ ± ], b h 3-family cnrd rarfacion wav and h corrsponding smooh rarfacion wav, rspcivly, in conncion wih h quasinural Eulr sysm n+ x nu 1 = 0, q i + q 1 u 1 +u 1 x u 1 + 3m q i +m i q n xnθ = 0, 1.9 θ+u 1 x θ+ 3 θ xu 1 = 0. S Scion 3 for mor dails o h drivaion of h sysm 1.9. As in [78], w dfin [ ] [ ] M i M[n i,u,θ ;m i ]ξ =, 1.10 M [n,u,θ ;m ]ξ M wih consans n i, n, u = [u 1,0,0], θ saisfying 1 sup θ r,x < θ < sup θ r,x,,x +,x + { sup q } n r,x n i,x + q i + nr,x n + u r,x u + θ r,x θ < η 0, 1.11 for a consan η 0 > 0 which is suiably small. Thn h main rsul of his papr can b sad as follows. Mor noaions will b xplaind lar on.

7 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 7 Thorm 1.1. Considr h Cauchy problm on h VPB sysm 1.1, 1., 1.4, 1.5, 1.6, 1.7. Assum [n +,u 1+,θ + ] n,u 1,θ, φ + = φ, and q i 9 q, whr n,u 1,θ is dfind in 3.4 dnoing h s of righ consan sas conncd wih h lf consan sa [n,u 1,θ ] hrough h 3-family rarfacion wav of h quasinural Eulr sysm 1.9. L α + β 0 δ r = n + n + u 1+ u 1 + θ + θ, 1.1 b h wav srngh which is suiably small. Thr ar consans ǫ 0 > 0, 0 < η 0 δ r and C 0 > 0, such ha if F 0i x,ξ 0, F 0 x,ξ 0, and α β F 0i x,ξ M [ q qi n r,u r,θ r ;m i ]0,xξ 1 + α + β 0 α β F 0 x,ξ M [n r,u r,θ r ;m ]0,xξ + α x φ0,x H 1 +δ r ǫ 0, α + β 0 L x L x L ξ L ξ M i ξ 1 M ξ hn h Cauchy problm admis a uniqu global soluion [F i,x,ξ 0,F,x,ξ 0,φ,x] saisfying sup α β F i,x,ξ M [ q 0 qi n r,u r,θ r ;m i ],xξ L x L 1 ξ +sup 0 +sup 0 C 0 ǫ 0. α + β 0 α β F,x,ξ M [n r,u r,θ r ;m ],xξ α x φ,x H 1 Morovr, i holds ha { Fi sup sup,x,ξ M [ q + x qi n,u,θ ]x/ξ L 1 ξ M i ξ L x + F,x,ξ M [n,u,θ ]x/ξ L ξ M i ξ 1 M ξ L 1 ξ M ξ } 1.13 = W giv a fw rmarks on h abov horm. Th sima 1.14 indd shows h convrgnc of h wo-componn VPB sysm 1.1, 1. o h quasinural Eulr sysm 3.4 in h sing of rarfacion wavs for wll-prpard small and smooh iniial daa. Thus, h long-rm dynamcis of h VPB sysm can b a non-rivial im-asympoic profil conncing wo disinc consan quilibrium sas. As sn in 1.9, dispara masss and chargs of paricls also nr ino h asympoic profil and hnc hy can ak h ffc on h nonrivial larg im bhavior of h complx VPB sysm. Th obaind rsul may b rgardd as a gnralisaion of h xising prurbaion hory for h VPB sysm in h cass ihr for iniial daa around consan quilibrium sas in [4] or for h singl-componn Bolzmann collision in [60] and [6]. Mor imporanly, alhough w may only provid a prliminary undrsanding of h sabiliy of h rarfacion wav profil for h VPB sysm, i is xpcd ha h analysis dvlopd in h papr could b adopd o ra many ohr rlvan problms in conncion wih hos fluid-yp sysms drivd in Scion, cf. [40]. In h nd w poin ou ha h condiion q i 9 q is only a chnical assumpion usd in h proof of h zro-ordr nrgy sima; s 6.4 for is posiiviy in Scion 6.1. On h ohr hand,

8 8.-J. DUAN AND S.-Q. LIU h condiion φ + = φ is ssnially rquird in h proof of h horm, and i is indd unknown how o consruc a non-rivial larg-im profil of h ponial funcion φ associad wih φ + φ as w did in [5, 6, 8] Oulin and ky poins of h proof. Th proof of Thorm 1.1 is basd on h wocomponn dcomposiion as wll as h rfind nrgy mhod. Firs of all, H-horm of h wocomponn Bolzmann quaions implis ha h larg-im bhavior of h VPB sysm should b in conncion wih a bi-maxwllian M drmind by six local fluid quaniis n i, n, u = u 1,u,u 3, and θ. This inducs on o dfin M in rms of F such ha hy hav h sam avrag valus wih rspc o all six wo-componn collision invarians, namly, ψ j ξ Fdξ = ψ j ξ Mdξ, j = 1,,...,6. Thrfor, h nrgy dissipaion of h non-fluid par G := F M can b obaind by h linarisd H-horm. S h corciviy sima 4.5 in Lmma 4. whos proof is basd on h compacnss argumn as in [41]. In mos applicaions of 4.5, on has o vary h wigh funcion such ha h modifid macroscopic quaniis ar sufficinly clos o hos of h background bi-maxwllian, and his has bn don in Lmma 4.3. Morovr, as in [78], i can no b dirc o mak h zro-ordr nrgy sima on G, bcaus M 1/ G is no ingrabl in L,x,ξ. To ra his roubl, on has o consruc a background non-fluid funcion G in rms of h im-asympoic fluid profil, s 5.8 for h xac formula. W would mphasis ha as h larg-im profil of φ, x undr h assumpion φ + = φ is xpcd o b consan, G dos no involv any rm of h ponial funcion, which is qui diffrn from h prvious work [6] in h singl-componn cas. Du o his chniqu, i sms impossibl for us o consruc a non-rivial larg-im ponial funcion φ r,x accouning for som disinc far-fild daa φ ± similar o h wo-fluid modls considrd in [5, 8]. Th a priori simas on h fluid par M of h soluion F is much mor chnical. Th ky poin is o find ou h appropria viscous fluid-yp quaions of h macroscopic quaniis of M such ha h nrgy simas on h fluid par can b conrold in rms of h non-fluid par in a good way; s Proposiion 5.1. Considring h wo-componn momn quaions wih rspc o all collision invarians, cf..8 and.9, and using h wo-componn macro-micro dcomposiion, i is sraighforward o obain h wo-fluid Eulr-Poisson yp sysm.10,.11,.1. To capur h diffusion and ha-conduciviy, w ssnially hav usd h dissipaion ffc of lik-paricl collisions. In fac, using h dcomposiion, on can rwri Q A F,F in h way on h righ-hand sid of.15, and hnc g h rprsnaion.16, whr w no ha h righ-hand firs rm is xacly rsponsibl for diffusion and ha-conduciviy and h rmaining rm A dos no involv any linar rm in φ, x. Thrfor, by plugging.16 ino h wo-fluid Eulr-Poisson yp sysm, on can furhr obain h wo-fluid Navir-Soks-Poisson yp sysm.18,.19 and.1, which bcoms h ky sp for making h nrgy simas on h fluid par as in [8]. Th rs of h papr is arrangd as follows. In h following hr scions w mak som prparaions for h proof of h main rsul. Paricularly, in Scion, w inroduc h macro-micro dcomposiion for h wo-componn Bolzmann quaion wih dispara masss. In rms of h dcomposiion, w driv h zro-ordr and firs-ordr approxima fluid-yp sysms, which is a crucial sp for boh h consrucion of larg-im rarfacion wav profils and h nrgy simas on h sabiliy of profils. No ha w also mak us of h singl-componn projcions o find ou h diffusion and ha-conduciviy of h fluid par. In Scion 3, w dduc h quasinural Eulr sysm as h im-asympoic quaions of h VPB sysm, and furhr consruc h corrsponding rarfacion wav profil and sudy h basic propris of h profil. In Scion 4, w considr h wo-componn Bolzmann collision opraor and provid simas on dissipaion of h linarisd opraor and also uppr bound simas on h nonlinar rm boh wih rspc o som local bi-maxwllians. In Scion 5, w giv a skch of h proof of Thorm 1.1 basing on wo main proposiions whos proofs ar pospond o Scion 6 and Scion 7, rspcivly.

9 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 9 Noaions. Throughou h papr, C dnos som gnric posiiv gnrally larg consan and λ dnos som gnric posiiv gnrally small consan, whr boh C and λ may ak diffrn valus in diffrn placs. D E mans ha hr is a gnric consan C > 0 such ha D CE. D E mans D E and E D. L p 1 p + sands for h L p x norm. Somims, for convninc, w us o dno L x -norm, and us, o dno h innr produc in L x or L x,ξ. W also us H k k 0 o dno h usual Sobolv spac wih rspc o x variabl. W dno α β = α 0 α 1 x β ξ and β ξ = β 1 ξ 1 β ξ β 3 ξ 3, wih α = α 0 +α 1 and β = β 1 +β +β 3. W call β β if ach componn of β is no grar han ha of β. W also call β < β if β β and β < β. For β β, w also us C β β o dno h usual binomial cofficin. Th sam noaions also apply o α and α. For h noaional simpliciy, w us M 1 o dno h diagonal marix diag1/m i,1/m. Similarly, h diagonal marix diag1/ M i,1/ M is dnod by M 1/. Th sam noaions also apply o all bi-maxwllians usd in h papr, for insanc, M, M and M, c.. Two-componn macro-micro dcomposiion In his scion w inroduc h wo-componn macro-micro dcomposiion. Firs of all, w lis h lmnary propris of h collision opraor, including h local quilibrium sa, an idniy, collision invarians, and h nropy inqualiy. An imporan and inrsing concp is h bi- Maxwllian, cf. []. Afr ha, w inroduc h fluid quaniis for a dispara mass binary mixur, dfin h macro-micro dcomposiion of h soluion, and driv h zro-ordr macroscopic balanc laws. In h nd, w discuss how o capur h vlociy diffusion and ha conduciviy..1. Elmnary propris of collisions. In wha follows w lis a fw lmnary propris of h wo-componn Bolzmann collision opraor wihou any proof. Inrsd radrs may rfr o [, 15]. To h nd, w always dno M [n,x,u,x,θ,x;m] ξ = n,x m πk B θ,x 3/ xp m ξ u,x,.1 k B θ,x o b a local Maxwllian wih h fluid dnsiy n,x, bulk vlociy u,x, and mpraur θ,x as wll as h paricl mass m > 0. [P1]. For h lik-paricls collision A = i or, whr Q AA F A,F A = 0 iff F A = M A, M A := M [na,x,u A,x,θ A,x;m A ]ξ, is a gnral local Maxwllian of A-spcis. For lar us i is also convnin o rwri M A as { n A,x M A = πka θ A,x 3/ xp ξ u A,x }, k A θ A,x wih k A := k B m A, and for brviy w always ak k B = 3. For h unlik-paricls collision A = B, Q AB M A,M B = 0, providd ha u A = u B and θ A = θ B. [P]. For F = [F i,f ] T, w s [ ] [ ] Qi F,F Qii F i,f i +Q i F i,f QF,F := =. Q F,F Q F,F +Q i F,F i Thn, for G = [G i,g ] T, on has QF,F,G L ξ L ξ = 1 4 I iif i,g i 1 I if i,f,g i,g 1 4 I F,G,

10 10.-J. DUAN AND S.-Q. LIU wih I ii F i,g i = [F i ξ F iξ F i ξ F i ξ] S [G i ξ +G iξ G i ξ G i ξ]b ξ ξ,ωdξdξ dω, I F,G = [F ξ F ξ F ξ F ξ] S [G ξ +G ξ G ξ G ξ]b ξ ξ,ωdξdξ dω, I i F i,f,g i,g = [F i ξ F ξ F i ξ F ξ] S [G i ξ +G ξ G i ξ G ξ]b ξ ξ,ωdξdξ dω. [P3]. Two-componn Bolzmann collision opraor Q has six collision invarians: [ ] [ [ ] [ 1 mi 0 mi ξ ψ 1 =, ψ 0 =, ψ m] j = j, j = 3,4,5, ψ m ξ 6 = i ξ ], j 1 m ξ saisfying ψ j QF,Fdξ = 0, j = 1,,...,6. Spcifically, i holds ha ψ 1i Q AB F A,F B dξ = ψ Q AB F A,F B dξ = 0, for A {i,}, 3 ψ ja Q AA F A,F A dξ = 0, j = 3,4,5,6, for A,B {i,}, and ψ ja Q AB F A,F B dξ + ψ jb Q BA F B,F A dξ = 0, for A = B. Hr for 1 j 6, ψ ji and ψ j sand for h firs and scond componn of h vcor-valud funcion ψ j. [P4]. For any F = [F i,f ] T, QF,F,lnF L ξ L ξ := [ ] lnfi QF,F, = Q lnf A F,FlnF A dξ 0, L ξ L ξ A=i, and = holds iff F = M is a bi-maxwllian dfind by [ ] [ ] Mi M[ni,u,θ;m i ]ξ M = =.. M [n,u,θ;m ]ξ M Paricularly, if QF,F = 0 hn F is a bi-maxwllian. Hr, w mphasis ha for A = i or, M A is diffrn from M A. In fac, h bi-maxwllian M is a wo-componn quilibrium sa, wih M i, M bing h firs and scond componn of M, and M i, M ar Maxwllians of i-spcis and -spcis, rspcivly, which ar singl-spcis quilibrium sas... Dcomposiion around local bi-maxwllian. As in h singl-componn cas [59], w inroduc h wo-componn macro-micro dcomposiion around local bi-maxwllians in h following way. L F = F,x,ξ b a funcion saisfying h wo-componn VPB sysm 1.1. W dcompos i as F,x,ξ = M,x,ξ+G,x,ξ..3 Hr M = M,x,ξ is h macroscopic or fluid par rprsnd by h local bi-maxwllian [ ] [ ] Mi M[ni,x,u,x,θ,x;m i ]ξ M = =, M [n,x,u,x,θ,x;m ]ξ M

11 such ha for all fix collision invarians, THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 11 ψ j ξ [F,x,ξ M,x,ξ]dξ = 0, j = 1,,...,6. No ha M, x, ξ involvs h xac six macroscopic quaniis [ n i,x,n,x,u,x = u 1,x,u,x,u 3,x ],θ,x, which can b drmind by m i n i ψ 1 F,x,ξdξ, m n ψ F,x,ξdξ, m i n i +m n u j ψ j F,x,ξdξ, j = 3,4,5, n i θ+ 1 m i u,x +n θ+ 1 m u,x ψ 6 F,x,ξdξ. Thrfor, M is wll dfind, and hn G := F M is h microscopic or non-fluid par dnod by [ ] Gi,x,ξ G = G,x,ξ =. G,x,ξ W rmark ha F also njoys anohr kind of h dcomposiion wih ach componn bing around h singl-spcis local quilibrium sa F = M1 i +G 1 i M 1 +G 1,.4 whr for A = i or, M 1 A := M [n A,x,u A,x,θ A,x;m A ]ξ is h local quilibrium sa of collisions of lik-paricls wih h fluid quaniis drmind by n A,x := F A,x,ξdξ, 3 1 u Aj,x := ξ j F A,x,ξdξ, j = 1,,3, n A,x 1 θ A,x := ξ u A,x F A,x,ξdξ. 3k A n A I should b poind ou ha.4 is diffrn from.3. On can also obain h link of h wocomponnfluidquaniis[n i,n,u,θ]andhsingl-componnfluidquaniis[n A,u A,θ A ]A = i, in h way ha u = m in i u i +m n u m i n i +m n, θ = n iθ i +n θ n i +n + m i m n i n 3k B n i +n m i n i +m n u i u. W furhr rmark ha hough h singl-componn fluid quaniis u i,u,θ i,θ ar no macroscopic in h wo-componn sns, h diffrncs of hm wih h corrsponding wo-componn fluid quaniis u, θ urn ou o b microscopic in h wo-componn sns. Namly, afr dirc compuaions, for A = i,, u A u = 1 ξg A dξ, n A θ A θ = 1 u u A 1 + ξ u A G A dξ. 3k A 3k A n A

12 1.-J. DUAN AND S.-Q. LIU This obsrvaion is a ky poin for undrsanding h dissipaion of macroscopic quaniis of h wo-componn sysm. W bgin o inroduc h wo-componn projcion opraors P M 0 and P M 1. For his purpos, on has o firs inroduc an orhonormal basis rlad o an arbirary bi-maxwllian M i M =. M Associad wih M, w dfin an innr produc in ξ variabl as F i ξh i ξ F ξh ξ dξ + F,H M M i M for funcions F = [F i,f ] T and H = [H i,h ] T such ha h ingrals abov is wll dfind. Using h innr produc wih rspc o h bi-maxwllian M, h following funcions spanning h macroscopic subspac ar pairwis orhogonal: χ M 1 ξ; n i,û, θ χ M ξ; n,û, θ χ M j ξ; n i, n,û, θ χ M 6 ξ; n i, n,û, θ χ M j,χ M k 1 M i ni, 0 0 1, M n mi ξ j û j mi n i +m n k i θ m ξ j û j mi n i +m n k θ 1 ξ û 6 ni + n k i θ ξ û 1 6 ni + n k θ M = δ jk, for j,k = 1,,,6, dξ, M i, j = 3,4,5, M 3 3 M i, M whr δ jk is h Kronckr dla. Wih h abov orhonormal basis, h wo-componn macroscopic projcion P M 0 and h wo-componn microscopic projcion P M 1 can b dfind as P M 0 F 6 F,χ M j P M 1 F F P M 0 F. M χ M j, Noic ha h opraors P M 0 and P M 1 ar orhogonal and hus slf-adjoin projcions wih rspc o h innr produc, M, i.., P M 0 P M 0 = P M 0, P M 1 P M 1 = P M 1, P M 0 P M 1 = P M 1 P M 0 = 0. Morovr, i is sraighforward o chck ha P M 0 F,P M1 F M = P M0 F,P M 1 F M = 0

13 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 13 for any wo bi-maxwllians M and M. Finally w rmark ha du o h dfiniions of P M0 and P M 1, on has P M 0 F = M, P M 1 F = G, whnvr h bi-maxwllian M = M is h macroscopic par of F. Wih h wo-componn macro-micro dcomposiion of h soluion F o h VPB sysm 1.1, 1., on may driv h dynamical quaions of h fluid par M and h non-fluid par G. For his, in h squl w dno QF,H = [ ] Qi F,H = Q F,H [ ] Qii F i,h i +Q i F i,h. Q F,H +Q i F,H i For convninc, w rwri 1.1 as h following vcor form F+ξ 1 x F+q 0 x φ ξ1 F = QF,F,.5 whr q 0 dnos h diagonal marix diag q i /m i, q /m. Upon using h macro-micro dcomposiion.3, h VPB sysm.5 can b furhr rwrin as M+G+ξ 1 x M+G+q 0 x φm+g = L M G+QG,G. Hr, L M is h wo-componn linarizd Bolzmann collision opraor givn by [ ] Qi M,G+Q i G,M L M G = Q M,G+Q G,M [ ] Qii M i,g i +Q ii G i,m i +Q i M i,g +Q i G i,m =,.6 Q M,G +Q G,M +Q i M,G i +Q i G,M i and h nonlinar par QG,G is dfind as [ ] Qi G,G [ ] Qii G i,g i +Q i G i,g QG,G = Q G,G =. Q G,G +Q i G,G i Applying P M 0 and P M 1 o.5 rspcivly, on has and M+P M 0 ξ 1 x M+P M 0 ξ 1 x G+P M 0 q 0 x φ ξ1 M+P M 0 q 0 x φ ξ1 G = 0, G+P M 1 ξ 1 x M + P M 1 ξ 1 x G+P M 1 q 0 x φ ξ1 M + P M 1 q 0 x φ ξ1 G = L M G+QG,G..7 Morovr, on also may driv h fluid-yp sysm of h macroscopic quaniis of h fluid par M by using six wo-componn collision invarians ψ j ξ 1 j 6. For lar us, w sar from wo componn quaions of 1.1. Taking h innr produc of quaions of A = i and A = wih ψ ja ovr ξ rspcivly, i follows ha ψ ji F i +ξ 1 x F i q i x φ ξ1 F i dξ = ψ ji Q i F,Fdξ, j = 1,3,4,5,6,.8 m i and ψ j F +ξ 1 x F q x φ m ξ1 F dξ = ψ j Q F,Fdξ, j =,3,4,5,6..9

14 14.-J. DUAN AND S.-Q. LIU Applying h componn forms F A = M A + G A A = i, of h macro-micro dcomposiion F = M+G as wll as h dfiniion of h bi-maxwllian M, on furhr dducs n i + x n i u 1 = ξ 1 x G i dξ, and m i n i u 1 +m i n i u 1 x u xn i θ+q i n i x φ = ψ 3i G i dξ ψ 3i ξ 1 x G i dξ + ψ 3i Q i F,Fdξ +u 1 m i ξ 1 x G i dξ, m i n i u j +m i n i u 1 x u j = ψ j+i G i dξ ψ j+i ξ 1 x G i dξ + ψ j+i Q i F,Fdξ +u j m i ξ 1 x G i dξ, j =,3,.10 n i θ +n i u 1 x θ+ n iθ 3 xu 1 = ψ 6i G i dξ ψ 6i ξ 1 x G i dξ + ψ 6i Q i F,Fdξ 3 + u j ψ j+i ξ 1 x G i dξ u j m i ξ 1 x G i dξ + u j ψ j+i G i dξ 3 u j ψ j+i Q i F,Fdξ +θ ξ 1 x G i dξ + i x φ ψ 6i ξ1 G i dξ, 3 m i n + x n u 1 = ξ 1 x G dξ, m n u 1 +m n u 1 x u xn θ+q n x φ = ψ 3 G dξ ψ 3 ξ 1 x G dξ + ψ 3 Q F,Fdξ +u 1 m ξ 1 x G dξ, m n u j +m n u 1 x u j = ψ j+ G dξ ψ j+ ξ 1 x G dξ + ψ j+ Q F,Fdξ +u j m ξ 1 x G dξ, j =,3,.11 n θ+n u 1 x θ + n θ 3 xu 1 = ψ 6 G dξ ψ 6 ξ 1 x G dξ + ψ 6 Q F,Fdξ 3 + u j ψ j+ ξ 1 x G dξ u j m ξ 1 x G dξ + u j ψ j+ G dξ 3 u j ψ j+ Q F,Fdξ +θ ξ 1 x G dξ + x φ ψ 6 ξ1 G dξ. 3 m Hr h slf-consisn ponial φ saisfis h Poisson quaion xφ = q i n i +q n..1 No ha if on only considrs h macroscopic balanc laws of.5 in rms of six collision invarians, on can obain six dynamical quaions of fluid quaniis n i,n,u 1,u,u 3,θ which corrspond o h abov wo sysms.10 and.11 afr boh h quaions of momnums and h quaions of

15 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 15 mpraurs ar akn summaion, rspcivly. Namly, on has m i n i +m n u 1 +u 1 x u x[n i +n θ]+q i n i +q n x φ = x ξ 1 ψ 3 Gdξ, m i n i +m n u j +u 1 x u j = x ξ 1 ψ j+ Gdξ, j =,3, n i +n θ+u 1 x θ+ 3 n i +n θ x u 1.13 = x ξ 1 ψ 6 Gdξ + 3 u j x ξ 1 ψ j+ Gdξ 3 +θ [ξ 1,ξ 1 ] T ξ x Gdξ + x φ [q i,q ] T ξ1 Gdξ. Morovr, if on furhr ignors hos rms involving h non-fluid par G, on has h closd fluidyp sysm of six knowns n i,n,u 1,u,u 3,θ: n i + x n i u 1 = 0, n + x n u 1 = 0, m i n i +m n u 1 +u 1 x u x[n i +n θ]+q i n i +q n x φ = 0, m i n i +m n u j +u 1 x u j = 0, j =,3,.14 n i +n θ+u 1 x θ+ 3 n i +n θ x u 1 = 0, x φ = q in i +q n. No ha.14 could b hough o b h zro-ordr fluid dynamic approximaion of h VPB sysm 1.1, Diffusion and ha-conduciviy. As in [59], in ordr o furhr considr h firs-ordr fluid dynamic approximaion of h VPB sysm, on has o find ou diffusion and ha-conduciviy corrsponding o vlociy funcion u and mpraur funcion θ, rspcivly. On way for ha is o formally solv G hrough h microscopic quaion.7 as G = L 1 { M P M 1 ξ 1 x M } +, wih =L 1 { M G+P M 1 ξ 1 x G+P M 1 q 0 x φ ξ1 G QG,G } { P M 1 q 0 x φ ξ1 M } +L 1 M }{{} φ, and hn plug i ino.13 so ha hos rms rlad o diffusion and ha-conduciviy could b obaind by compuing x ξ 1 ψ j L 1 { M P M 1 ξ 1 x M } dξ, 3 j 6. W rmark ha such ramn may no b a good way bcaus i is unknown whhr or no h abov ingrals wih L 1 { M P M 1 ξ 1 x M } rplacd by φ ar vanishing, and hus h righ-hand rms of.13 could involv φ in a linar way which should giv much roubl o simas on φ. Thrfor w urn o anohr way for obaining h ffc of diffusion and ha-conduciviy on h basis of wo singl-componn quaions of h VPB sysm 1.1. Th ky poin is o inroduc singl-componn projcion opraors P M A 0 and P M A 1 for A = i and, whr w rcall ha M i,

16 16.-J. DUAN AND S.-Q. LIU M ar h componn funcions of h bi-maxwllian M dfind in h wo-componn macro-micro dcomposiion.3. To do so, similarly as bfor, for any givn local Maxwllian M A = M [ na,û A, θ A], w dfin an innr produc in ξ as fξgξ dξ, f,g MA M A for wo scalar funcions f and g such ha h ingral on h righ is wll dfind. Applying h abov innr produc wih rspc o h singl Maxwllian M A, h following fiv funcions ar also orhonormal: χ M A 0 χ M A i ξ; n A,û A, θ A ξ; n A,û A, θ A 1 na MA, ξ j û j MA, j = 1,,3, k A n A θa χ M A 4 ξ; n A,û A, θ A 1 ξ û 3 M A, 6 na k A θa χ M A j,χ M A k = δ jk, for j,k = 0,1,,3,4. M A Wih h abov orhonormal s, w can also dfin h macroscopic projcion P M A 0 and h microscopic projcion P M A 1 as follows P M A 0 h 4 j=0 h,χ M A j P M A 1 h h P M A 0 h. M A χ M A j, No ha h opraors P M A 0 and P M A 1 njoy h similar propris as P M 0 and P M 1 givn in h prvious subscion. Using noaions abov and rcalling h dcomposiion.3, h soluion F A,x,ξ A = i, of 1.1 saisfis P M A 0 F A = M A +P M A 0 G A, P M A 1 F A = P M A 1 G A. Noicing ha { } P M A qa x φ 1 ξ1 M A = 0. m A Acing P M i 1 and P1 M o wo quaions of 1.1 rspcivly, on has ha for A = i,, { } P M A 1 G A +P M A 1 {ξ 1 x M A }+P M A 1 {ξ 1 x G A } P M A qa x φ 1 ξ1 G A m A = L MA P M A 1 G A +P M A 1 Q A G,G,.15 whr for h A-componn, w hav dfind h linarizd Bolzmann collision opraor around h local Maxwllian M A by and h rmaining rm by L MA P M A 1 G A = L MA G A = Q AA M A,G A +Q AA G A,M A, Q A G,G = Q AB M A,G B +Q AB G A,M B +Q AA G A,G A +Q AB G A,G B,

17 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 17 wih A = B. Morovr, from.15, i follows ha { } P M A 1 G A = L 1 M A P M A 1 {ξ 1 x M A } + A,.16 wih { { }} A = L 1 M A P M A 1 G A +P M A 1 {ξ 1 x G A } P M A qa x φ 1 ξ1 G A m A { } L 1 M A P M A 1 Q A G,G..17 Backo.10and.11, wrwrig A inhrigh-handscondrmsofmomnumandmpraur quaions as G A = P M A 0 G A +P M A 1 G A, and hn us.16 o rplac P M A 1 G A so as o obain by som furhr calculaions: n i + x n i u 1 = ξ 1 x G i dξ, m i n i u 1 +u 1 x u xn i θ+q i n i x φ = 3 x µ i θ x u 1 ψ 3i G i dξ ψ 3i ξ 1 x P M i 0 G i dξ + ψ 3i Q i F,Fdξ +u 1 m i ξ 1 x G i dξ, ψ 3i ξ 1 x i dξ, m i n i u j +u 1 x u j = x µ i θ x u j ψ j+i G i dξ ψ j+i ξ 1 x P M i 0 G i dξ + ψ j+i Q i F,Fdξ +u j m i ξ 1 x G i dξ, ψ j+i ξ 1 x i dξ, j =,3, n i θ+n i u 1 x θ + n iθ 3 xu 1 = x κ i θ x θ+3µ i θ x u 1 + ψ 6i G i dξ 1 3 u j 3 j= ψ 6i ξ 1 x P M i 0 G i dξ + µ i θ x u j ξ 1 ψ 6i 3 3 u j ψ j+i x i dξ u j ψ j+i ξ 1 x P M i 0 G i dξ 3 m i ξ 1 x G i dξ + u j ψ j+i G i dξ + ψ 6i Q i F,Fdξ 3 u j ψ j+i Q i F,Fdξ +θ 3 ξ ξ 1 x G i dξ +q i x φ 3 ξ 1 G i dξ,.18

18 18.-J. DUAN AND S.-Q. LIU and n + x n u 1 = ξ 1 x G dξ, m n u 1 +u 1 x u xn θ+q n x φ = 3 x µ θ x u 1 ψ 3 G dξ ψ 3 ξ 1 x P0 M G dξ + ψ 3 Q F,Fdξ +u 1 m ξ 1 x G dξ, ψ 3 ξ 1 x dξ, m n u j +u 1 x u j = x µ θ x u j ψ j+ G dξ ψ j+ ξ 1 x P0 M G dξ + ψ j+ Q F,Fdξ +u j m i ξ 1 x G dξ, ψ j+ ξ 1 x dξ, j =,3, n θ +n u 1 x θ+ n θ 3 xu 1 = x κ θ x θ+3µ θ x u 1 + ψ 6 G dξ 3 1 u j 3 j= ψ 6 ξ 1 x P M 0 G dξ + µ θ x u j ξ 1 ψ u j ψ j+ x dξ u j ψ j+ ξ 1 x P M 0 G dξ m 3 ξ 1 x G dξ + 3 u j ψ 3 j+ G dξ + ψ 3 6 Q F,Fdξ 3 u j ψ j+i Q F,Fdξ +θ 3 ξ ξ 1 x G dξ +q x φ 3 ξ 1 G dξ,.19 whr for A = i and h viscosiy cofficin µ A θ and ha-conduciviy cofficin κ A θ ar rprsnd by µ A θ = 1 3k A θ = 1 k A θ m A ξ 1 L 1 M [1,u,θ;mA ] m A ξ 1 ξ j L 1 M [1,u,θ;mA ] ma ξ1 M [1,u,θ;m A ] dξ ma ξ 1 ξ j M [1,u,θ;mA ] dξ > 0, j =,3, and κ A θ = 1 4k A θ m A ξ u ξ j L 1 M ma [1,u,θ;mA ξ u ξ ] j M [1,u,θ;mA ] dξ > 0, j = 1,,3, rspcivly. Hr L 1 M [1,u,θ;mA ] is dfind in h sam way as L 1 M A.

19 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 19 Similarly for obaining.13, from.18 and.19, on has h quaions of momnum for u = u 1,u,u 3 : m i n i +m n u 1 +u 1 x u x[n i +n θ]+q i n i +q n x φ = 3 x [µ i θ+µ θ x u 1 ] ψ 3i ξ 1 x P M i 0 G i dξ ψ 3 ξ 1 x P0 M G dξ ξ 1 ψ 3 x dξ, m i n i +m n u j +u 1 x u j = x [µ i θ+µ θ x u j ] ψ j+i ξ 1 x P M i 0 G i dξ 3 ψ j+ ξ 1 x P0 M G dξ ξ 1 ψ j+ x dξ, j =,3, and h quaion of mpraur for θ:.0 n i +n θ +u 1 x θ+ 3 n i +n θ x u 1 = x κ i θ+κ θ x θ+3µ i θ+µ θ x u ξ 1 ψ 6 u j ψ j+ x dξ 3 ψ 6 ξ 1 x P0 M G dξ u j ψ j+ ξ 1 x 3 + x φ P M 0 G dξ +θ 1 ξ [q i,q ] T ξ1 Gdξ, ψ 6i ξ 1 x u j ψ j+i ξ 1 x 3 µ i θ+µ θ x u j j= P M i 0 G i dξ P M i 0 G i dξ [ξ 1,ξ 1 ] T x Gdξ.1 whr w hav dnod = [ i, ] T. No ha n i,n saisfy quaions of mass consrvaion: n i + x n i u 1 = ξ 1 x G i dξ, 3. n + x n u 1 = ξ 1 x G dξ. Morovr, as for considring.14, if on furhr ignors hos rms involving h non-fluid par G, on has h closd viscous fluid-yp sysm of six knowns n i,n,u 1,u,u 3,θ: n i + x n i u 1 = 0, n + x n u 1 = 0, m i n i +m n u 1 +u 1 x u x[n i +n θ] +q i n i +q n x φ = 3 x [µ i θ+µ θ x u 1 ], m i n i +m n u j +u 1 x u j = x [µ i θ+µ θ x u j ], j =,3, n i +n θ +u 1 x θ+ 3 n i +n θ x u 1 = x κ i θ+κ θ x θ.3 xφ = q i n i +q n. +3µ i θ+µ θ x u µ i θ+µ θ x u j, j=

20 0.-J. DUAN AND S.-Q. LIU No ha.3 could b hough o b h firs-ordr fluid dynamic approximaion of h VPB sysm 1.1, 1.. For lar us, w also inroduc h nropy quaniy and h corrsponding quaion. For givn dnsiis n i, n and mpraur θ, w dfin h nropy S by S = 4π 3 lnn i +n +ln 3 θ According o.0 and.1 as wll as., on dducs ha S saisfis S +u 1 x S = 1 nθ xκ i θ+κ θ x θ+ 3µ iθ+µ θ 3 x u j µ i θ+µ θ + x u j nθ nθ j= + 1 [ξ 1,ξ 1 ] T x Gdξ 1 3 ψ 6 u j ψ j+ x dξ 3n nθ 1 nθ + 1 nθ + xφ nθ P M i 0 G i dξ 1 nθ ψ 6i ξ 1 x 3 u j ψ j+i ξ 1 x 3 ξ [q i,q ] T ξ1 Gdξ, ξ 1 ψ 6 ξ 1 x P M i 0 G i dξ + 1 nθ P M 0 G dξ 3 u j ψ j+ ξ 1 x P M 0 G dξ whr w hav dnod n = n i +n. For lar us, w also inroduc h prssur funcion P by No ha from.4, on has wih h consan k givn by k := 1 π. P = 3 nθ. θ = 3 ks n /3, P = 3 nθ = ks n 5/3, 3. Quasinural Eulr quaions and rarfacion wavs call ha.14 and.3 ar hough o b h zro-ordr and firs-ordr fluid dynamic approximaion of h VPB sysm 1.1, 1., rspcivly, if h wo-componn non-fluid par G is ignord. Inspird by his, on may xpc o jusify in a rigorous way h larg-im asympoics of h VPB sysm 1.1, 1. oward.14 or.3. Th goal of his papr is o ra his in h sing of rarfacion wavs. Insad of dircly using.14 and.3, h xpcd larg-im asympoic sysm is h quasinural Eulr sysm in h form of n i + x n i u 1 = 0, n + x n u 1 = 0, m i n i +m n u 1 +u 1 x u x[n i +n θ] = 0, 3.1 For simpliciy, by ling n i +n θ +u 1 x θ+ 3 n i +n θ x u 1 = 0, q i n i +q n = 0. n = n, n i = q i q n = q i q n,

21 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 1 in rms of h quasinural assumpion, 3.1 rducs o n+ x nu 1 = 0, u 1 +u 1 x u n xpn,s = 0 S +u 1 x S = 0, whr q i q Pn,S = 3m q i m i q nθ, S = 3 ln qi q 4π n +ln q i 3 θ +1. To consruc h larg-im asympoic rarfacion wav of h VPB sysm hrough 3.1 or 3., on has o assign som appropria far-fild daa from 1.5, 1.6 and 1.7. call ha w hav s n ± = n ± and hnc n i± = q q i n ±. In rms of n ± and θ ±, rcalling.4, w dfin consans S ± by ha is, To h nd, w assum S + = S or quivalnly S ± = 4π 3 lnn i± +n ± +ln 3 θ ± +1, S ± = 3 ln qi q 4π n ± +ln q i 3 θ ± +1, θ + n /3 + = θ n /3 = 3 ks ± qi q /3 := A. Undr h abov sings on h far-fild valus of iniial daa 1.4 for h VPB sysm 1.1, 1., w hn xpc ha h soluion F, x, ξ o h Cauchy problm nds im-asympoically o h local bi-maxwllian [ ] [ ] Mi ξ M[ qn q,u,θ ;m i M = = i ]ξ, M ξ M [n,u,θ ;m ]ξ whr [n,u,θ ] wih u = [u 1,0,0] is h rarfacion wav soluion of h imann problm on h quasi-nural Eulr sysm 3. wih imann iniial daa givn by [n,u 1,θ]0,x = [ n 0,u 1,0,θ 0 ] x := { [n,u 1,θ ], x < 0, q i [n +,u 1+,θ + ], x > 0. Th imann problm can b solvd in h usual way cf. [58]. Indd, h quasinural Eulr sysm 3. has hr characrisics λ 1 = λ 1 n,u 1,S := u 1 n Pn,S, λ = λ n,u 1,S := u 1, λ 3 = λ 3 n,u 1,S := u 1 + n Pn,S. In rms of wo imann invarians of h hird ignvalu λ 3 n,u 1,S, w dfin h s of righ consan sas [n +,u 1+,θ + ] o which a givn lf consan sa [n,u 1,θ ] wih n > 0 and θ > 0 is conncd hrough h 3-rarfacion wav o b n n,u 1,θ {[n,u /3 1,θ] + + θ u 1 u 1 = n n = n/ , θ n Pη,S dη, n > n, u 1 > u 1 }. 3.4 η

22 .-J. DUAN AND S.-Q. LIU Now, ling [n +,u 1+,θ + ] n,u 1,θ, h imann problm 3., 3.3 admis a slf-similar soluion, h 3-rarfacion wav [ n,u 1,θ] z wih z = x/, xplicily dfind by λ 3 n,u 1,S for z < λ 3 n,u 1,S, λ 3 n z,u 1 z,s = z for λ 3 n,u 1,S z λ 3 n +,u 1+,S, λ 3 n +,u 1+,S for z > λ 3 n +,u 1+,S, n u z 1 z = u n Pη,S 1 + dη, η n θ z = An z /3, A = 3 ks qi q q i /3. Sinc [n,u 1,θ ] is a wak soluion of h imann problm 3. and 3.3 and lack of rgulariy, on has sablish a smooh approximaion o h rarfacion wav [n,u 1,θ ]. To do his, in h usual way, h smooh rarfacion wav [n r,u r,θ r ],x wih u r,x = [u r 1,x,0,0] is dfind by λ 3 n r,x,u r 1,S = w,x, n r u r,x 1,x = u n Pη,S 1 + dη, n η 3.5 θ r,x = An r,x /3, lim x ± [nr,u r 1,θr ],x = [n ±,u 1±,θ ± ], [n +,u 1+,θ + ] n,u 1,θ, wih w = w,x bing h soluion o h Burgrs quaion { w +w x w = 0, w0,x = w 0 x := 1 w + +w + 1 w + w anhx, w ± := λ 3 n ±,u 1±,S. W rmark ha by ling n r = n r and n r i = q q i n r, in viw of h consrucion of h smooh rarfacion wav abov, [n r i,nr,u r 1,θr ] saisfis n r i + xn r i ur 1 = 0, n r i + xn r i ur 1 = 0, 3.6 m i n r i +m n r u r 1 +u r 1 x u r 1+ 3 xn r i +n r θ r = 0, q i m i n r i +q m n r u r 1 +ur 1 xu r 1 q i m i n r i +q m n r m i n r i +m n r = θr 3 n r i +n r θ r +u r 1 x θ r +P r x u r 1 = 0. x n r i +nr 3 xθ rq im i n r i +q m n r m i n r i +m n r n r i +nr, 3.7 Hr P r = 3 nr i +nr θr = 3 Aq i q q i n r 5/3. Th nx lmma is dvod o h sudy of h propris of h smooh rarfacion wav [n r,u r 1,θr ] consrucd in 3.5 and 3.6. Lmma 3.1. I holds ha i x u r 1,x > 0 and n < n r,x < n +, u 1 < u r 1,x < u 1+ for x and 0. ii For any 1 p +, hr xiss a consan C p such ha for > 0, { x [n r,u r 1,θr ] L p C p min δ r,δr 1/p 1+1/p}, j x [n r,u r 1,θ r ] L p C p min { δ r, 1}, j, whr w rcall ha δ r = n + n + u 1+ u 1 + θ + θ is h wav srngh.

23 iii lim sup + x THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 3 [n r,u r 1,θr ],x [ n,u 1,θ] x/ = Prliminary simas on wo-componn collision opraor In his scion, w lis som basic inqualiis on h wo-componn collision opraor for lar us. Th firs lmma is concrnd wih h nonlinar collision opraors Q AB,, whos proof can b found in [38] whn masss of h paricls ar normalisd o b on. Lmma 4.1. L A,B {i,}. Thr xiss a posiiv consan C > 0 such ha 1+ ξ 1 Q AB F A,F B dξ M A { 1+ ξ F A FB C dξ dξ + M A M B FA dξ M A 1+ ξ FB M B } dξ, 4.1 whr w hav dfind [ Mi, M ] T [ M [ ni,û, θ;m i ] ξ,m [ n,û, θ;m ] ξ ] T, o b any bi-maxwllian such ha h abov ingrals ar wll dfind. Proof. No ha on can rwri 1.3 as Q AB F A,F B = Q gain AB F A,F B +Q loss ABF A,F B, 4. wih h normal maning for h gain par and h loss par. To prov 4.1, w firs considr h gain par and hus compu W now s and us h idniy so as o driv 3 1+ ξ 1 = σ 1+ ξ 1 M 1 A AB F A,F B Q gain M A 1+ ξ 1 M 1 A = 1+ ξ 1 M 1 A 3 { C 1+ ξ 1 3 C F A = dξ ξ ξ ω F A ξ F B ξ dξ dξ. M A f A, F B = M B f B, 4.3 M A ξ M B ξ = M A ξ M A ξ, dξ ξ ξ ω F A ξ F B ξ dξ 3 M A ξ M B ξ ξ ξ ω f A ξ f B ξ dξ dξ MB ξ ξ ξ ω dξ ξ ξ ω } f A ξ f B ξ dξ dξ ξ ξ fa ξ f B ξ dξ dξ,

24 4.-J. DUAN AND S.-Q. LIU whr w hav usd h Höldr s inqualiy o obain h firs inqualiy abov. In viw of ξ ξ = ξ ξ and by a chang of variabls ξ,ξ ξ,ξ, on furhr has ξ ξ fa ξ f B ξ dξ dξ 3 C 1+ ξ + ξ f A ξf B ξ dξ dξ C 1+ ξ f A ξ dξ f B ξ dξ +C f A ξ dξ 1+ ξ f B ξ dξ, whr h fac ha ξ,ξ ξ,ξ = 1, has bn usd. wriing 4.4 in rms of 4.3 givs 4.1 for h conribuion from h gain par in 4.. As o h loss par in 4., h proof is similar and dails ar omid for brviy. This hn compls h proof of Lmma 4.1. In ordr o obain h nrgy simas for h Bolzmann quaion.5, for P M 1 F which mans h microscopic projcion of is soluion F, x, ξ wih rspc o a givn bi-maxwllian M = [M i,m ] T = [M [ni,x,u,x,θ,x;m i ]ξ,m [n,x,u,x,θ,x;m ]ξ] T, on nd o find ou is dissipaiv ffc hrough h microscopic H-horm. Lik h singlcomponn cas, h microscopic H-horm sas ha h linarizd collision opraor L M around a fixd bi-mawllian M is also ngaiv dfini on h non-fluid lmn P M 1 F, cf. [10]. Lmma 4.. I holds ha P M F {M 1 1 L M P M 1 F} dξ δ 1+ ξ M 1/ P M 1 F dξ, 4.5 for a posiiv consan δ > 0 dpnding on [n i,n,u,θ]. In fac, δ also dpnds on m i and m, and in wha follows w shall omi poining ou such dpndnc for brviy. Proof. call.3. W dno [ ] Gi ξ P M 1 F = G = G,x,ξ =. G ξ Furhr rcall h dfiniions.6 and 1.3. L us dcompos L M G as L M G = νg+kg, wih and ν A = [ ] [ ] [ νi G i Mi K i G Mi K i M 1/ ] G νg =, KG = =, ν G M K G M K M 1/ G B {A,B} Q loss AB1,M B = B AA M A ξ dξ dω + B AB M B ξ dξ dω, S + S + K A = K 1 A +K A +K 3 A +K 4 A, 4.6

25 and KAG 1 =M 1 A = KAG =M 1 A = THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 5 B {A,B} S + S + S + KAG 3 =M 1 = Q loss ABM A,G B B AA MA ξ M A ξ GA MA ξ dξ dω B AB MA ξ GB M B ξ ξ dξ dω, A B, MB { Q gain AA M A,G A +Q gain A Qgain S + KAG 4 =M 1 = A Qgain S + } AA G A,M A MA GA B AA MA ξ [ ξ ξ MA + ] GA M A ξ ξ 4.7 dξ dω, MA AB M A,G B B AB MB ξ M A ξ AB G A,M B GB MB ξ dξ dω, A = B, B AB MB ξ M B ξ G A MA ξ dξ dω, A = B. On on hand, by prforming h similar calculaions as [10], on can s ha K i and K dfind by 4.6 and 4.7 ar compac from L ξ 1 L ξ 1 Mi M o islf. On h ohr hand, as B AB = B BA = σ ξ ξ ω, on can b abl o show ν i 1+ ξ, ν 1+ ξ. Thn h corciviy sima 4.5 follows from h sandard argumn as [13, 14, 4]; s also []. This nds h proof of Lmma 4.. Furhrmor, on can vary h background for h linarisaion and h wigh funcion. In fac, basing on Lmma 4.1 as wll as is proof, w also hav h following rsul, cf. [60]. Lmma 4.3. L θ < θ. Thn hr xis wo posiiv consans δ = δn i,n,u,θ; n i, n,û, θ and η 0 = η 0 n i,n,u,θ; n i, n,û, θ such ha if n i n i + n n + u û + θ θ < η 0, i holds ha for Hξ = [H i ξ,h ξ] T N, { M 1 H L M H} dξ δ 1+ ξ M 1/ H dξ, 4.8 whr w hav dnod Proof. W firs wri { M 1 H L M H} dξ = H M [ M [ni,u,θ;m i ]ξ,m ] T [n,u,θ;m ]ξ, M [ Mi, M ] [ ] T, M [ ni,û, θ;m i ] ξ,m [ n ξ,û, θ;m ] { } N = Hξ : ψ j ξ Hξdξ = 0, j = 1,,,6. { M 1 } { M 1 } L M H dξ H L H M M dξ. 4.9

26 6.-J. DUAN AND S.-Q. LIU In ligh of Lmma 4., on has { M 1 } H L M H dξ δ n i, n,û, θ 1+ ξ M 1/ H dξ For h scond rm on h righ hand sid of 4.9, noicing L M MH = Q iim i M i,h i +Q ii H i,m i M i +Q i M i M i,h +Q i H i,m M, Q M M,H +Q H,M M +Q i M M,H i +Q i H,M i M i i follows from Cauchy-Schwarz inqualiy and Lmma 4.1 ha { M 1 } H L H M M dξ 3 δ n i, n,û, θ 1+ ξ M 1/ H dξ ξ 1 M 1/ L δ n i, n,û, θ M MH dξ δ n i, n,û, θ 1+ ξ M 1/ H dξ 4 3 C ξ M 1/ H dξ 1+ ξ M 1/ M M dξ. δ n i, n,û, θ To ra h ingral 1+ ξ M 1/ M M dξ, w us θ < θ and choos a larg posiiv consan C = C n i,n,u,θ; n i, n,û, θ such ha 1+ ξ M 1/ M M Mi dξ C 3 1+ ξ ξ C ξ C + M i + M + M dξ M i M δ n i, n,û, θ 16C For h ingral in h rmaining domain, i follows ha 1+ ξ M 1/ M M dξ C θ 4, n i n i + n n + u û + θ 4.13 ξ <C 4C 1 for som consan C 4 = C 4 n i,n,u,θ; n i, n,û, θ. Finally, by ling η 0 = δ n i, n,û, θ C 4 n i,n,u,θ; n i, n,û, θ, and insring 4.10, 4.11, 4.1 and 4.13 ino 4.9, on ss ha 4.8 holds ru. This compls h proof of Lmma 4.3. A dirc consqunc of Lmma 4.3 wih h hlp of h Cauchy inqualiy is h following corollary, cf. [60]. Corollary 4.1. Undr h assumpions in Lmma 4.3, i holds ha for Hξ N, 1+ ξ M 1/ L 1 M H dξ δ 1+ ξ 1 M 1/ H ξdξ.

27 THE TWO-COMPONENT VLASOV-POISSONN-BOLTZMANN SYSTEM 7 5. Proof of h main rsul Wih prparaions in h prvious scions, w bgin o giv h proof of Thorm 1.1. For lar us w firs inroduc som noaions. call ha [n r,u r 1,θr ] is h smooh 3-family rarfacion wav o h quasinural Eulr sysm 3. wih far-fild daa [n ±,u 1±,θ ± ] conncd by [n +,u 1+,θ + ] n,u 1,θ. W dfin h local bi-maxwllian: ] ] M r = [ Mri M r = [ M[n r i,x,ur,x,θ r,x;m i ]ξ M [n r,x,u r,x,θ r,x;m ]ξ wih n r,x = n r,x and n r i,x = q q i n r,x = q q i n r,x. In rms of 1.10 and 1.11, w also dfin h global bi-maxwllian: [ ] [ ] M i M[n i,u,θ ;m i ]ξ M = =. M [n,u,θ ;m ]ξ M For a vcor-valud funcion H = [H i,h ] T, w wri ha H L ξ 1 M, if H i M i L ξ and H M L ξ. Now w dfin h funcion spac in which w sk h soluions of h VPB sysm 1.1, 1.. For givn T 0,+ ], w s. Ẽ[0,T] = {H,x,ξ α β H A,x,ξ M A ξ C [0,T];L x,ξ 3 associad wih h norm ẼT dfind by Ẽ T H { α + β 0 sup 0 T α β H i,x,ξ M i for α + β,α 0 1, A = i,}, α β H,x,ξ } dξdx+ sup dξdx. 0 T M Th proof of Thorm 1.1 is basd on h nrgy simas on boh h fluid and non-fluid par of h soluion F,x,ξ. W firs considr h fluid par. call ha h macro quaniis [n i,n,u,θ] of h fluid par M, x, ξ saisfy h wo-fluid Navir-Soks-Poisson-yp sysm.18 and.19, and h macro quaniis [n r i,nr,u r,θ r ] of h corrsponding smooh approxima profil M r,x,ξ saisfy 3.7. W now dfin h prurbaion [ ] ñ i,ñ,ũ, θ,x = [n i n r i,n n r,u [ur 1,0,0],θ θr ],x. [ ] Thn on can dduc h prurbd quaions for ñ i,ñ,ũ, θ hrough.18,.19,.13 and 3.7 in h following way. For numbr dnsiis ñ i and ñ, on has ñ i + x n i u 1 n r iu r 1 = ξ1 xgidξ, ñ + x n u 1 n r ur 1 = For h momnum ũ = [ũ 1,ũ,ũ 3 ], on has m i n i +m n ũ 1 +u 1 x ũ 1 +ũ 1 x u r 1 + xp P r + 1 m in i +m n m i n r i +m n r x P r +q i n i +q n x φ = 3 x µ i θ+µ θ x ũ 1 + x µ i θ+µ θ x u r 1 ξ 1 ψ 3 x dξ ψ 3i ξ 1 x P M i 0 G i dξ ξ 1 x G dξ. 5. ψ 3 ξ 1 x P M 0 G dξ, 5.3

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED 006-0 Asian Rsarch Publishing work (ARP). All righs rsrvd. USTEADY FLOW OF A FLUID PARTICLE SUSPESIO BETWEE TWO PARALLEL PLATES SUDDELY SET I MOTIO WITH SAME SPEED M. suniha, B. Shankr and G. Shanha 3

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS * Andri Tokmakoff, MIT Dparmn of Chmisry, 5/19/5 7-11 7.4 QUANTUM MECANICAL TREATMENT OF FLUCTUATIONS * Inroducion and Prviw Now h origin of frquncy flucuaions is inracions of our molcul (or mor approprialy

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA MTHEMTICL MODEL FOR NTURL COOLING OF CUP OF TE 1 Mrs.D.Kalpana, 2 Mr.S.Dhvarajan 1 Snior Lcurr, Dparmn of Chmisry, PSB Polychnic Collg, Chnnai, India. 2 ssisan Profssor, Dparmn of Mahmaics, Dr.M.G.R Educaional

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS

A HAMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS Europan Scinific Journal Ocobr 13 diion vol9, No3 ISSN: 1857 7881 (Prin) - ISSN 1857-7431 A AMILTON-JACOBI TREATMENT OF DISSIPATIVE SYSTEMS Ola A Jarab'ah Tafila Tchnical Univrsiy, Tafila, Jordan Khald

More information

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each]

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each] Soluions o Midrm Exam Nam: Paricl Physics Fall 0 Ocobr 6 0 Par I: Shor Answr [50 poins] For ach of h following giv a shor answr (- snncs or a formula) [5 poins ach] Explain qualiaivly (a) how w acclra

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Impulsive Differential Equations. by using the Euler Method

Impulsive Differential Equations. by using the Euler Method Applid Mahmaical Scincs Vol. 4 1 no. 65 19 - Impulsiv Diffrnial Equaions by using h Eulr Mhod Nor Shamsidah B Amir Hamzah 1 Musafa bin Mama J. Kaviumar L Siaw Chong 4 and Noor ani B Ahmad 5 1 5 Dparmn

More information

Nonlocal Symmetries and Exact Solutions for PIB Equation

Nonlocal Symmetries and Exact Solutions for PIB Equation Commun. Thor. Phys. 58 01 331 337 Vol. 58 No. 3 Spmbr 15 01 Nonlocal Symmris and Exac Soluions for PIB Equaion XIN Xiang-Png 1 MIAO Qian 1 and CHEN Yong í 1 1 Shanghai Ky Laboraory of Trusworhy Compuing

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Effects of ion motion on linear Landau damping

Effects of ion motion on linear Landau damping Effcs of ion moion on linar Landau damping Hui Xu 1**, Zhng-Ming Shng 2,3,4, Xiang-Mu Kong 1, Fu-Fang Su 1 1 Shandong Provincial Ky Laboraory of Lasr Polarizaion and Informaion Tchnology, Dparmn of Physics,

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Section 5 Exercises, Problems, and Solutions. Exercises:

Section 5 Exercises, Problems, and Solutions. Exercises: Scion 5 Exrciss, Problms, and Soluions Exrciss: 1. Tim dpndn prurbaion hory provids an xprssion for h radiaiv lifim of an xcid lcronic sa, givn by τ R : τ h- R 4 c 4(E i - E f ) µ fi, whr i rfrs o h xcid

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

4.3 Design of Sections for Flexure (Part II)

4.3 Design of Sections for Flexure (Part II) Prsrssd Concr Srucurs Dr. Amlan K Sngupa and Prof. Dvdas Mnon 4. Dsign of Scions for Flxur (Par II) This scion covrs h following opics Final Dsign for Typ Mmrs Th sps for Typ 1 mmrs ar xplaind in Scion

More information

Mundell-Fleming I: Setup

Mundell-Fleming I: Setup Mundll-Flming I: Sup In ISLM, w had: E ( ) T I( i π G T C Y ) To his, w now add n xpors, which is a funcion of h xchang ra: ε E P* P ( T ) I( i π ) G T NX ( ) C Y Whr NX is assumd (Marshall Lrnr condiion)

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Smoking Tobacco Experiencing with Induced Death

Smoking Tobacco Experiencing with Induced Death Europan Journal of Biological Scincs 9 (1): 52-57, 2017 ISSN 2079-2085 IDOSI Publicaions, 2017 DOI: 10.5829/idosi.jbs.2017.52.57 Smoking Tobacco Exprincing wih Inducd Dah Gachw Abiy Salilw Dparmn of Mahmaics,

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Modelling of three dimensional liquid steel flow in continuous casting process

Modelling of three dimensional liquid steel flow in continuous casting process AMME 2003 12h Modlling of hr dimnsional liquid sl flow in coninuous casing procss M. Jani, H. Dyja, G. Banasz, S. Brsi Insiu of Modlling and Auomaion of Plasic Woring Procsss, Faculy of Marial procssing

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations Cohrnc and inracions in diffusiv sysms G. Monambaux cur 4 iffusion + - inraions nsiy of sas anomaly phasing du o lcron-lcron inracions - inracion andau Frmi liquid picur iffusion slows down lcrons ( )

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct Qus Journals Journal of Rsarch in Applid Mahmaics Volum ~ Issu (5 pp: -5 ISSN(Onlin : 94-74 ISSN (Prin:94-75 www.usjournals.org Rsarch Papr Asympoic Soluions of Fifh Ordr Criically Dampd Nonlinar Sysms

More information

Chapter 4 Longitudinal static stability and control Effect of acceleration (Lecture 15)

Chapter 4 Longitudinal static stability and control Effect of acceleration (Lecture 15) Chapr 4 Longiudinal saic sabiliy and conrol Effc of acclraion (Lcur 15) Kywords : Elvaor rquird in pull-up; sick-fixd manuvr poin; sick forc gradin in pull-up; manuvr poin sick-fr; ovrall limis on c.g.

More information

The Optimal Timing of Transition to New Environmental Technology in Economic Growth

The Optimal Timing of Transition to New Environmental Technology in Economic Growth h Opimal iming of ransiion o Nw Environmnal chnology in Economic Growh h IAEE Europan Confrnc 7- Spmbr, 29 Vinna, Ausria Akira AEDA and akiko NAGAYA yoo Univrsiy Background: Growh and h Environmn Naural

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

Availability Analysis of Repairable Computer Systems and Stationarity Detection

Availability Analysis of Repairable Computer Systems and Stationarity Detection 1166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 11, NOVEMBER 1999 Availabiliy Analysis of Rpairabl Compur Sysms and Saionariy Dcion Bruno Sricola AbsracÐPoin availabiliy and xpcd inrval availabiliy ar

More information

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve 0. If p and q ar h lnghs of h prpndiculars from h origin on h angn and h normal o h curv + Mahmaics y = a, hn 4p + q = a a (C) a (D) 5a 6. Wha is h diffrnial quaion of h family of circls having hir cnrs

More information

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline. Dlin Curvs Dlin Curvs ha lo flow ra vs. im ar h mos ommon ools for forasing roduion and monioring wll rforman in h fild. Ths urvs uikly show by grahi mans whih wlls or filds ar roduing as xd or undr roduing.

More information

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU A IRODUCIO O FOURIER AALYSIS PROF. VEDA AVSAOĞLU 994 A IRODUCIO O FOURIER AALYSIS ABLE OF COES. HE FOURIER SERIES ---------------------------------------------------------------------3.. Priodic Funcions-----------------------------------------------------------------------3..

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Forecasting in functional regressive or autoregressive models

Forecasting in functional regressive or autoregressive models Forcasing in funcional rgrssiv or auorgrssiv modls Ann Philipp 1 and Mari-Claud Viano 2 Univrsié d Nans Univrsié d Lill 1 2008-2009 1 Laboraoir d mahémaiqus Jan Lray, 2 ru d la Houssinièr 44322 Nans, Franc

More information

University of Kansas, Department of Economics Economics 911: Applied Macroeconomics. Problem Set 2: Multivariate Time Series Analysis

University of Kansas, Department of Economics Economics 911: Applied Macroeconomics. Problem Set 2: Multivariate Time Series Analysis Univrsiy of Kansas, Dparmn of Economics Economics 9: Applid Macroconomics Problm S : Mulivaria Tim Sris Analysis Unlss sad ohrwis, assum ha shocks (.g. g and µ) ar whi nois in h following qusions.. Considr

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

PRELIMINARY DEFINITIONS AND RELATIONS

PRELIMINARY DEFINITIONS AND RELATIONS Prliinary Dfiniions and Rlaions 1 CHAPTER 2 PRELIMINARY DEFINITIONS AND RELATIONS يتكون حجم معيه مه التربة مه حبيبات صلببة هولواو هملاو اميلاي جوفيللة أه ميللاي (.للصدر همقلل ) ال للو فللي التربللة وللو

More information

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute

Ratio-Product Type Exponential Estimator For Estimating Finite Population Mean Using Information On Auxiliary Attribute Raio-Produc T Exonnial Esimaor For Esimaing Fini Poulaion Man Using Informaion On Auxiliar Aribu Rajsh Singh, Pankaj hauhan, and Nirmala Sawan, School of Saisics, DAVV, Indor (M.P., India (rsinghsa@ahoo.com

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Chemistry 988 Part 1

Chemistry 988 Part 1 Chmisry 988 Par 1 Radiaion Dcion & Masurmn Dp. of Chmisry --- Michigan Sa Univ. aional Suprconducing Cycloron Lab DJMorrissy Spring/2oo9 Cours informaion can b found on h wbsi: hp://www.chmisry.msu.du/courss/cm988uclar/indx.hml

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

FUNDAMENTAL SOLUTION FOR ( λ z ) ν ON A SYMMETRIC SPACE G/K

FUNDAMENTAL SOLUTION FOR ( λ z ) ν ON A SYMMETRIC SPACE G/K FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K AMY T. DECELLES Absrac. W drmin a fundamnal soluion for h diffrnial opraor λ ν on h imannian symmric spac G/K, whr G is any complx smi-simpl Li group,

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT

SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT Elc. Comm. in Proa. 6 (), 78 79 ELECTRONIC COMMUNICATIONS in PROBABILITY SUPERCRITICAL BRANCHING DIFFUSIONS IN RANDOM ENVIRONMENT MARTIN HUTZENTHALER ETH Zürich, Dparmn of Mahmaics, Rämisrass, 89 Zürich.

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information