FUNDAMENTAL SOLUTION FOR ( λ z ) ν ON A SYMMETRIC SPACE G/K

Size: px
Start display at page:

Download "FUNDAMENTAL SOLUTION FOR ( λ z ) ν ON A SYMMETRIC SPACE G/K"

Transcription

1 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K AMY T. DECELLES Absrac. W drmin a fundamnal soluion for h diffrnial opraor λ ν on h imannian symmric spac G/K, whr G is any complx smi-simpl Li group, and K is a maximal compac subgroup. W dvlop a global onal sphrical Sobolv hory, which nabls us o us h harmonic analysis of sphrical funcions o obain an ingral rprsnaion for h soluion. Thn w obain an xplici xprssion for h fundmnal soluion, which allows rlaivly asy simaion of is bhavior in h ignvalu paramr λ, wih an y owards furhr applicaions o auomorphic forms involving asociad Poincaré sris. 1. Inroducion W drmin a fundamnal soluion for h diffrnial opraor λ ν on h imannian symmric spac G/K, whr G is any complx smi-simpl Li group and K is a maximal compac subgroup. Sinc h dla funcion δ 1 K a h bas poin is a bi-k-invarian, compacly suppord disribuion, a suiabl global onal sphrical Sobolv hory nsurs ha h harmonic analysis of sphrical funcions producs a soluion. In his papr, w firs dvlop h suiabl Sobolv hory, hn driv h fundamnal soluion. To our knowldg, his is h firs consrucion of Sobolv spacs of bi-k-invarian compacly suppord disribuions. Insad of using h xisnc of a fundamnal soluion o prov solvabiliy of a diffrnial opraor, as in, for xampl, [2, 3, 21, 5, 6], w obain an xplici xprssion for h fundamnal soluion, wih y owards furhr applicaions involving h associad Poincaré sris. For xampl, w hav alrady obaind an xplici formula rlaing h numbr of laic poins in an xpanding rgion in a symmric spac o h auomorphic spcrum [7]. In paricular, h prsnc of a complx ignvalu paramr in h diffrnial opraor maks h fundamnal soluion suiabl for furhr applicaions, and h simpl, xplici naur of h fundamnal soluion allows rlaivly asy simaion of is bhavior in h ignvalu paramr, proving convrgnc of h associad Poincaré sris in L 2 and, in fac, in a Sobolv spac sufficin o prov coninuiy [7]. Furhr, his maks i possibl o drmin h vrical growh of h Poincaré sris in h ignvalu paramr. For a drivaion of h fundamnal soluion in h cas G SL 2 C, assuming a suiabl global onal sphrical Sobolv hory, s [11, 13]. Our rsuls for h gnral cas ar skchd in [12]. Afr having submid an iniial vrsion of his papr, i was brough o our anion ha Wallach drivs a similar, hough lss xplici, formula in Scion 4 of [22]. An inroducion o posiivly indxd Sobolv spacs of bi-k-invarian funcions can b found in [4]. Our main rsul is h following horm, whos proof is givn in 3.1. Thorm. L G b a complx smi-simpl Li group wih maximal compac K. Whn G is of odd rank, l ν d + n+1 2, whr d is h numbr of posiiv roos, no couning mulipliciis, and 21 Mahmaics Subjc Classificaion. Primary 43A85; Scondary 43A9, 22E46, 46F12, 33C52, 58J4. Ky words and phrass. fundamnal soluion, onal sphrical funcions, Sobolv spacs. This papr prsns rsuls from h auhor s PhD hsis, compld undr h suprvision of Profssor Paul Garr, whom h auhor hanks warmly. Th auhor would also lik o hank Brian Hall for svral hlpful convrsaions. Th auhor was parially suppord by h Docoral Dissraion Fllowship from h Gradua School of h Univrsiy of Minnsoa and by NSF gran DMS

2 2 AMY T. DECELLES n dim a h rank. Thn h bi-k-invarian fundamnal soluion u for h opraor λ ν on G/K is givn by: u a 1d+n+1/2 π n+1/2 π + ρ Γd + n + 1/2 αlog a 2 sinhαlog a log a Whn G is of vn rank, l ν d + n Thn, wih K n h usual modifid Bssl funcion, u a 1 d+n/2+1 π n/2 π + ρ Γd + n/2 + 1 αlog a 2 sinhαlog a log a K 1 log a 2. Sphrical ransforms, global onal sphrical Sobolv spacs, and diffrnial quaions on G/K 2.1. Sphrical ransform and invrsion. L G b a complx smi-simpl Li group wih fini cnr and K a maximal compac subgroup. L G NAK, g n+a+k b corrsponding Iwasawa dcomposiions. L Σ dno h s of roos of g wih rspc o a, l Σ + dno h subs of posiiv roos for h ordring corrsponding o n, and l ρ 1 2 α Σ m αα, m + α dnoing h mulipliciy of α. L a C dno h s of complx-valud linar funcions on a. L X K\G/K and Ξ a /W a +. Th sphrical ransform of Harish-Chandra and Brin ingras a bi-kinvarian agains a onal sphrical funcion: Ff ξ fg ϕ ρ+iξ g dg G Zonal sphrical funcions ϕ ρ+iξ ar ignfuncions for Casimir rsricd o bi-k-invarian funcions wih ignvalu λ ξ ξ 2 + ρ 2. Th invrs ransform is F 1 f fξ ϕ ρ+iξ cξ 2 dξ Ξ whr cξ is h Harish-Chandra c-funcion and dξ is h usual Lbsgu masur on a n. For brviy, dno L 2 Ξ, cξ 2 by L 2 Ξ. Th Planchrl horm assrs ha h spcral ransform and is invrs ar isomris bwn L 2 X and L 2 Ξ Characriaions of Sobolv spacs. W dfin posiiv indx onal sphrical Sobolv spacs as lf K-invarian subspacs of complions of Cc G/K wih rspc o a opology inducd by sminorms associad o drivaivs from h univrsal nvloping algbra, as follows. L Ug l b h fini dimnsional subspac of h univrsal nvloping algbra Ug consising of lmns of dgr lss han or qual o l. Each α Ug givs a sminorm ν α f αf 2 L 2 G/K on C c G/K. Dfiniion 2.1. Considr h spac of smooh funcions ha ar boundd wih rspc o hs sminorms: {f C G/K : ν α f < for all α Ug l } L H l G/K b h complion of his spac wih rspc o h opology inducd by h family {ν α : α Ug l }. Th global onal sphrical Sobolv spac H l X H l G/K K is h subspac of lf-k-invarian funcions in H l G/K. Proposiion 2.1. Th spac of s funcions C c X is dns in H l X. Proof. W approxima a smooh funcion f H l X by poinwis producs wih smooh cu-off funcions, whos consrucion givn by [1], Lmma is as follows. L σg b h godsic disanc bwn h coss 1 K and g K in G/K. For >, l B dno h ball B {g G : σg < }. L η b a non-ngaiv smooh bi-k-invarian funcion, suppord in B 1/4, such ha ηg ηg 1, for all g G. L char +1/2 dno h characrisic funcion of B +1/2, and l η η char +1/2 η. As shown in [1], η is smooh, bi-k-invarian, aks valus bwn

3 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 3 ro and on, is idnically on on B and idnically ro ousid B +1, and, for any γ Ug, hr is a consan C γ such ha sup γ η g C γ g G W will show ha h poinwis producs η f approach f in h l h Sobolv opology, i.. for any γ Ug l, ν γ η f f as. By dfiniion, ν γ η f f γ η f f L 2 G/K Libni rul implis ha γ η f f is a fini linar combinaion of rms of h form αη 1 βf whr α, β Ug l. Whn dgα, αη 1 βf L2 G/K η 1 βf L 2 G/K β fg 2 dg Ohrwis, αη 1 αη, and αη 1 βf L2 G/K αη βf L2 G/K sup α η g g G β fg 2 dg σg σg σg β fg 2 dg L B b any boundd s conaining all of h finily many β ha appar as a rsul of applying Libni rul. Thn ν γ η f f sup β fg 2 dg β B σg Sinc B is boundd and f H l X, h righ hand sid approachs ro as. Proposiion 2.2. L Ω b h Casimir opraor in h cnr of Ug. Th norm 2l on Cc G/K K givn by f 2 2l f Ω f Ω 2 f Ω l f 2 whr is h usual norm on L 2 G/K, inducs a opology on Cc G/K K ha is quivaln o h opology inducd by h family {ν α : α Ug 2l } of sminorms and wih rspc o which H 2l X is a Hilbr spac. Proof. L {X i } b a basis for g subordina o h Caran dcomposiion g p + k. Thn Ω i X i X i, whr {X i } dnos h dual basis, wih rspc o h Killing form. L Ω p and Ω k dno h subsums corrsponding o p and k rspcivly. Thn Ω p is a non-posiiv opraor, whil Ω k is non-ngaiv. Lmma 2.1. For any non-ngaiv ingr r, l Σ r dno h fini s of possibl K-yps of γ f, for γ Ug r and f Cc G/K K, and l C r b a consan grar han all of h finily many ignvalus λ σ for Ω k on h K-yps σ Σ r. For any ϕ Cc G/K of K-yp σ Σ m and β x 1... x n a monomial in Ug wih x i p, β ϕ, β ϕ Ω + C m+n 1 n ϕ, ϕ whr, is h usual innr produc on L 2 G/K. Proof. W procd by inducion on n dg β. For n 1, β x p. L {X i } b a slf-dual basis for p such ha X 1 x. Thn, xϕ, xϕ X i ϕ, X i ϕ Xi 2 ϕ, ϕ Ω p ϕ, ϕ Ω + Ω k ϕ, ϕ i i Ω + C m ϕ, ϕ Ω + C m+n 1 ϕ, ϕ For n > 1, wri β xγ, whr x x 1 and γ x 2... x n. Thn h K-yp of γϕ lis in Σ m+n 1, and by h abov argumn, x γϕ, x γϕ Ω + C m+n 1 γϕ, γϕ

4 4 AMY T. DECELLES L Cc G/K Σr b h subspac of Cc G/K consising of funcions of K-yp in Σ r and L 2 G/K Σr b h corrsponding subspac of L 2 G/K. For h momn, l Σ Σ m+n 1 and C C m+n 1. Thn, by consrucion, Ω k + C is posiiv on Cc G/K Σ, and hus Ω + C Ω p Ω k + C is a posiiv dnsly dfind symmric opraor on L 2 G/K Σ. Thus, by Fridrichs [8, 9], hr is an vrywhr dfind invrs, which is a posiiv symmric boundd opraor on L 2 G/K Σ, and which, by h spcral hory for boundd symmric opraors, has a posiiv symmric squar roo in h closur of h polynomial algbra C[] in h Banach spac of boundd opraors on L 2 G/K Σ. Thus Ω + C has a symmric posiiv squar roo, namly 1, dfind on Cc G/K Σ, commuing wih all lmns of Ug, and Ω + C γϕ, γϕ γ Ω + C ϕ, γ Ω + C ϕ Now h K-yp of Ω + C ϕ, bing h sam as ha of ϕ, lis in Σ m, so by induciv hypohsis, γ Ω + C ϕ, γ Ω + C ϕ Ω + C m+n 2 n 1 Ω + C ϕ, Ω + C ϕ and his compls h proof of h lmma. Ω + C m+n 2 n 1 Ω + C m+n 1 ϕ, ϕ Ω + C m+n 1 n ϕ, ϕ L α Ug 2l. By h Poincaré-Birkhoff-Wi horm w may assum α is a monomial of h form α x 1... x n y 1... y m whr x i p and y i k. Thn, for any f C c G/K K, ν α f αf, αf L2 G/K x 1... x n f, x 1... x n f L2 G/K x i p By h lmma, hr is a consan C, dpnding on h dgr of α, such ha ν α f Ω + C dg α f, f for all f Cc G/K K. In fac, for bi-k-invarian funcions, Ω + C dg α f Ω p + C dg α f. Sinc Ω p is posiiv smi-dfini, muliplying by a posiiv consan dos no chang h opology. Thus, w may ak C 1. Tha is, h subfamily {ν α : α 1 Ω k, k l} of sminorms on Cc G/K K dominas h family {ν α : α Ug 2l } and hus inducs an quivaln opology. I will b ncssary o hav anohr dscripion of Sobolv spacs. L W 2,l G/K {f L 2 G/K : α f L 2 G/K for all α Ug l } whr h acion of Ug on L 2 G/K is by disribuional diffrniaion. Giv W 2,l G/K h opology inducd by h sminorms ν α f α f 2 L 2 G/K, α Ug l. L W 2,l X b h subspac of lf K-invarians. Proposiion 2.3. Ths spacs ar qual o h corrsponding Sobolv spacs: W 2,l G/K H l G/K and W 2,l X H l X Proof. I suffics o show h dnsiy of s funcions in W 2,l G/K. Sinc G acs coninuously on W 2,l G/K by lf ranslaion, mollificaions ar dns in W 2,l G/K; s 2.5. By Urysohn s Lmma, i suffics o considr mollificaions of coninuous, compacly suppord funcions. L η Cc G and f Cc G/K. Thn, η f is a smooh vcor, and for all α Ug, α η f L α η f. For X g, h acion on η f as a vcor is X η f X ηg g f dg G ηg X g f dg G Now using h fac ha f is a funcion and h group acion on f is by ranslaion, X η f h ηg fg 1 X h dg G η f X h Thus h smoohnss of η f as a vcor implis ha i is a gnuin smooh funcion. Th suppor of η f is conaind in h produc of h compac suppors of η and f. Sinc h produc of wo compac ss is again compac, η f is compacly suppord.

5 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 5 mark 2.1. By Proposiion 2.2, H 2l X W 2,2l X is a Hilbr spac wih norm f 2 2l f Ω f Ω l f 2 whr is h usual norm on L 2 G/K, and 1 Ω k f is a disribuional drivaiv Sphrical ransforms and diffrniaion on Sobolv spacs. Proposiion 2.4. For l, h Laplacian xnds o a coninuous linar map H 2l+2 X H 2l X; h sphrical ransform xnds o a map on H 2l X; and F 1 f 1 λ ξ Ff for all f H 2l+2 X Proof. By h consrucion of h Sobolv opology, h Laplacian is a coninuous map : C G/K H 2l+2 G/K C G/K H 2l G/K Sinc h Laplacian prsrvs bi-k-invarianc, i xnds o a coninuous linar map, also dnod, from H 2l+2 X o H 2l X. Th sphrical ransform, dfind on C c G/K K by h ingral ransform of Harish-Chandra and Brin, xnds by coninuiy o H 2l X. This xnsion agrs wih h xnsion o L 2 X coming from Planchrl. By ingraion by pars, F ϕ λ ξ Fϕ, for ϕ C c G/K K, so, by coninuiy F 1 f 1 λ ξ Ff for allf H 2l+2 X. L µ b h muliplicaion map µvξ 1 λ ξ vξ 1+ ρ 2 + ξ 2 vξ whr ρ is h half sum of posiiv roos. For l Z, h wighd L 2 -spacs V 2l {v masurabl : µ l v L 2 Ξ} wih norms v V 2l µ l v L 2 Ξ 1 + ρ 2 + ξ 2 l vξ 2 cξ 2 dξ Ξ ar Hilbr spacs wih V 2l+2 V 2l for all l. In fac, hs ar dns inclusions, sinc runcaions ar dns in all V 2l -spacs. Th muliplicaion map µ is a Hilbr spac isomorphism µ : V 2l+2 V 2l, sinc for v V 2l+2, µv V 2l µ l+1 v L 2 Ξ v V 2l+2 Th ngaivly indxd spacs ar h Hilbr spac duals of hir posiivly indxd counrpars, by ingraion. Th adjoins o inclusion maps ar gnuin inclusions, sinc V 2l+2 V 2l is dns for all l, and, undr h idnificaion V 2l V 2l h adjoin map µ : V 2l V 2l+2 is h muliplicaion map µ : V 2l V 2l 2. Proposiion 2.5. For l, h sphrical ransform is an isomric isomorphism H 2l X V 2l. Proof. On compacly suppord funcions, h sphrical ransform F and is invrs F 1 ar givn by ingrals, which ar crainly coninuous linar maps. Th Planchrl horm xnds F and F 1 o isomris bwn L 2 X and L 2 Ξ. Thus F on H 2l X L 2 X is a coninuous linar L 2 -isomry ono is imag. L f H 2l X. By Proposiion 2.3, h disribuional drivaivs 1 k f li in L 2 X for all k l. By h Planchrl horm and Proposiion 2.4, 1 l f L 2 X F 1 l f L 2 Ξ 1 λ ξ l Ff L 2 Ξ Thus F H 2l X V 2l. Th following claim shows ha F 1 V 2l H 2l X and finishs h proof. Claim. For v V 2l, h disribuional drivaivs 1 k F 1 v li in L 2 X, for all k l. Proof. For s funcion ϕ, h Planchrl horm implis 1 F 1 v ϕ F 1 v 1 ϕ v F 1 ϕ By Proposiion 2.4 and h Planchrl horm, v F 1 ϕ v 1 λ ξ Fϕ 1 λ ξ v Fϕ F 1 1 λ ξ v ϕ

6 6 AMY T. DECELLES By inducion, w hav h following idniy of disribuions: 1 k F 1 v F 1 1 λ ξ k v. Sinc F is an L 2 -isomry and 1 λ ξ k v L 2 Ξ for all k l, 1 k F 1 v lis in L 2 X for k l. mark 2.2. This Hilbr spac isomorphism F : H 2l V 2l givs a spcral characriaion of h 2l h Sobolv spac, namly h primag of V 2l undr F. H 2l X {f L 2 X : 1 λ ξ l Ffξ L 2 Ξ} 2.4. Ngaivly indxd Sobolv spacs and disribuions. Ngaivly indxd Sobolv spacs allow h us of spcral hory for solving diffrnial quaions involving crain disribuions. Dfiniion 2.2. For l >, h Sobolv spac H l X is h Hilbr spac dual of H l X. mark 2.3. Sinc h spac of s funcions is a dns subspac of H l X wih l >, dualiing givs an inclusion of H l X ino h spac of disribuions. Th adjoins of h dns inclusions H l H l 1 ar inclusions H l+1 X H l X, and h slf-dualiy of H X L 2 X implis ha H l X H l 1 for all l Z. Proposiion 2.6. Th spcral ransform xnds o an isomric isomorphism on ngaivly indxd Sobolv spacs F : H 2l V 2l, and for any u H 2l X, l Z, F1 u 1 λ ξ Fu. Proof. To simplify noaion, for his proof l H 2l H 2l X. Proposiions 2.4 and 2.5 giv h rsul for posiivly indxd Sobolv spacs, xprssd in h following commuaiv diagram,... 1 H 4 1 H 2 1 H... µ F V 4 µ F V 2 µ whr µvξ 1 λ ξ vξ, as abov. Dualiing, w immdialy hav h commuaiviy of h adjoin diagram. F V H 1 H 2 1 H F F F V µ V 2 µ V 4 µ... Th slf-dualiy of L 2 and h Planchrl horm allow h wo diagrams o b conncd H 4 1 H 2 1 H 1 H 2 1 H µ F V 4 µ F V 2 µ F F 1 V µ F V 2 µ F V 4 µ Sinc V 2l+2 is dns in V 2l for all l Z, and H 2l V 2l for all l Z, H 2l+2 is dns in H 2l for all l Z. Thus s funcions ar dns in all h Sobolv spacs. Th adjoin map 1 : H 2l H 2l 2 is h coninuous xnsion of 1 from h spac of s funcions, sinc, for a s funcion ϕ, idnifid wih an lmn of H 2l by ingraion, 1 Λ ϕ f Λϕ 1 f ϕ, 1 f 1 ϕ, f Λ1 ϕ f...

7 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 7 for all f in H 2l+2 by ingraion by pars, whr Λ ϕ is h disribuion associad wih ϕ by ingraion and, dnos h usual innr produc on L 2 G/K. Th map F 1 on H 2l is h coninuous xnsion of F from h spac of s funcions, sinc for a s funcion ϕ, F Λ Fϕ f ΛFϕ Ff Fϕ, Ff V 2l ϕ, f H 2l Λ ϕ f for all f H 2l. Thus, h following diagram commus H 4 1 H 2 1 H 1 H 2 1 H µ F F F F F V 4 µ V 2 µ V µ V 2 µ V 4 µ In ohr words, h rlaion F 1 u 1 λ ξ Fu holds for any u in a Sobolv spac.... call ha, for a smooh manifold M, h posiivly indxd local Sobolv spacs Hloc l M consis of funcions f on M such ha for all poins x M, all opn nighborhoods U of x small nough ha hr is a diffomorphism Φ : U n wih Ω ΦU having compac closur, and all s funcions ϕ wih suppor in U, h funcion f ϕ Φ 1 : Ω C is in h Euclidan Sobolv spac H l Ω. Th Sobolv mbdding horm for local Sobolv spacs sas ha H l+k loc M Ck M for l > dimm/2. Proposiion 2.7. For l > dimg/k/2, H l+k X H l+k G/K C k G/K. Proof. Sinc posiivly indxd global Sobolv spacs on G/K li insid h corrsponding local Sobolv spacs, Hloc l G/K Ck G/K by local Sobolv mbdding. This mbdding of global Sobolv spacs ino C k -spacs is usd o prov ha h ingral dfining spcral invrsion for s funcions can b xndd o sufficinly highly indxd Sobolv spacs, i.. h absrac isomric isomorphism F 1 F : H l X H l X is givn by an ingral ha is convrgn uniformly poinwis, whn l > dimg/k/2, as follows. Proposiion 2.8. For f H s X, s > k + dimg/k/2, f Ffξ ϕ ρ+iξ cξ 2 dξ in H s X and C k X Ξ Proof. L {Ξ n } b a nsd family of compac ss in Ξ whos union is Ξ, χ n b h characrisic funcion of Ξ n, and f n b givn by h following C X-valud Glfand-Pis ingral s 2.5 f n χ n ξ Ffξ ϕ ρ+iξ cξ 2 dξ Ξ Sinc χ n ξ Ffξ is compacly suppord, f n F 1 χ n Ff. Thus, by Proposiions 2.5 and 2.6 f n f m Hs X χ n χ m Ff V s Sinc Ff lis in V s, hs ails crainly approach ro as n, m. Similarly, f n f Hs X χ n 1 Ff V s as n By Proposiion 2.7, f n approachs f in C k X. Th mbdding of global Sobolv spacs ino C k -spacs also implis ha compacly suppord disribuions li in global Sobolv spacs, as follows. Proposiion 2.9. Any compacly suppord disribuion on X lis in a global onal sphrical Sobolv spac. Spcifically, a compacly suppord disribuion of ordr k lis in H s X for all s > k + dimg/k/2.

8 8 AMY T. DECELLES Proof. A compacly suppord disribuion u lis in C G/K. Sinc compacly suppord disribuions ar of fini ordr, u xnds coninuously o C k G/K for som k. Using Proposiion 2.7 and dualiing, u lis in H l+k X, for l > dimg/k/2. mark 2.4. In paricular, his implis ha h Dirac dla disribuion a h bas poin x o 1 K in G/K lis in H l X for all l > dimg/k/2. Proposiion 2.1. For a compacly suppord disribuion u of ordr k, Fu uϕ ρ+iξ in V s whr s > k + dimg/k/2. Proof. By Proposiion 2.9, a compacly suppord disribuion u of ordr k lis in H s for any s > k + dimg/k/2. L f b any lmn in H s X. Thn, Ff, Fu V s V s f, u H s V s uf Sinc h spcral xpansion of f convrgs o i in h H s X opology by Proposiion 2.8, uf u lim Ffξ ϕ ρ+iξ cξ n Ξ 2 dξ lim u Ffξ ϕ ρ+iξ cξ 2 dξ n n Ξ n Sinc h ingral is a C X-valud Glfand-Pis ingral s 2.5 and u is an lmn of C X, u Ffξ ϕ ρ+iξ cξ 2 dξ Ffξ uϕ ρ+iξ cξ 2 dξ Ξ n Ξ n Th limi as n is fini, by comparison wih h original xprssion which surly is fini, and hus Ff, Fu V s V s Ffξ uϕ ρ+iξ cξ 2 dξ Ff, uϕ ρ+iξ V s V s Thus, Fu uϕ ρ+iξ as lmns of V s. Ξ mark 2.5. This implis ha h sphrical ransform of h Dirac dla disribuion is Fδ ϕ ρ+iξ Glfand-Pis ingrals and mollificaion. W dscrib h vcor-valud wak ingrals of Glfand [15] and Pis [19] and summari h ky rsuls; s [14]. For X, µ a masur spac and V a locally convx, quasi-compl opological vcor spac, a Glfand-Pis or wak ingral is a vcor-valud ingral Cc o X, V V dnod f I f such ha, for all α V, αi f α f dµ, X whr his lar ingral is h usual scalar-valud Lbsgu ingral. mark 2.6. Hilbr, Banach, Frch, LF spacs, and hir wak duals ar locally convx, quasicompl opological vcor spacs; s [14]. Thorm 2.1. i Glfand-Pis ingrals xis, ar uniqu, and saisfy h following sima: I f µspf closur of compac hull of fx ii Any coninuous linar opraor bwn locally convx, quasi-compl opological vor spacs T : V W commus wih h Glfand-Pis ingral: T I f I T f. For a locally compac Hausdorff opological group G, wih Haar masur dg, acing coninuously on a locally convx, quasi-compl vcor spac V, h group algbra Cc o G acs on V by avraging: η v ηg g v dg G

9 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 9 Thorm 2.2. i L G b a locally compac Hausdorff opological group acing coninuously on a locally convx, quasi-compl vcor spac V. L {ψ i } b an approxima idniy on G. Thn, for any v V, ψ i v v in h opology of V. ii If G is a Li group and {η i } is a smooh approxima idniy on G, h mollificaions η i v ar smooh. In paricular, for X g, X η v L X η v. Thus h spac V of smooh vcors is dns in V. mark 2.7. For a funcion spac V, h spac of smooh vcors V is no ncssarily h subspac of smooh funcions in V. Thus Thorm 2.2 dos no prov h dnsiy of smooh funcions in V. 3. Fundamnal Soluion for λ ν on G/K W now rurn o prov h main horm, sad a h bginning of h papr, which givs an xplici xprssion for h fundamnal soluion for λ ν on a symmric spac G/K Proof of main horm. As abov, l G b a complx smi-simpl Li group wih fini cnr and K a maximal compac subgroup. L G NAK, g n+a+k b corrsponding Iwasawa dcomposiions. L Σ dno h s of roos of g wih rspc o a, l Σ + dno h subs of m αα, m α dnoing h posiiv roos for h ordring corrsponding o n, and l ρ 1 2 mulipliciy of α. Sinc G is complx, m α 2, for all α Σ +, so ρ α Σ α. L + a C dno h s of complx-valud linar funcions on a. Considr h diffrnial quaion on h symmric spac X G/K: λ ν u δ 1 K whr h Laplacian is h imag of h Casimir opraor for g, λ is 2 ρ 2 for a complx paramr, ν is an ingr, and δ 1 K is Dirac dla a h baspoin x o 1 K G/K. Sinc δ 1 K is also lf-k-invarian, w consruc a lf-k-invarian soluion on G/K using h harmonic analysis of sphrical funcions. Proposiion 3.1. For ingral ν > dimg/k/2, u is a coninuous lf-k-invarian funcion on G/K wih h following spcral xpansion: 1 ν u g ξ ν ϕ ρ+iξg cξ 2 dξ Ξ Proof. Sinc δ 1 K is a compacly suppord disribuion of ordr ro, by Proposiion 2.9, i lis in h global onal sphrical Sobolv spacs H l X for all l > dimg/k/2. Thus hr is an lmn u of H l+2ν X saisfying his quaion. Th soluion u is uniqu in Sobolv spacs, sinc any u saisfying 2 ρ 2 ν u δ 1 K mus ncssarily hav h sam sphrical ransform. For ν > dimg/k/2, h soluion is coninuous by Proposiion 2.7, and by Proposiion 2.8, u g Ξ Fu ξ ϕ ρ+iξ g cξ 2 dξ Ξ 1 ν ξ ν ϕ ρ+iξg cξ 2 dξ For a complx smi-simpl Li group, h onal sphrical funcions ar lmnary. Th sphrical funcion associad wih h principal sris I χ wih χ ρ+iλ, λ a C is ϕ ρ+iλ π+ ρ sgnw i wλ π + iλ sgnw wρ whr h sums ar akn ovr h lmns w of h Wyl group, and h funcion π + is h produc π + µ α> α, µ ovr posiiv roos, wihou mulipliciis. Th raio of π+ ρ o π + iλ is h c-funcion, cλ. Th dnominaor can b rwrin sgnw wρ 2 sinhα w W

10 1 AMY T. DECELLES Proposiion 3.2. Th fundamnal soluion u has h following ingral rprsnaion: 1 ν i d u π + ρ 2 sinh α 1 a λ ν π+ λ iλ dλ Proof. In h cas of complx smi-simpl Li groups, h invrs sphrical ransform has an lmnary form F 1 f fλ ϕ ρ+iλ cλ 2 dλ a /W fλ π+ ρ a /W π + iλ 1 π + ρ 2 sinh α sgnw i wλ sgnw wρ a /W π + 2 iλ π + ρ dλ fλ sgnw i wλ π + iλ dλ Th funcion π + is a homognous polynomial of dgr d, qual o h numbr of posiiv roos, cound wihou mulipliciy, so π + iλ i d π + λ. Also, π + is W -quivarian by h sign characr, so h chang of variabls λ w 1 λ yilds By Proposiion 3.1, F 1 f u i d π + ρ 2 sinh α 1 ν i d π + ρ 2 sinh α w W a fλ π + λ iλ dλ 1 a λ ν π+ λ iλ dλ L Ilog a dno h ingral w nd o compu: 1 Ilog a a λ ν π+ λ i λ,log a dλ Proposiion 3.3. Th ingral Ilog a can b rducd o an ingral ovr h ral lin: Ilog a i d π + Γν d log a πn 1/2 Γν Γν d Γ ν d n 1 iλ1 log a 2 λ dλ ν d n 1/2 1 whr n dim a and d is h numbr of posiiv roos, cound wihou mulipliciy. Proof. Apply h idniy Γs s s d o λ ν in h ingrand of Ilog a: 1 Ilog a Γν ν λ π + λ iλ dλ d a 1 Γν ν 2 2 π + λ i λ,log a dλ d Chang variabls λ λ/. Ilog a 1 Γν 1 Γν ν 2 λ 2 a ν d+n/2 2 a λ d/2 π + λ i λ/, log a π + i λ, log a/ λ dλ λ 2 a n/2 dλ d d

11 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 11 Th polynomial π + is in fac harmonic. S, for xampl, Lmma 2 in [2] or, for a mor dirc proof, Thorm 3.2, blow. Thus h ingral ovr a is h Fourir ransform of h produc of a Gaussian and a harmonic polynomial, and by Hck s idniy, 2 π + λ i λ, log a/ dλ i d π + log a/ log a 2 / a λ urning o h main ingral, Ilog a id π + log a Γν id π + log a Γν placing h Gaussian by is Fourir ransform, Ilog a id π + log a Γν id π + log a Γν id π + log a Γν i d π + log a a i d d/2 π + log a log a 2 / ν d n/2 2 log a 2 / d ν d 2 n/2 log a 2 / d ν d 2 a i λ,log a λ ν d λ d Γν d a λ ν d i λ,log a dλ Γν d a i λ,log a Γν λ dλ ν d 2 dλ d i λ,log a dλ W dno his ingral by J log a, sinc i is is roaion-invarian as a funcion of log a. Wriing λ λ 1,..., λ n, w may assum λ, log a λ 1 log a, and hn J log a a iλ1 log a λ dλ ν d Idnifying a wih n, J log a is 1 Γν d ν d λ iλ1 log a d dλ 1 dλ 2... λ n n 1 Γν d ν d λ iλ1 log a dλ 1 πn 1/2 Γν d ν d n 1/2 πn 1/2 Γν d Γ ν d n 1 2 Thus w hav h dsird conclusion, sinc Ilog a i d π + log a λ 2 n 1 λ iλ1 log a dλ 1 d iλ1 log a λ dλ ν d n 1/2 1 Γν d Γν J log a 2 + +λ2 n d dλ 2... λ n Th rmaining ingral can b valuad by rsidus whn h xponn in h dnominaor is a sufficinly larg ingr, i.. whn G is of odd rank. For h vn rank cas, h ingral can b xprssd in rms of a K-Bssl funcion.

12 12 AMY T. DECELLES Proposiion 3.4. For n odd, l ν d + n+1 2. Thn Ilog a i d π + log a Proof. call from Proposiion 3.3 ha Ilog a is i d π + log a Γν d Γν Taking ν d + n+1 2, iλ1 log a λ dλ ν d n 1/2 1 Thus, π n+1/2 Γd + n + 1/2 πn 1/2 Γν d Γ ν d n 1 2 Ilog a i d π + log a iλ1 log a λ dλ 2 1 2πi s λ 1i π n+1/2 Γd + n + 1/2 Proposiion 3.5. For n vn, l ν d + n Thn, Ilog a i d π + log a Proof. call from Proposiion 3.3 ha Ilog a i d π + log a Γν d Γν Th ingral ovr is iλ1 log a λ dλ 3/2 1 Γn/2 + 1 Γd + n/2 + 1 πn 1/2 Γν d Γ ν d n cosλ 1 log a λ dλ 3/2 1 + π log a Γ3/2 log a iλ1 log a λ dλ ν d n 1/2 1 iλ 1 log a λ log a π n/2 log a K 1 log a Γn/2 + 1 cosλ 1 log a λ dλ 3/2 1 K 1 log a π log a iλ1 log a λ dλ ν d n 1/2 1 i sinλ 1 log a λ /2 dλ 1 whr K 1 is a modifid Bssl funcion K α of h scond kind, which has h following ingral rprsnaion s [1], Thus, K α x Γα α π 1/2 x α I log a i d π + log a cosx α+1/2 d α > 1 2, x >, arg < π 2 Γn/2 + 1 Γd + n/2 + 1 Now w prov h horm sad in h inroducion: π n/2 log a K 1 log a Γn/2 + 1 Thorm 3.1. Whn G is of odd rank, l ν d + n+1 2, whr d is h numbr of posiiv roos, cound wihou mulipliciis, and n is h rank. Thn h fundamnal soluion u for h opraor λ ν on G/K is givn by: u a 1d+n+1/2 π n+1/2 π + ρ Γd + n + 1/2 αlog a 2 sinhαlog a log a

13 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 13 Whn G is of vn rank, l ν d + n Thn, wih K 1 h usual Bssl funcion, u a 1 d+n/2+1 π n/2 π + ρ Γd + n/2 + 1 Proof. call ha h fundamnal soluion is u a αlog a 2 sinhαlog a 1 ν i d π + ρ 2 sinhαlog a By Proposiion 3.4, whn G is of odd rank and ν d + n+1 2, u a log a Ilog a 1 d+n+1/2 i d π + ρ 2 sinhαlog a id π + π n+1/2 log a Γd + n + 1/2 1d+n+1/2 π n+1/2 π + ρ Γd + n + 1/2 π + log a 2 sinhαlog a 1d+n+1/2 π n+1/2 π + ρ Γd + n + 1/2 αlog a 2 sinhαlog a By Proposiion 3.5, whn G is of vn rank and ν d + n 2 + 1, u a 1d+n/2+1 π + ρ 1 d+n/2+1 π n/2 π + ρ Γd + n/2 + 1 log a π + log a Γn/ sinhαlog a Γd + n/2 + 1 αlog a 2 sinhαlog a log a K 1 log a log a log a J log a K 1 log a mark 3.1. For fixd α, larg, and µ 4α 2 s [1], 9.7.2, π K α µ 1 µ 1µ 9 µ 1µ 9µ ! ! arg < 3π 2 Thus in h vn rank cas h fundamnal soluion has h following asympoic: u a 1d+n/2+1 π n+1/2 2 π+ ρ Γd + n/2 + 1 αlog a log a log a 2 sinhαlog a mark 3.2. For any ingr ν > dimg/k/2 n + d/2, h argumn usd in h proof of Proposiion 3.5 givs a formula for h bi-k-invarian fundamnal soluion for λ ν in rms of K-Bssl funcions: 2 1 ν u a π + ργν ν d n/2 αlog a log a 2 sinhlog a K ν d n/2 log a 2 In h odd rank cas, h classical formula for Bssl funcions of half ingr ordr π K m+1/2 2 m m + j! j!m j! 2 j allows us o wri h fundamnal soluion in lmnary rms. L ν m + d + n + 1/2, whr m is any non-ngaiv ingr. Thn u a 1m+d+n+1/2 π n+1/2 m + d + n 1/2! π + ρ log a αlog a 2 sinhαlog a P log a, 1 whr P is a dgr m polynomial in log a and a dgr 2m polynomial in 1. j

14 14 AMY T. DECELLES mark 3.3. call from Proposiion 3.1 ha onal sphrical Sobolv hory nsurs h coninuiy of u for ν chosn as in h horm. For G SL 2 C, h coninuiy is visibl, sinc fundamnal soluion is, up o a consan, u a r r 2 1r 2 1 sinh r whr a r r/2 r/2 mark 3.4. As Brian Hall has poind ou, hr is a simpl rlaion bwn Laplacian on G/K and h Laplacian on p whn G is complx, which allows us o drmin h fundamnal soluion on G/K in rms of h Euclidan fundamnal soluion on p [16], proof of Thorm 2. S also Hlgason s discussion of h wav quaion on G/K in [18]. L J b h funcion on p dfind by fg dg fxpx JX dx G/K Thn, for λ 2 ρ 2, as abov, p G/K λ ν f xp J 1/2 p 2 ν J 1/2 f xp Whn G is complx, h rsricion o a has an lmnary squar roo, J 1/2 H sinhαh αh Indd h ingral w valuad afr applying Hck s idniy is an ingral rprsnaion for h Euclidan fundamnal soluion on a n Th harmonic propry of π +. L G b complx smi-simpl Li group. W will giv a dirc proof ha h funcion π + : a givn by π + µ α> α, µ whr h produc is akn ovr all posiv roos, cound wihou mulipliciy, is harmonic wih rspc o h Laplacian naurally associad o h pairing on a. S also [2], Lmma 2, whr his rsul is obaind as a simpl corollary of h lss rivial fac ha π + divids any polynomial ha is W -quivarian by h sign characr. I is his propry ha nabls us o us Hck s idniy in h compuaions abov. W will us h following lmma. Lmma 3.1. L I b h s of all non-orhogonal pairs of disinc posiiv roos, as funcions on a. Thn π + is harmonic if β,γ β,γ I β γ. Proof. Considring a as a Euclidan spac, is Li algbra can b idnifid wih islf. For any basis {x i } of a, h Casimir opraor Laplacian is i x i x i. For any α, β in a and any λ a α, λ β, λ x i α, x i β, λ + α, λ β, x i i i α, x i β, x i + α, x i β, x i 2 α, β Thus π + i i β> x i x i π + i βx i γ β x i αx i π+ β β> γx i π+ βγ and π + is harmonic if h sum in h samn of h Lmma is ro. β γ β, γ β γ mark 3.5. Whn h Li algbra g is no simpl, bu mrly smi-simpl, i.. g g 1 g 2, any pair β, γ of roos wih β g 1 and γ g 2 will hav β, γ, so i suffics o considr g simpl. π +

15 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 15 Proposiion 3.6. For g sl 3, sp 2, or g 2, h following sum ovr all pairs β, γ of disinc posiiv roos is ro: β,γ β γ β γ. Proof. Th posiiv roos in sl 3 ar α, β, and α + β wih α, α 2, β, β 2, α, β 1. In ohr words, h wo simpl roos hav h sam lngh and hav an angl of 2π/3 bwn hm. Th pairs of disinc posiiv roos ar α, β, α, α + β and β, α + β, so h sum o compu is α, β α β + α, α + β α α + β + β, α + β β α + β Claring dnominaors and valuaing h parings, α, β α + β + α, α + β β + β, α + β α α + β + β + α For sp 2, h simpl roos hav lnghs 1 and 2 and hav an angl of 3π/4 bwn hm: α, α 1, β, β 2, α, β 1. Th ohr posiiv roos ar α + β and 2α + β. Th non-orhogonal pairs of disinc posiiv roos ar α, β, α, 2α + β, β, α + β, and α + β, 2α + β. So h sum w mus compu is α, β α β + α, 2α + β α 2α + β + β, α + β β α + β + α + β, 2α + β α + β2α + β Again, claring dnominaors, α, β α + β2α + β + α, 2α + β βα + β + β, α + β α2α + β + α + β, 2α + β αβ and valuaing h pairings, α + β2α + β + βα + β + α2α + β + αβ 2α 2 + 3αβ + β 2 + αβ + β 2 + 2α 2 + αβ + αβ Finally w considr h xcpional Li algbra g 2. Th simpl roos hav lnghs 1 and 3 and hav an angl of 5π/6 bwn hm: α, α 1, β, β 3, α, β 3/2. Th ohr posiiv roos ar α+β, 2α+β, 3α+β, and 3α+2β. Noic ha h roos α and α+β hav h sam lngh and hav an angl of 3π/2 bwn hm. So oghr wih hir sum 2α + β, hy form a copy of h sl 3 roo sysm. Th hr rms corrsponding o h hr pairs of roos among hs roos will cancl, as in h sl 3 cas. Similarly, h roos 3α + β and β hav h sam lngh and hav an angl of 3π/2 bwn hm, so, oghr wih hir sum, 3α + 2β hy form a copy of h sl 3 roo sysm, and h hr rms in h sum corrsponding o h hr pairs among hs roos will also cancl. Th rmaining six pairs of disinc, non-orhogonal posiiv roos ar α, 3α + β, α, β, 3α + β, 2α + β, 2α + β, 3α + 2β, 3α + 2β, α + β, and α + β, β. W shall s ha h six rms corrsponding o hs pairs cancl as a group. Afr claring dnominaors, h rlvan sum is α, β α + β2α + β3α + β3α + 2β + α, 3α + β βα + β2α + β3α + 2β + 3α + β, 2α + β αβα + β3α + 2β + 2α + β, 3α + 2β αβα + β3α + β + 3α + 2β, α + β αβ2α + β3α + β + α + β, β α2α + β3α + β3α + 2β Evaluaing h pairings and facoring ou 3/2, his is α + β2α + β3α + β3α + 2β + βα + β2α + β3α + 2β + αβα + β3α + 2β + αβα + β3α + β + αβ2α + β3α + β + α2α + β3α + β3α + 2β

16 16 AMY T. DECELLES Muliplying ou, This sum is ro. 18α 4 45 α 3 β 4 α 2 β 2 15 αβ 3 2β α 3 β + 13 α 2 β αβ 3 + 2β α 3 β + 5 α 2 β αβ α 3 β + 4 α 2 β 2 + αβ α 3 β + 5 α 2 β 2 + αβ 3 +18α α 3 β + 13 α 2 β αβ 3 Proposiion 3.7. For any complx simpl Li algbra g, h following sum ovr all pairs β, γ of disinc posiiv roos is ro: β,γ β γ β γ. Proof. L I b h indxing s {β, γ} of pairs of disinc, non-orhogonal posiiv roos. For ach β, γ I, l β,γ b h wo-dimnsional roo sysm gnrad by β and γ. For such a roo sysm, l I b h s of pairs of disic, non-orhogonal posiiv roos, whr posiiviy is inhrid from h ambin g. Th collcion J of all such I is a covr of I. W rfin J o a subcovr J of disjoin ss, in h following way. For any pair I and I of ss in J wih non-mpy inrscion, hr is a wo-dimnsional roo sysm such ha I conains I and I. Indd, ling β, γ and β, γ b pairs in I gnraing and rspcivly, h non-mpy inrscion of I and I implis ha hr is a pair β, γ lying in boh I and I. Sinc and ar wo-dimnsional and β and γ ar linarly indpndn, all six roos li in a plan. Sinc all six roos li in h roo sysm for g, hy gnra a wo-dimnsional roo sysm conaining and, and I I, I. Thus w rfin J o a subcovr J : if I in J inrscs any I in J, rplac I and I wih h s I dscribd abov. Th ss I in J ar muually disjoin, and, for any β, γ I, hr is a roo sysm such ha β, γ I J, hus β,γ I β, γ β γ I J β, γ β γ β,γ I By h classificaion of complx simpl Li algbras of rank wo, is isomorphic o h roo sysm of sl 3, sp 2, or g 2. Thus, by Proposiion 3.6, h innr sum ovr I is ro, proving ha h whol sum is ro. No ha h rfinmn is ncssary, as hr ar copis of sl 3 insid g 2. No also ha h only im h roo sysm of g 2 appars is in h cas of g 2 islf, sinc, by h classificaion, g 2 is h only roo sysm conaining roos ha hav an angl of π/6 or 5π/6 bwn hm. mark 3.6. S [17], Lmma 2, for a proof of Proposiion 3.7 whn G is no ncssarily complx. Thorm 3.2. For a complx smi-simpl Li group G, h funcion π + : a givn by π + µ α> α, µ whr h produc is akn ovr all posiv roos, cound wihou mulipliciy, is harmonic wih rspc o h Laplacian naurally associad o h pairing on a. Proof. This follows immdialy from Lmma 3.1, mark 3.5, and Proposiion 3.7. frncs [1] M. Abramowi and I. A. Sgun. Handbook of mahmaical funcions wih formulas, graphs, and mahmaical abls, volum 55 of Naional Burau of Sandards Applid Mahmaics Sris [2] N. B. Andrsn. Invarian fundamnal soluions and solvabiliy for symmric spacs of yp G C /G wih only on conjugacy class of Caran subspacs. Ark. Ma., 362:191 2, [3] N. B. Andrsn. Invarian fundamnal soluions and solvabiliy for GLn, C/Up, q. Mah. Scand., 861:143 16, 2. [4] J-P Ankr. Sharp simas for som funcions of h Laplacian on noncompac symmric spacs. Duk Mah J, 652: , 1992.

17 FUNDAMENTAL SOLUTION FO λ ν ON A SYMMETIC SPACE G/K 17 [5] A. Bnabdallah and F. ouvièr. ésolubilié ds opéraurs bi-invarians sur un group d Li smi-simpl. C.. Acad. Sci. Paris Sér. I Mah., 29817:45 48, [6] N. Bopp and P. Harinck. Formul d Planchrl pour GLn, C/Up, q. J. in Angw. Mah., 428:45 95, [7] A. DClls. An xac formula rlaing laic poins in symmric spacs o h auomorphic spcrum. Illinois J. Mah. To appar; s arxiv: v2 [mah.nt]. [8] K. Fridrichs. Spkralhori halbbschränkr Opraorn und Anwndung auf di Spkralrlgung von Diffrnialopraorn. Mah. Ann., 191: , [9] K. Fridrichs. Spkralhori halbbschränkr Opraorn I. und II. Til. Mah. Ann., 111: , [1]. Gangolli and V.S. Varadarajan. Harmonic Analysis of Sphrical Funcions on al duciv Groups. Ergbniss dr Mahmaik un ihrr Grngbi, vol. 11. Springr-Vrlag, Brlin, Hidlbrg, Nw York, [11] P. Garr. Exampl compuaions in auomorphic spcral hory. Talk a Nwark, May 21. S hp:// garr/m/v/nwark.pdf. [12] P. Garr. Exampls in auomorphic spcral hory. Talk in Durham, Augus 21. S hp:// garr/m/v/durham.pdf. [13] P. Garr. Primr of sphrical harmonic analysis on SL2, C. Jun 7, 21 vrsion. Las accssd April 21, 211. S hp:// garr/m/v/sl2c.pdf. [14] P. Garr. Vcor-valud ingrals. Fbruary 18, 211 vrsion. Las accssd April 21, 211. S hp:// garr/m//fun/nos/7 vv ingrals.pdf. [15] I. M. Glfand. Sur un lmm d la hori ds spacs linairs. Comm. Ins. Sci. Mah. d Kharkoff, 134:35 4, [16] B. C. Hall and J. J. Michll. Th Sgal-Bargmann ransform for noncompac symmric spacs of h complx yp. J. Funcional Analysis, 227: , 25. [17] B. C. Hall and M. B. Snl. Sharp bounds for h ha krnl on crain symmric spacs of non-compac yp. Conmp. Mah., 317: , 23. [18] S. Hlgason. Gomric analysis on symmric spacs, volum 39 of Mahmaical Survys and Monographs. Amrical Mahmaical Sociy, Providnc, I, [19] B. J. Pis. On ingraion in vcor spacs. Trans. Amr. Mah. Soc., 442:277 34, [2] H. Urakawa. Th ha quaion on a compac Li group. Osaka J. Mah, 12: , [21] E. P. van dn Ban and H. Schlichkrull. Convxiy for invarian diffrnial opraors on smisimpl symmric spacs. Composiio Mah., 893:31 313, [22] N.. Wallach. Th powrs of h rsolvn on a locally symmric spac. Bull. Soc. Mah. Blg., 423: , 199. Univrsiy of S. Thomas, Dparmn of Mahmaics, 2115 Summi Avnu, S. Paul, MN addrss: adclls@shomas.du, amy.dclls@gmail.com UL: hp://cam.mahlab.shomas.du/dclls

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems

On Ψ-Conditional Asymptotic Stability of First Order Non-Linear Matrix Lyapunov Systems In. J. Nonlinar Anal. Appl. 4 (213) No. 1, 7-2 ISSN: 28-6822 (lcronic) hp://www.ijnaa.smnan.ac.ir On Ψ-Condiional Asympoic Sabiliy of Firs Ordr Non-Linar Marix Lyapunov Sysms G. Sursh Kumar a, B. V. Appa

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU A IRODUCIO O FOURIER AALYSIS PROF. VEDA AVSAOĞLU 994 A IRODUCIO O FOURIER AALYSIS ABLE OF COES. HE FOURIER SERIES ---------------------------------------------------------------------3.. Priodic Funcions-----------------------------------------------------------------------3..

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

3(8 ) (8 x x ) 3x x (8 )

3(8 ) (8 x x ) 3x x (8 ) Scion - CHATER -. a d.. b. d.86 c d 8 d d.9997 f g 6. d. d. Thn, = ln. =. =.. d Thn, = ln.9 =.7 8 -. a d.6 6 6 6 6 8 8 8 b 9 d 6 6 6 8 c d.8 6 6 6 6 8 8 7 7 d 6 d.6 6 6 6 6 6 6 8 u u u u du.9 6 6 6 6 6

More information

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning

I) Title: Rational Expectations and Adaptive Learning. II) Contents: Introduction to Adaptive Learning I) Til: Raional Expcaions and Adapiv Larning II) Conns: Inroducion o Adapiv Larning III) Documnaion: - Basdvan, Olivir. (2003). Larning procss and raional xpcaions: an analysis using a small macroconomic

More information

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS * Andri Tokmakoff, MIT Dparmn of Chmisry, 5/19/5 7-11 7.4 QUANTUM MECANICAL TREATMENT OF FLUCTUATIONS * Inroducion and Prviw Now h origin of frquncy flucuaions is inracions of our molcul (or mor approprialy

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano Expcaions: Th Basic Prpard by: Frnando Quijano and Yvonn Quijano CHAPTER CHAPTER14 2006 Prnic Hall Businss Publishing Macroconomics, 4/ Olivir Blanchard 14-1 Today s Lcur Chapr 14:Expcaions: Th Basic Th

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED 006-0 Asian Rsarch Publishing work (ARP). All righs rsrvd. USTEADY FLOW OF A FLUID PARTICLE SUSPESIO BETWEE TWO PARALLEL PLATES SUDDELY SET I MOTIO WITH SAME SPEED M. suniha, B. Shankr and G. Shanha 3

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Nonlocal Symmetries and Exact Solutions for PIB Equation

Nonlocal Symmetries and Exact Solutions for PIB Equation Commun. Thor. Phys. 58 01 331 337 Vol. 58 No. 3 Spmbr 15 01 Nonlocal Symmris and Exac Soluions for PIB Equaion XIN Xiang-Png 1 MIAO Qian 1 and CHEN Yong í 1 1 Shanghai Ky Laboraory of Trusworhy Compuing

More information

DE Dr. M. Sakalli

DE Dr. M. Sakalli DE-0 Dr. M. Sakalli DE 55 M. Sakalli a n n 0 a Lh.: an Linar g Equaions Hr if g 0 homognous non-homognous ohrwis driving b a forc. You know h quaions blow alrad. A linar firs ordr ODE has h gnral form

More information

Smoking Tobacco Experiencing with Induced Death

Smoking Tobacco Experiencing with Induced Death Europan Journal of Biological Scincs 9 (1): 52-57, 2017 ISSN 2079-2085 IDOSI Publicaions, 2017 DOI: 10.5829/idosi.jbs.2017.52.57 Smoking Tobacco Exprincing wih Inducd Dah Gachw Abiy Salilw Dparmn of Mahmaics,

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0) CHATER 6 inar Sysms of Diffrnial Equaions 6 Thory of inar DE Sysms! ullclin Skching = y = y y υ -nullclin Equilibrium (unsabl) a (, ) h nullclin y = υ nullclin = h-nullclin (S figur) = + y y = y Equilibrium

More information

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations saartvlos mcnirbata rovnuli akadmiis moamb 3 #2 29 BULLTN OF TH ORN NTONL DMY OF SNS vol 3 no 2 29 Mahmaics On nral Soluions of Firs-Ordr Nonlinar Mari and Scalar Ordinary Diffrnial uaions uram L Kharaishvili

More information

(November 11, 2014) Waveforms, I

(November 11, 2014) Waveforms, I (Novmbr, 4 Wavforms, I Paul Garr garr@mah.umn.du hp://www.mah.umn.du/ garr/ [This documn is hp://www.mah.umn.du/ garr/m/mfms/nos 3-4/ wavforms I.pdf]. Wavform Eisnsin sris E s. Hgnr poin priods of Eisnsin

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

4.3 Design of Sections for Flexure (Part II)

4.3 Design of Sections for Flexure (Part II) Prsrssd Concr Srucurs Dr. Amlan K Sngupa and Prof. Dvdas Mnon 4. Dsign of Scions for Flxur (Par II) This scion covrs h following opics Final Dsign for Typ Mmrs Th sps for Typ 1 mmrs ar xplaind in Scion

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA

A MATHEMATICAL MODEL FOR NATURAL COOLING OF A CUP OF TEA MTHEMTICL MODEL FOR NTURL COOLING OF CUP OF TE 1 Mrs.D.Kalpana, 2 Mr.S.Dhvarajan 1 Snior Lcurr, Dparmn of Chmisry, PSB Polychnic Collg, Chnnai, India. 2 ssisan Profssor, Dparmn of Mahmaics, Dr.M.G.R Educaional

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Discussion 06 Solutions

Discussion 06 Solutions STAT Discussion Soluions Spring 8. Th wigh of fish in La Paradis follows a normal disribuion wih man of 8. lbs and sandard dviaion of. lbs. a) Wha proporion of fish ar bwn 9 lbs and lbs? æ 9-8. - 8. P

More information

symmetric/hermitian matrices, and similarity transformations

symmetric/hermitian matrices, and similarity transformations Linar lgbra for Wirlss Communicaions Lcur: 6 Diffrnial quaions, Grschgorin's s circl horm, symmric/hrmiian marics, and similariy ransformaions Ov Edfors Dparmn of Elcrical and Informaion Tchnology Lund

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each]

Part I: Short Answer [50 points] For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each] Soluions o Midrm Exam Nam: Paricl Physics Fall 0 Ocobr 6 0 Par I: Shor Answr [50 poins] For ach of h following giv a shor answr (- snncs or a formula) [5 poins ach] Explain qualiaivly (a) how w acclra

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Circuits and Systems I

Circuits and Systems I Circuis and Sysms I LECTURE #3 Th Spcrum, Priodic Signals, and h Tim-Varying Spcrum lions@pfl Prof. Dr. Volan Cvhr LIONS/Laboraory for Informaion and Infrnc Sysms Licns Info for SPFirs Slids This wor rlasd

More information

Introduction to Fourier Transform

Introduction to Fourier Transform EE354 Signals and Sysms Inroducion o Fourir ransform Yao Wang Polychnic Univrsiy Som slids includd ar xracd from lcur prsnaions prpard y McClllan and Schafr Licns Info for SPFirs Slids his work rlasd undr

More information

Lie Groups HW7. Wang Shuai. November 2015

Lie Groups HW7. Wang Shuai. November 2015 Li roups HW7 Wang Shuai Novmbr 015 1 Lt (π, V b a complx rprsntation of a compact group, show that V has an invariant non-dgnratd Hrmitian form. For any givn Hrmitian form on V, (for xampl (u, v = i u

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

Average Number of Lattice Points in a Disk

Average Number of Lattice Points in a Disk Average Number of Laice Poins in a Disk Sujay Jayakar Rober S. Sricharz Absrac The difference beween he number of laice poins in a disk of radius /π and he area of he disk /4π is equal o he error in he

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct Qus Journals Journal of Rsarch in Applid Mahmaics Volum ~ Issu (5 pp: -5 ISSN(Onlin : 94-74 ISSN (Prin:94-75 www.usjournals.org Rsarch Papr Asympoic Soluions of Fifh Ordr Criically Dampd Nonlinar Sysms

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Inextensible flows of S s surfaces of biharmonic

Inextensible flows of S s surfaces of biharmonic Inxnsibl flows of s surfacs of biharmonic -curvs accordin o abban fram in Hisnbr Group His Tala Körpinar Es Turhan Fira Univrsiy, Dparmn of Mahmaics 9, Elazi, Turky E-mail: alakorpinar@mailcom (Rcivd 0

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Midterm Examination (100 pts)

Midterm Examination (100 pts) Econ 509 Spring 2012 S.L. Parn Midrm Examinaion (100 ps) Par I. 30 poins 1. Dfin h Law of Diminishing Rurns (5 ps.) Incrasing on inpu, call i inpu x, holding all ohr inpus fixd, on vnuall runs ino h siuaion

More information

Availability Analysis of Repairable Computer Systems and Stationarity Detection

Availability Analysis of Repairable Computer Systems and Stationarity Detection 1166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 11, NOVEMBER 1999 Availabiliy Analysis of Rpairabl Compur Sysms and Saionariy Dcion Bruno Sricola AbsracÐPoin availabiliy and xpcd inrval availabiliy ar

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

WEIBULL FUZZY PROBABILITY DISTRIBUTION FOR RELIABILITY OF CONCRETE STRUCTURES

WEIBULL FUZZY PROBABILITY DISTRIBUTION FOR RELIABILITY OF CONCRETE STRUCTURES Enginring MECHANICS, Vol. 17, 2010, No. 5/6, p. 363 372 363 WEIBULL FUZZY PROBABILITY DISTRIBUTION FOR RELIABILITY OF CONCRETE STRUCTURES Zdněk Karpíšk*, Pr Šěpánk**, Pr Jurák* Basd on h fuzzy probabiliy

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

Impulsive Differential Equations. by using the Euler Method

Impulsive Differential Equations. by using the Euler Method Applid Mahmaical Scincs Vol. 4 1 no. 65 19 - Impulsiv Diffrnial Equaions by using h Eulr Mhod Nor Shamsidah B Amir Hamzah 1 Musafa bin Mama J. Kaviumar L Siaw Chong 4 and Noor ani B Ahmad 5 1 5 Dparmn

More information

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations Cohrnc and inracions in diffusiv sysms G. Monambaux cur 4 iffusion + - inraions nsiy of sas anomaly phasing du o lcron-lcron inracions - inracion andau Frmi liquid picur iffusion slows down lcrons ( )

More information