Measure Theory and Integration

Size: px
Start display at page:

Download "Measure Theory and Integration"

Transcription

1 CHAPTER 1 Measure Theory and Integration One fundamental result of measure theory which we will encounter inthischapteristhatnoteverysetcanbemeasured. Morespecifically, if we wish to define the measure, or size of subsets of the real line in such a way that the measure of an interval is the length of the interval then, either we find that this measure does not extend all subsets of the real line or some desirable property of the measure must be sacrificed. An example of a desirable property that might need to be sacrificed is this: the (extended) measure of the union of two disjoint subsets might not be the sum of the measures. The Banach-Tarski paradox dramatically illustrates the difficulty of measuring general sets; it is stated in Section???????? without proof. It is with this in mind that our discussion of measure and integration begins, in this Section, by making precise what constitutes a measurable set and a measurable function and then an integrable function. 1. Algebras of Sets Let be a set and P() denote the power set of which is the set of all subsets of. The reader is referred to Chapter 0, Subsection 1 if any notations or set theoretic notions are unfamiliar. Notation: N 0 is the set of nonnegative integers; Q is the set of rational numbers; Z is the set of all integers. Suppose 1 and 2 are two sets and f : 1 2 is a function with domain 1 and range in 2 (but f need not be onto). For any B 2, denote by f 1 (B) = {x 1 : f(x) B}. the inverse image of the set B under f. Of course f need not be one-to-one (injective) and so f 1 need not exist as a function. Some of the elementary properties of the inverse image are worthy of note: If B,B 2 then f 1 (B B ) = f 1 (B) f 1 (B ) f 1 (B B ) = f 1 (B) f 1 (B ) f 1 (B c ) = f 1 (B) c 25

2 26 1. MEASURE THEORY AND INTEGRATION The verification is asked for in the Exercises at the end of the Section. Definition: If A then define the characteristic function χ A on by χ A (x) = 1 if x A and χ A (x) = 0 if x A. Exercise: Determine χ 1 A (B) for an arbitrary B R. There are 4 cases, if A. Exercise: (De Morgan s Laws) If {A α : α I} is a collection of subsets of a set then the operation C of complementation has the properties. C( α I A α ) = α I C(A α ) C( α I A α ) = α I C(A α ) If I = N is countable then we can write n N A n = n N B n where B 1 = A 1, B 2 = A 2 A c 1,...B n = A n A c 1 A c 2... A c n 1. The B n are then disjoint. Definition: Let A n, n N be a countable collection of sets in. The limit supremum of {A n } is lim supa n = n N k n A k n whereas the limit infimum of {A n } is lim inf n A n = n N k n A k. Intuitively limsup n A n is all points that are in infinitely many of the A n whereas liminf n A n is all those points that are in all except possibly finitely many of the A n. If A n is a decreasing sequence of sets, A 1 A 2 A 3... then lim supa n = n N A n = liminfa n n n Definition: A collection F of subsets of is an algebra (field) if a. F. b. If A F then A c F. c. If {A α : α I} F and if I is finite then α I F. Condition c in the definition could equivalently be replaced by either of the following Conditions. c. If A,B F then A B F. c. If A,B F then A B F. because Condition c is equivalent to c; and Condition c in conjunction with Condition b is equivalent to Conditions c and b, as can be seen by observing that C(A B) = CA CB. Definition: AcollectionF ofsubsetsofisaσ-algebra(orσ-field) if F is an algebra and

3 1. ALGEBRAS OF SETS 27 d. If {A α : α I} F and if I is countable, or finite, then α I A α F. Of course condition d implies condition c in the definition of an algebra. Conditions b and d together are equivalent to b and d where d. If {A α : α I} F and if I is countable, or finite, then α I A α F. Example 1.1. (i) The power set P() of a set is a σ- algebra. (ii) {,} is a σ-algebra. (iii) {,A,A c,} is a σ-algebra, if A is any subset of. Example (i) is the largest σ-algebra of subsets of ; Example (ii) is the smallest and Example (iii) is the smallest σ-algebra that contains the set A. Example 1.2. Consider the set of all real intervals of the form [a,b) along with all intervals of the form [a, ) and (,b) where a and b are real numbers. Define F to be the set of all finite unions of disjoint intervals of this form along with the null set and R itself. We claim that F is an algebra. Certainly F. If A F then we mustcheckthata c isinf andthatisobviousifa = ora = Randso we may suppose A = 1 j n [a j,b j ) where a 1 < b 1 < a 2 < b 2 < a 3 <... < b n. Then A c is of the same form: indeed if a 1 > and b n < then A c = (,a 1 ) [b 1,a 2 )... [b n 1,a n ) [b n, ). Therefore A c F; the cases where a 1 = or b 1 = or both are handled similarly. Therefore F is closed under taking complements. It remains to check that F is closed under finite unions and it suffices to show that if A,B F then A B F. If A = or A = R then this is obvious and so we suppose A = 1 j n [a j,b j ) where a 1 < b 1 < a 2 < b 2 < a 3 <... < b n and further it suffices to consider the cases that B = [c,d) where c < d or B = (,d) or B = [c, ) or B = R. If A B = then there is nothing to show but if B meets any subinterval [a j,b j ) of A or shares an endpoint then B [a j,b j ) is again an interval of the same type, that is half open and half closed. (Alternatively one argues that there are four cases: c A or not and d A or not.) Therefore A B is in F. Example 1.3. Sometimes it is more convenient to work with F consisting of all finite disjoint intervals of the form (a, b] (as opposed to [a,b) above) and (,b] and (a, ). Again in this case F is an algebra but not a σ-algebra.

4 28 1. MEASURE THEORY AND INTEGRATION Proposition 1.4. Let {F α : α I} be a non empty collection of σ-algebras (resp. algebras) on a given set indexed by a set I. Then the intersection α I F α is also a σ-algebra (resp. algebra). Proof. We need only check that α I F α satisfies the three properties of σ-algebras The set is certainly in all σ-algebras and hence in α I F α. If A α I F α then A c is in every F α. Finally if (A n ) n N is a sequence of sets in α I F α then n N A n is in every F α and this completes the proof in the case of σ-algebras and the proof for algebras is analogous. Suppose now that S P() is any collection of subsets of a set. Then there is a smallest σ-algebra which contains S which we shall denote this σ(s). To see this observe that the set of all σ-algebras that contains isnonemptybecauseitcontainsp()andsotheintersection of all σ-algebras that contain S is a σ-algebra, by the Proposition and it certainly contains S and so it must be the minimal such σ-algebra. Definition: If F is a σ-algebra then a subset S F with the property that F = σ(s) is said to be a system of generators of F. Consider now the case that = R n, where n 1. Similar considerationsapplyifisanytopologicalspace. OnR n x = (x 1,...,x n ),we define the norm x = ( 1 j n x j 2 ) 1/2 and the corresponding (usual) topology where a base for the neighborhoods of a point x R n is {V r (x) : r > 0} where V r (x) = {y R n : x y < r} is an open ball of radius r centered at x. Then a set U is said to be open in R n, if, for every x U there is r > 0 so that V r (x) U. The set of all open sets is denoted O and we define the Borel subsets of R n to be B = σ(o), that is the smallest σ-algebra that contains O. We shall sometimes write B(R n ) for B when wishing to emphasize that it is the Borel σ-algebra on R n. In general, if is a topological space and O is the set of all open subsets of then the Borel σ-algebra on is σ(o). Remark: If C denotes the set of all closed subsets of R n then σ(c) = B. For recall that a set is closed if and only if its complement is open. Since B contains the open sets and is closed under the operation of taking complements, it follows that B C and hence B σ(c). Conversely the open sets are contained in σ(c): O σ(c). Therefore B = σ(o) σ(c) and so B = σ(c). Therefore O is a system of generators of B by the definition of B and C is a second system of generators. Example: ThesetS ofallintervalsoftheforms = {(,a) : a R} is a system of generators of the Borel σ-algebra B of R: B = σ(s) Indeed, since S consists solely of open sets it is obvious that B σ(s).

5 1. ALGEBRAS OF SETS 29 It therefore suffices to show that any open set is contained in σ(s). Certainly if a < b then [a,b[=],a[ c ],b[ belongs to σ(s). Thereforeitsufficestoshowthatanyopensetcanbewrittenasaunion ofatmostcountablymanyintervalsoftheform[a,b). Wecandothisas follows: For each n, consider all intervals of the form [k2 n,(k+1)2 n ). where k Z. Given an open set U R, we let A n be the union of all suchintervalsthatareentirelycontainedinu. ThenA n isanincreasing sequence of sets and U = n 0 A n and this expresses U as a countable union of the desired type of intervals. It follows that B = σ(s). Other generating sets for the Borel subsets of R are (1) S 1 = {],a] : a R} (2) S 2 = {]a, [: a R} (3) S 3 = {[a, [: a R} (4) S 4 = {]a,b] : a,b R,a < b} (5) S 5 = {[a,b[: a,b R,a < b} Example: For each a = (a 1,a 2,...,a n ) R n let I(a) = {x R n : x 1 < a 1,x 2 < a 2,...,x n < a n }. Here x R n has components x = (x 1,x 2,...,x n ) is used. Further let I 0 (a,b) = {x R n : a 1 x 1 < b 1,a 2 x 2 < b 2,...,a n x n < b n }. whenever a,b R n and, presumably a 1 < b 1, a 2 < b 2,...a n < b n because I 0 (a,b) is void otherwise. Define S = {I(a) : a R n } and S 0 = {I 0 (a,b) : a,b R n }. Therefore S and S 0 are two collections of subsets of R n and we claim that σ(s) = σ(s 0 ) = B. The rectangular sets I 0 (a,b) can be expressed in terms of unions, intersections and complements of the sets I(a) so that σ(s) σ(s 0 ). Conversely any of the sets I(a) is the limit of an increasing sequence of sets I 0 (b n,a) so that σ(s) = σ(s 0 ). Also σ(s) B since each I(a) is open. Therefore it remains only to show that B σ(s) and for this it suffices to show that an arbitrary open set is in σ(s 0 ). Proceeding as in the previous example, it can be shown that any σ-algebra open set is a countable union of the rectangular sets I 0 (a,b) and so this completes the proof. There will also be occasion to work in the extended real numbers R = [, ], regarded as a two point compactification of the real line. The open sets in this case are all those sets that are subsets of R and are open in R as well as the sets ]a, ] and ],b] for arbitrary real a and b or is a union of the three types of sets. Again we denote the open sets by O and we define the Borel σ-algebra of R to be B(R) = σ(o). We have A B(R) if and only if A {, }, regarded as a subset of R is in B(R), for it is straightforward to check that the set of such sets is closed under complementation and countable union. The generating

6 30 1. MEASURE THEORY AND INTEGRATION setslistedaboveforb(r)arealsogeneratingsetsforb(r)ifoneadjoins the singleton set { } (resp. { }). Monotone Classes We say that a sequence (A p ) p N of subsets of a set is increasing if A 1 A 2 A 3... and decreasing if A 1 A 2 A 3... and monotone if it is either increasing or decreasing. Every monotone sequence has a limit: A = p N A p if (A p ) p N is increasing and A = p N A p in the decreasing case. A set M of subsets of is said to be a monotone class if, for every monotone sequence in M, the limit is also in M. Every σ-algebra is a monotone class. For recall that an increasing sequence of sets can be written as the union of disjoint subsets. The complement of a decreasing sequence forms an increasing sequence and so a σ-algebra is a monotone class. On the other hand if F 0 is both an algebra and a monotone class then it must also be a σ-algebra. If {M α : α I} is a nonempty collection of monotone classes then α I M α is also a monotone class. Since the power set P() is a monotone class it follows that every subset S P() is contained in a smallest monotone class which we denote M(S) Theorem 1.5. (Monotone Class Lemma) If F 0 is an algebra of subsets of a set then σ(f 0 ) = M(F 0 ). Proof: Ithasalreadybeenremarkedthataσ-algebraisamonotone class and so it follows that a M(F 0 ) σ(f 0 ). To prove the converse it suffices to show that M(F 0 ) is an algebra. Introduce the notation M A = {B M(F 0 ) : A B,A B c and A c B are in M(F 0 )} It is not difficult to check that M A is a monotone class. Now if we suppose that A F 0 then M A F 0. By minimality M A = M(F 0 ) if A F 0. Next we observe that, by symmetry that B M A implies A M B. Therefore if A F 0 and B M A then A M B. This shows that, whenever B M(F 0 ) = M A, then we have M B F 0. But then, by minimality again we must have M B = M(F 0 ) even for B M(F 0 ). Therefore for every A,B M(F 0 ) A B; A c B, and A B c are in M(F 0 ). We check now that M(F 0 ) is an algebra. Certainly F 0 M(F 0 ) and if A M(F 0 ) then A c M(F 0 ) for take B =. Finally if A,B M(F 0 ) then A c,b M(F 0 ) so that A c B c M(F 0 ) and we may take the complement to get A B M(F 0 ). This proves M(F 0 ) is an algebra and as a monotone class it is therefore a σ-algebra.

7 1. ALGEBRAS OF SETS 31 We shall have occasion to use the Monotone Class Lemma when verifying uniqueness of measures. Exercises: (1) Show that, if B,B 2 then f 1 (B B ) = f 1 (B) f 1 (B ) f 1 (B B ) = f 1 (B) f 1 (B ) f 1 (B c ) = f 1 (B) c (2) Show that, in general, liminf n A n limsup n A n (3) Recall the definition of the limit supremum and limit infimum of a sequence of real numbers a n. lim supa n = inf{sup{a k : k n} : n 1} and n N lim inf a n = sup{inf{a k : k n} : n 1} n N where the value (resp. ) is possible if the sequence is unbounded above (resp. below). (See page two of Ash s book Measure, Integration, and Functional Analysis.) How is limsupχ An related to χ B where B = limsupa n? What happens if we replace limsupχ An by liminfχ An? (4) Suppose that A n = {x R 3 : x (0,0,( 1) n /n) < 1}. Find limsup n A n and liminf n A n. Compare this with Exercise 3, page 3 of Ash s book. (5) Show that F of Example 1.2 is not a σ-algebra. (6) Suppose that E is an arbitrary subset of a set and S is a collection of subsets of. Define E S = {E A : A S}. Show that a. If F 0 is an algebra of subsets of then E F 0 is also an algebra of subsets of E. b. σ(e S) = E σ(s). That is the smallest σ-algebra in P(E) containing E S is the intersection of E with the smallest σ-algebra in P() containing S. c. Conclude further that, if F is a σ-algebra of subsets of, then E F is a σ-algebra of subsets of E. (Reference: Halmos s Measure Theory)

8 32 1. MEASURE THEORY AND INTEGRATION 2. Measurability It is an objective of this Chapter to define the integral of a function. If f is a nonnegative function defined on an interval in the real line then the integral should be able to tell us the area under the graph of f just as the Riemann integral does in calculus. It will tell us much more but even in this limited context we shall discover that f must be restricted: the notion of area under the graph of f will not make sense for every f and we will be forced to restrict the class of functions considered. We introduce in this Section the concept of a measurable function. We shall see that f must be measurable if we are to make sense of the notion of area under the graph. Of course this difficulty arises already in the case of Riemann integration: the Riemann integral is not defined for arbitrary functions f. We shall clarify this remark and discuss the Riemann integral and its relation to the Lebesgue integral, introduced here, at the end of this Chapter. Definition: Let be a set and F be a σ-algebra of subsets of. The we shall refer to (,F) as a measurable space. The sets in F will be referred to as measurable sets. Definition: Suppose ( 1,F 1 ) and ( 2,F 2 ) are two measurable spaces. Then a mapping f : 1 2 is measurable, with respect to F 1 and F 2 if f 1 (B) F 1 whenever B F 2. We shall sometimes say f is measurable function from ( 1,F 1 ) to ( 2,F 2 ) to clarify the choice of σ-algebras F 1 and F 2. Unless otherwise specified a function f : 1 R n is said to be measurable or Borel measurable if f is measurable from ( 1,F 1 ) to (R n,b). An elementary example of a measurable function is given by the characteristic function χ A of a set A. Then χ A is measurable as a mapping from (,F) to (R,B) if and only if A F, that is if and only if A is a measurable set. Further examples of measurable functions will be apparent once some elementary properties have been established. Lemma 2.1. Suppose that ( 1,F 1 ), ( 2,F 2 ) and ( 3,F 3 ) are three measurable spaces and that f : 1 2 and g : 2 3 are two mappings. If f and g are both measurable then the composed function g f is measurable from ( 1,F 1 ) to ( 3,F 3 ). Proof: We must show that, for an arbitrary set C F 3, (g f) 1 (C) F 1. It suffices to show that (2.1) (g f) 1 (C) = f 1 (g 1 (C))

9 2. MEASURABILITY 33 because g 1 (C) F 2 because g is measurable and so f 1 (g 1 (C)) F 1 because f is measurable. The verification of (2.1) is a straightforward exercise in checking the equality of sets. Proposition 2.2. Suppose that f : 1 2 is a function and F 1 and F 2 are σ-algebras on 1 and 2 respectively. Suppose further that S is a system of generators of F 2, which is to say F 2 = σ(s). Then f is measurable from ( 1,F 1 ) to ( 2,F 2 ) if and only if f 1 (B) F 1 for every B S. Proof: It is obvious that, if f is measurable then f 1 (B) F 1 for every B S simply because S F 2. Conversely, suppose f 1 (B) F 1 for every B S. Let T = {B F 2 : f 1 (B) F 1 } so that T S. We shall show that T is a σ-algebra which implies that T = F 2 and so, by the definition of T, f is measurable. This will complete the proof. We check therefore that T is a σ-algebra. Certainly T, because f 1 ( ) = F 1. We check next that if B T then f 1 (B) F 1 and so f 1 (B c ) = f 1 (B) c F 1 because F 1 is closed under taking complements. (Recall f 1 (B c ) = f 1 (B) c by an Exercise.) We check finally that if (B n ) n N is a sequence of sets in T so that f 1 (B n ) T for each n N then f 1 ( n N B n ) = n N f 1 (B n ) F 1 because F 1 is a σ-algebra. This shows that T is closed under countable unions and is therefore a σ-algebra and the proof is complete. Remark: This set T in the proof constitute good sets and the argument that there are many good sets is an instance of what Ash calls the good sets principle in his text page 5. Remark: The above proof uses a special case of the following observation: Iff isamappingf : 1 2 andif(b α ) α I isacollection of subsets of 2 indexed by a set I then f 1 ( α I B α ) = α I f 1 (B α ) f 1 ( α I B α ) = α I f 1 (B α ). On the other hand if (A α ) α I is a collection of subsets of 1 then f( α I A α ) = α I f(a α ) but it may happen that f( α I A α ) α I f(a α ). Corollary 2.3. A continuous function f : R m R n is Borel measurable. Of course the understood σ-algebras here are the Borel σ-algebra B(R m ) and B(R n ).

10 34 1. MEASURE THEORY AND INTEGRATION Proof: Since the B(R n ) is generated by the open sets, it suffices to show that f 1 (U) B(R m ) for an arbitrary open set U. The result will then follow from the Proposition. However f is continuous means that f 1 (U) is open whenever U is and so f 1 (U) B(R m ). The same reasoning applies in a more general setting. Corollary 2.4. If f is a continuous function from one topological space (X,Σ) to another (Y,T ) then f is measurable from (X,B(X)) to (Y,B(Y)) where B(X) is the Borel σ-algebra which is generated by the open sets Σ of X and similarly B(Y) is generated by the open sets T. Proposition 2.5. Suppose that (, F) is a measurable space and f 1, f 2,...f m are m Borel measurable real valued functions, f j : (,F) (R,B), for 1 j m. Suppose that g : (R m,b(r m )) (R, B(R)) is measurable. Then φ(x) = g(f 1 (x),f 2 (x),...,f m (x)) defines a measurable function φ : (,F) (R,B(R)). We shall set aside the proof of the Proposition until later and consider its consequences. Corollary 2.6. If f j : (,F) (R,B), j = 1,2 are Borel measurable functions, then f 1 +f 2 is also Borel measurable. Proof. This is an application of the Proposition with g : R 2 R defined by g(x 1,x 2 ) = x 1 + x 2. Because g is continuous it is Borel measurable. Corollary 2.7. If f j : (,F) (R,B), j = 1,2 are Borel measurable functions, then the product f 1 f 2 is also Borel measurable. In particular, if k is a real constant then kf 2 is Borel measurable. Proof. In this case g(x,y) = xy. The special case follows by defining f 1 (x) = k which makes f 1 measurable because it is continuous. Corollary 2.8. If f : (,F) (R,B), is a Borel measurable function then f is also Borel measurable. Proof. In this case g(x) = x. Corollary 2.9. If f j : (,F) (R,B), j = 1,2 are Borel measurable functions, and if f 2 (x) 0 for all x then the ratio f 1 /f 2 is also Borel measurable.

11 2. MEASURABILITY 35 Proof. In this case we define { x/y if y 0 g(x,y) = 0 if y = 0 so that g is defined on all of R 2 but of course it is not continuous. We shall check however that g is measurable, as a mapping from (R 2,B(R 2 )) to (R,B). It suffices to show that g 1 (,a) B(R 2 ) for any real a by Proposition 2.2. If a < 0 then g 1 (,a) = {(x,y) R 2 : x/y < a} is easily seen to be open in R 2 and hence in B(R 2 ). If a 0 then g 1 (,a) = {(x,y) R 2 : x/y < a} {(x,y) : y = 0} which is theunion ofan open and a closed set and is thereforein B(R 2 ). This proves that g is measurable and so the above Proposition applies which completes the proof. Exercise: Show that if f j : (,F) (R,B), j = 1,2 are Borel measurable functions then max{f 1,f 2 } and min{f 1,f 2 } are also measurable. Remark: max{a,b} = ( a b +a+b)/2 for any reals a and b. It remains to establish the Proposition. Proof of the Proposition: It suffices to show that the mapping, f say, defined by f(x) = (f 1 (x),f 2 (x),...f m (x)) is measurable as a mapping from (,F) to (R m,b(r m ) because the composition of measurable functions is measurable. To verify f is measurable, it suffices to show that, for an arbitrary a = (a 1,a 2,...,a m ) R m, f 1 ({x 1 < a 1,x 2 < a 2,...,x m < a m }) F by Proposition 2.2. However f 1 ({x 1 < a 1,x 2 < a 2,...,x m < a m }) = 1 j m f 1 j (,a j ) and as the intersection of m measurable sets, this set is, itself measurable. Definition A function f : (,F) R is said to be simple if there exist finitely many sets A j F, 1 j m and scalars λ j so that f(x) = λ j χ Aj (x) 1 j m The set of all simple functions is denotes S(,F) or S when the context is clear. Observe that a simple function is measurable because it is the sum of measurable functions. Also a simple function takes on only finitely many values, λ j, 1 j m and possibly 0. Conversely a measurable function that takes on finitely many values is simple. To see this, simply define, for each λ j in the image of f, A j = f 1 ({λ j }). The set S

12 36 1. MEASURE THEORY AND INTEGRATION is closed under addition, scalar multiplication and multiplication and therefore forms a linear algebra over R of functions. (Recall that a linear algebraisavectorspacewithamultiplicationoperation(f,g) fg that is associative and distributes over addition from the left and right and, for any scalar α, α(fg) = (αf)g = f(αg). Reference: Naimark s Normed Algebras 7.) It is further worth noting that the representation f(x) = 1 j m λ jχ Aj (x) in the definition of f S is not unique. Proposition Let f n, n N be a sequence of Borel measurable real valued functions defined on a measurable space (, F). Suppose that lim f n(x) = f(x) exists in R for every x. n N Then the function f : (,F) R, so defined, is measurable. This result says, briefly, that the pointwise limit of measurable functions is measurable. Proof: We will show that (2.2) f 1 ((,a]) = p N n N j n f 1 j ((,a+1/p]) for every a R The set of all sets of the form (,a] generate the Borel σ-algebra B because any open set is generated. Therefore, we will have shown f is measurable by Proposition 2.2. To verify (2.2), let x f 1 ((,a]) so that f(x) a. Then, for any p N there is n so that f j (x) a + 1/p for all j n: x f 1 j ((,a+1/p]) for all j n or x j n f 1 j ((,a+1/p]). But p was arbitrary and so x belongs to the right side of (2.2) and this shows that f 1 ((,a]) is a subset or equal to the right side of (2.2). Conversely suppose that x belongs to the right hand side of (2.2). Then, for every p N, there exists n N so that f j (x) a+1/p for all j n. Taking limits in this last expression as j we see that f(x) a+1/p. Since p is arbitrary f(x) a and this shows the right side of (2.2) is in f 1 ((,a]) which verifies (2.2). This proves that f is measurable.. The Extended Reals R: We introduce the extended real line R = [, ], sometimes referred to as the two point compactification of the real line, and this is just R with two points ± adjoined: R = R { } { }. This will be a convenience when discussing convergence. We introduce the following topology on R. The neighborhoods of (resp. ) are those sets which contain an interval of the form (a, ] for some a R (resp. [,a)) and the neighborhoods of x R are the usual: those sets that contain an interval of the form {y : y x < δ}

13 2. MEASURABILITY 37 for some δ > 0. Of course the topology that R inherits as a subset of R is its usual topology. As a consequence of these definitions we see that R is homeomorphic to the compact interval [ 1,1] with the (usual) topology it inherits as a subset of R. Indeed (2.3) Φ(x) = x x 2 +1 if x R 1 if x = 1 if x = is continuous from R to [ 1,1] with inverse Φ 1 (x) = which is also continuous. x 1 x 2 if 1 < x < 1 if x = 1 if x = 1 Corollary Let f n, n N be a sequence of Borel measurable extended real valued functions defined on a measurable space (, F). Suppose that lim n N f n(x) = f(x) exists in R for every x. Then the function f : (,F) R, so defined, is measurable. Proof. An extended real valued function g is Borel measurable if and only if Φ g is Borel measurable for Φ as in (2.3) because Φ and Φ 1 are continuous and hence measurable. Therefore the previous Proposition 2.11 applied to Φ f n implies implies the present result Measurable functions can be written as the pointwise limit of simple functions. We begin by considering nonnegative bounded functions and later we will extend to all measurable functions. Proposition Suppose f is be a nonnegative, bounded, measurable function defined on a measurable space (, F). Then there is a sequence (f n ) n N of simple functions such that (1) (f n ) n N is increasing. (2) 0 f n f, for every n N (3) (f n ) n N converges to f pointwise and even uniformly. Proof. Let ǫ > 0 be given. We shall construct a simple function g ǫ so that g ǫ f and f(x) g ǫ (x) < ǫ for all x. Since f is bounded we have 0 f M for some positive constant M. We choose a 0 = 0 < a 1 < a 2 <... < a m < a m+1 ] so that a j+1 a j < ǫ, for 0 j m+1 and M < a m+1 < M +ǫ We define A j = {x : a j f(x) < a j+1 } = f 1 ([a j,a j+1 ))

14 38 1. MEASURE THEORY AND INTEGRATION for 0 j m. Then A j is measurable and A j A k = if j k and 0 j m A j =. We define g ǫ (x) = a j χ Aj 0 j m Then g ǫ f < g ǫ +ǫ, in fact, for any x, x A j for some j and so g ǫ (x) = a j and a j f(x) < a j+1. Define f 1 = g 1, f 2 = max{f 1,g 1/2 },...f n = max{f n 1,g 1/n } It follows that f n f < f n + 1/n Also that f n is measurable as the maximum of two simple functions. And (f n ) n N is increasing and so f n has the required properties. Next consider the case that f is not necessarily nonnegative but is still bounded. Proposition Suppose f is a real valued, bounded, measurable function defined on a measurable space (,F). Then there is a sequence (f n ) n N of simple functions such that (1) f n f, for every n N (2) (f n ) n N converges to f pointwise and even uniformly. Remark: The proof is based on the observation that any real valued, measurable function f = f + f where f + = max{f,0} = ( f + f)/2 is nonnegative and measurable and f = min{f,0} = max{ f, 0} is also nonnegative and measurable. Proof of the Proposition 2.14 : Let g n be a sequence of nonnegative simple functions convergent to f + = max{f,0} as guaranteed by the preceding Proposition. Similarly let h n be simple functions convergent to f and define f n = g n h n. Then f n = g n h n g n +h n f + +f = f. Moreover f f n = f + g n (f h n ) f + g n + f h n and since f + g n and f h n go to zero uniformly on, f n converges uniformly to f. Finally we consider the general case when f need not be bounded. Theorem Let f be a nonnegative extended value measurable function, f : (,F) R +. Then there is an increasing sequence f n of simple functions (measurable on (,F)) so that (1) 0 f n f, for every n N (2) (f n ) n N converges to f pointwise. Theorem Let f be a measurable function, f : (,F) R. Then there is a sequence f n of simple functions so that (1) f n f, for every n N (2) (f n ) n N converges to f pointwise.

15 2. MEASURABILITY 39 Remark: It is not true in general that the convergence is uniform in this more general setting. Indeed, if f is unbounded then it cannot be approximated uniformly by bounded functions. For suppose f n be a sequence of functions, uniformly convergent to a function f and suppose each f n is bounded (with bound depending on n). If f f n < 1 then f f n < 1 which says that f is bounded. In the setting of the Theorem above, simple functions are bounded and so we cannot expect uniform convergence. Proof of Theorem 2.15: For each p N, define h p = min{f,p} so that h p is a bounded, nonnegative measurable function and so it is possible to choose a simple function g p 0 so that h p 1 p g p h p by Proposition Then we define f 1 = g 1, f 2 = max{f 1,g 2 },...f p = max{f p 1,g p } so that f p is simple, nonegative and increasing. We also see by induction on p, f p h p f. To check the pointwise convergence, suppose x 0. If f(x 0 ) < then we may choose p 0 N sothatp 0 f(x 0 ). Thenforp p 0, f(x 0 ) = h p (x 0 )sothatf(x 0 ) 1 p = h p (x 0 ) 1 p g p f p (x 0 ) f(x 0 ) and so f(x 0 ) = lim p N f p (x 0 ). On the other hand, if f(x 0 ) = then h p (x 0 ) = p and g p (x 0 ) p (1/p) so that f p (x 0 ) g p (x 0 ) p (1/p). Therefore lim p f p (x 0 ) = = f(x 0 ). Proof of Theorem 2.16 The proof of Proposition 2.14 applies here except the uniform convergence there must be replaced by pointwise convergence. Let g n be a sequence of nonnegative simple functions convergent to f + = max{f,0} as guaranteed by the preceding Theorem. Similarly let h n be simple functions convergent to f and define f n = g n h n. Then f n = g n h n g n + h n f + + f = f. Moreover, if f(x) 0 then h n (x) = 0 and lim f n(x) = limg n (x) = f + (x) = f(x) n N n N Similarly f(x) < 0, then g n (x) = 0 and lim f n(x) = lim h n (x) = f (x) = f(x) n N n N Note that lim n g n (x) = and lim n h n (y) = are both possible, but only if x y. The set of simple functions is an algebra as we have seen. Moreover if φ : R R is Borel measurable then φ f is simple whenever f is. In particular f is simple if f is and max{f,g} = 1 (f +g+ f g ) is 2 simple whenever f and g are. Similarly min{f,g} is simple.

16 40 1. MEASURE THEORY AND INTEGRATION 3. Measures and Premeasures A measure, or more generally a set function is a mapping from a σ-algebra into R = [, ]. Arithmetic on R is defined as follows. Significantly is not defined but +a = if a +a = if a a = if a > 0 Definition: A measure µ on a measurable space (,F) is a mapping of F to R + = [0, ] such that (1) µ( ) = 0 (2) µ( α I A α ) = α I µ(a α) whenever {A α F : α I} is a countable collection of sets in F which are pairwise disjoint which means that A α A β = whenever α β. A triple (,F,µ) where µ is a measure on the measurable space (, F) is a measure space or sometimes measured space to distinguish it from a measurable space. In the special case that µ() < then µ is said to be a finite measure and if µ() = 1 then µ is said to be a probability measure and (, F, µ) as a probability space. Remark: If {x α : α I} is a set of nonnegative numbers then α I x α = sup F α F x α where the supremum is taken over all finite subsets F of I and the sum could be. It is not necessary for this definition that I be countable but of course if {x α > 0 : α I} is uncountable then the sum is necessarily. (reference: General Topology by Bourbaki, Chapter IV, 4.3 and 7.1.) A somewhat more primitive concept than a measure is a premeasure Definition: Let F 0 be an algebra of subsets of a set. A premeasure µ 0 is a mapping of to R + = [0, ] such that (1) µ( ) = 0 (2) µ( α I A α ) = α I µ(a α) whenever {A α F 0 : α I} is a countable collection of sets in F 0 which are pairwise disjoint and provided α I A α is in F 0. Of course a measure is a premeasure and a premeasure is a measure if its domain is a σ-algebra. Property 2 for measures and premeasures is referred to as countable additivity. If a set function µ 0 is countably additive on an algebra F 0 then µ 0 (A) = µ 0 (A)+ for any A F 0 α Nµ( )

17 3. MEASURES AND PREMEASURES 41 Therefore if µ 0 (A) < we must have µ 0 ( ) = 0 that is, property 2 of premeasures implies property 1. Therefore property 1 could equally well be replaced by µ 0 (A) < for some A F. A measure or premeasure must be finitely additive (that is I could be taken to be finite in property 2) because, by property 2 µ 0 ( α I A α ) = µ 0 ([ α I A α ] [ n N ]) = µ 0 (A α )+ µ 0 ( ) = µ 0 (A α ) α I n N α I Anelementaryconsequenceofthisisthat, whenevera B anda,b F then µ 0 (A) µ(b), because µ 0 (B) = µ 0 (A)+µ 0 (B A) µ 0 (A) (Of course, R is ordered so that a if a R.) As a consequence, when we define a measure or premeasure µ 0 to be finite if µ 0 () <, we assure that indeed µ 0 (A) < for every A. Example 3.1. Discrete Measures: Let be any set and F = P() (the power set of ). For every x assign a nonnegative weight 0 p x and define µ(a) = x Ap x. Property 1 of measures is easily checked and property 2 is left as an exercise to the reader. In the special case that p x = 1 for every x then µ is called the counting measure on. Example 3.2. Let be any nonvoid set and F = P() be the power set and let µ( ) = 0 and µ(a) = if A. Then µ is a measure. More interesting examples will be constructed by starting with a distribution function which we now define. Definition: A real valued function F defined on R is a distribution function if (1) F is increasing which means, whenever x < y, F(x) F(y) (2) F is right continuous, which means that lim x a+ F(x) = F(a), for every real a. The archtypal example of a distribution function is F(x) = x but given any distribution function there is a corresponding Lebesgue Stieltjes premeasure which we now introduce. Example 3.3. Lebesgue Stieltjes Premeasures Consider the algebra F 0 of all finite unions of half open, half closed intervals of the form (a,b] or (,b] or (a, ) for any reals a and b. We saw in 1.1 that indeed these sets do form an algebra. If F is a distribution

18 42 1. MEASURE THEORY AND INTEGRATION function then we define µ 0 ((a,b]) = F(b) F(a) and extend µ 0 by finite additivity to F 0. Later we shall see that µ 0 is indeed a premeasure, that is we will check the countable additivity property 2. It will further be shown, in 1.4 that µ 0 has an extension defined on the Borel subsets of the real line which is a measure. This extension is a Lebesgue Stieltjes measure and its construction and properties is an objective of this Chapter. Some properties of measures and premeasures will now be recorded. Proposition 3.4. If µ and ν are measures on a measurable space (,F) and a 0 and b 0 the aµ + bν is also a measure. Similarly if µ 0 and ν 0 are premeasures on an algebra of sets F 0 then aµ 0 +bν 0 is also a measure. Proof: The proof is left as an exercise. Theorem 3.5. Suppose that µ 0 is a premeasure on an algebra of subsets F 0 of a set. Then (1) If B A and A,B F then µ 0 (B) µ 0 (A). (2) If {A α : α I} is a countable collection of sets in F 0 and if α I A α F 0 then µ 0 ( α I A α ) α I µ 0 (A α ) (3) If A 1 A 2 A 3... is an increasing sequence of sets in F 0 and if n N A α F 0 then lim µ 0(A n ) = µ 0 ( n N A n ) n N (4) If B 1 B 2 B 3... is a decreasing sequence of sets in F 0 such that n N B n is also in F 0 and if µ 0 (B k ) < for some k N then lim µ 0(B n ) = µ 0 ( n N B n ) n N Proof. Part 1 was discussed early in this section. For Part 2 we recall from 1.1 that α I A α can be written as the union of disjoints sets B n F. Indeed if α : N I is an enumeration of I and if with B n = A α(n) A c α(n 1)... Ac α(1). µ 0 ( α I A α ) = µ 0 ( n N B n ) = n N µ 0 (B n ) n Nµ 0 (A α(n) ) where the last inequality follows because B n A α(n). Of course the order of summation is irrelevant since the terms are nonnegative.

19 3. MEASURES AND PREMEASURES 43 Consider Part 3. We observe that, if µ 0 (A k ) = for some k, then µ 0 ( n N A n ) µ 0 (A k ) = and so there is nothing to check and so we cansupposethatµ 0 (A k )isfiniteforeveryk. Wehave, bytheadditivity property for measures, µ 0 ( n N A n ) = µ 0 (A 1 )+µ 0 (A 2 A 1 )+...+µ 0 (A p A p 1 )+... = lim p N µ 0 (A 1 )+µ 0 (A 2 A 1 )+...+µ 0 (A p A p 1 ) = lim p N µ 0 (A p ) We shall suppose that µ 0 (B 1 ) < ; the general case is very similar. Let B = n N B n. Then B 1 B n is an increasing sequence of sets whose union is B 1 B and so by Part 3 µ 0 (B 1 ) µ 0 (B) = µ 0 (B 1 B) = µ 0 ( n N (B 1 B n ) This implies Part 4 because µ 0 (B 1 ) <. = lim n N µ 0 (B 1 B n ) = µ 0 (B 1 ) lim n N µ 0 (B n ) Remark: In Part 4 of the preceding Theorem, the hypothesis µ 0 (B k ) < for some k cannot be dispensed with. For example if µ is the counting measure on the rational numbers Q then µ( 1/n,1/n) = for every n but µ( n N ( 1/n,1/n)) = µ({0}) = 1. The Theorem is of course true for measures in place of premeasures in which case F 0 would be replaced by a σ-algebra F say and so the α I A α and n N B n are automatically in F and so the statement simplifies slightly in this case. There is a partial converse to parts 3 and 4 of the Theorem that is helpful for checking the properties of premeasures. Proposition 3.6. Suppose that F 0 is an algebra of subsets of a set and µ 0 : F 0 R + is a mapping so that (1) µ 0 ( ) = 0 (2) µ( α I A α ) = α I µ(a α) whenever {A α F 0 : α I} is a finite collection of sets in F 0 which are pairwise disjoint. Suppose in addition that either one of the following two conditions is valid. a. Whenever A 1 A 2 A 3... is an increasing sequence of sets in F 0 such that the limit A = α I A α is also in F 0 then lim n N µ 0 (A n ) = µ 0 (A) b. Whenever B 1 B 2 B 3... is a decreasing sequence of sets in F 0 such that the limit n N B n = then lim n N µ 0 (B n ) = 0

20 44 1. MEASURE THEORY AND INTEGRATION Then, in either case, µ 0 is a premeasure. Proof. Let C 1, C 2, C 3...be a sequence of pairwise disjoint sets in F 0 and such that C = p N C p is also in F 0. Define A n = 1 p n C p. Assume Condition a. It implies lim n N µ 0 (A n ) = µ 0 (C) because A n ր C and C F 0. By finite additivity, µ 0 (A n ) = 1 p n µ 0(C p ) so that µ 0 (C p ) = lim µ 0 (C p ) = µ 0 (C) n N 1 p n p N which verifies µ 0 is countably additive and hence a premeasure under Condition a. Assume Condition b. We define B n = C A n so that B n ց and therefore Condition b implies lim n µ 0 (B n ) = 0 We have µ 0 (C) = µ 0 (A n )+µ 0 (B n ) = µ 0 (C p )+µ 0 (B n ) 1 p n Now if we take the limit in n N and we have µ 0 (C) = n µ 0(C p ) which says µ 0 is countably additive. We recall from Example 3.3 that each distribution function F definesasetfunctionµ 0 sothatµ 0 ((a,b]) = F(b) F(a)whichisafinitely additive set function on the set F 0 of all finite disjoint unions of intervalsoftheform(a,b]and(,b])and(a, ). Ofcourseµ 0 ((,b]) = lim n N = µ 0 (( n,b]) = lim n N F(b) F( n), with the value of possible. In general, if A F 0 then µ 0 (A) = lim n N µ 0 (A ( n,n]). We are now ready to show that µ 0 is a premeasure. Lemma 3.7. Let F be any distribution function and let µ 0 be the corresponding finitely additive set function defined on the algebra F 0 as in Example 3.3 (so that, in particular µ 0 ((a,b]) = F(b) F(a)). Then µ 0 is a premeasure. Proof: Consider first the finite case where F(x) is constant outside ( N,N] for some N so that µ 0 is finite. We shall use Part b of the preceding proposition and so we assume that B p F 0 forms a decreasing sequence of sets and B p ց. Given ǫ > 0, we will show that µ 0 B p ) < ǫ for all suffiiciently large p and this will imply the countable additivity of µ 0. We claim that there is another sequence C p F 0 with compact closures C p B p and such that µ 0 (B p C p ) < ǫ/2 p This is possible because for each subinterval (a,b] of B p we have µ 0 ((a,b]) = F(b) F(a) = lim a a+f(b) F(a ) = lim a a+µ((a b]) by the right continuity of F. We may also suppose that C p ( N,N] for all p. Since p N C p p N B p = it follows that, for some n, 1 p n C p =

21 3. MEASURES AND PREMEASURES 45 by a compactness argument. Consequently µ 0 (B n ) = µ 0 (B n 1 p n C p ) = µ 0 ( 1 p n B n C p ) µ 0 ( 1 p n B p C p ) 1 p n ǫ/2 p < ǫ Since (B p ) p N is a decreasing sequence and ǫ > 0 was arbitrary this says µ 0 (B p ) ց 0 as p and this verifies µ 0 is countably additive, and so a premeasure, in the case F(x) is constant outside ( N,N] for some N. Consider now the general case. For each N N let F N (x) = F(x) if x N and F N (x) = F( N) if x N and F N (x) = F(N) if x N. Then F N is a distribution function and the corresponding finitely additive set function µ N is in fact a premeasure by the first part of the proof and µ N (A) = µ 0 (A) if A F 0 and A ( N,N]. Moreover, for any A F 0, lim N N µ N (A) = µ(a) by the discussion preceding the statement of this result. Let (A p ) p N be a sequence of pairwise disjoint sets such that A = p N A p is in F 0. Then, simply because µ 0 is finitely additive we have, for any n N µ 0 (A) µ 0 ( 1 p n A p ) = 1 p nµ 0 (A p ) so that µ 0 (A) µ 0 (A p ) p N Conversely, by the special case µ 0 (A) = lim N N µ N (A) = lim N N p N µ N (A p ) lim 0 (A p ) = N N p Nµ µ 0 (A p ) p N because µ N (B) µ 0 (B) for any B F 0. Combining these two inequalities we have µ 0 (A) = p N µ 0(A p ) and this verifies the µ 0 is a premeasure and completes the proof. Thus every distribution function corresponds to a premeasure (and indeed, we shall see, to a measure). The following result provides a partial converse. Definition: We shall say that µ is a Lebesgue-Stieltjes measure if µ is a measure on the Borel subsets B of R and µ(k) < if K is a compact subset of R Proposition 3.8. Suppose that µ is a Lebesgue-Stieltjes measure and C is any real constant. Define F(x) = µ((0,x])+c if x 0 and F(x) = C µ((x,0]) if x < 0. (Here (0,0] = by convention.) Then F is a distribution function and µ((a,b]) = F(b) F(a) whenever a < b.

22 46 1. MEASURE THEORY AND INTEGRATION Therefore every Lebesgue-Stieltjes measure corresponds to a distribution function which is unique up to an additive constant. Proof: Since µ(a) µ(b) whenever A B are sets in B, µ((0,x]) is increasing x 0 and µ((x,0]) is decreasing for x 0 and so F is increasing on R. Suppose a 0. Then lim F(x) = C +µ( x>a(0,x]) = C +µ((0,a]) = F(a) x a+ so that F is right continuous on [0, ). Next suppose a < 0. Then lim F(x) = C µ( x>a(x,0]) = C µ((a,0]) = F(a) x a+ so that in fact F is right continuous everwhere and is therefore a distribution function. Next check that F(b) F(a) = µ((a,b]) whenever a < b. If 0 a then thisis obvious and similarly if b < 0. Supposetherefore that a < 0 andb 0. ThenF(b) F(a) = C+µ((0,b]) (C µ((a,0])) = µ((a,b]). The uniqueness, up to additive constants, of F with the property F(b) F(a) = µ((a,b]) follows because if G is another distribution function and if G(0) = F(0) then G(b) G(0) = µ((a,b]) = F(b) F(0) implies G(b) = F(b) for b 0. Similarly G(0) G(a) = µ((a,0]) = F(0) F(a) so that G(a) = F(a) for a < 0. Thus G = F. In general G = F F(0)+G(0) so that the choice of G is completely determined by the choice of G(0).

23 4. EXTENSIONS AND MEASURES: Extensions and Measures: In this Section we show that certain premeasures extend to measures and that a measure may be completed. As an application we are able to construct Lebesgue Stieltjes measures. Recall the definition: Definition: A real valued function F defined on R is a distribution function if (1) F is increasing which means, whenever x < y, F(x) F(y) (2) F is right continuous, which means that lim x a+ F(x) = F(a), for every real a. We begin by considering a premeasure µ 0 defined on an algebra F 0. Suppose that (A p ) p N is an increasing sequence in F 0 and A p ր A so that A 1 A 2 A 3... and A = p N A n but A may not be itself in F 0. We would like to extend µ 0 to µ 0 as µ 0 (A) = lim p N µ 0 (A p ). The limit exists in R + but we should verify that it does not depend on the particular sequence and that is the object of the Lemma below. Lemma 4.1. Suppose that µ 0 is a premeasure defined on an algebra F 0 and (A p ) p N and (B p ) p N are two increasing sequences of sets in F 0 with limits, A = p N A p and B = p N B p. If A B then lim p N µ(a p ) lim p N µ(b p ) Proof: Because µ 0 is a premeasure we have for any q N µ 0 (A q ) = lim p N µ 0 (A q B p ) lim p N µ 0 (B p ) Taking the limit in q gives the result. Define therefore G to consist of all A such that there exists an increasing sequence (A p ) p N F 0, so that A p ր A and define also a set function µ 0 on G by µ 0 (A) = lim p N µ 0 (A p ). TheprecedingLemmaassuresthatµ 0 iswelldefinedbecauseitdoesnot depend on the particular sequence (A p ) p N F 0 which approximates A. We see further that µ 0 extends µ 0 because any A F 0 can be written as the limit of a constant sequence. A n = A. Lemma 4.2. Suppose that µ 0 is a finite premeasure on an algebra F 0 and µ 0 is its extension to G as described above. Then G is closed under finite intersections and countable unions and a. If G 1, G 2 are in G then µ 0 (G 1 G 2 )+µ 0 (G 1 G 2 ) = µ 0 (G 1 )+µ 0 (G 2 )

24 48 1. MEASURE THEORY AND INTEGRATION b. If (G p ) p N is an increasing sequence in G then G = p N G n is in G and lim p N µ 0 (G n ) = µ 0 (G) c. If G p is a sequence in G then µ 0 ( p N G p ) p Nµ 0 (G p ) Proof: Suppose that A p, B p are increasing sequences of sets in F 0 and A p ր G 1 and B p ր G 2 so that G 1,G 2 G. It follows that A p B p ր G 1 G 2 and A p B p ր G 1 G 2 so that G is closed under finite unions and intersections. Moreover since µ 0 is a premeasure we can take the limit in p N in the relation µ 0 (A p B p )+µ 0 (A p B p ) = µ 0 (A p )+µ 0 (B p ) to verify Part a. To verify Part b, suppose that G p is an increasing sequence in G, G p ր G. For each p, suppose A pq is an increasing sequence in F 0 convergent to G p = q N A pq. A 11 A A 1q... ր G 1 A 21 A A 2q... ր G A p1 A p2... A pq... ր G p.. Define B q = 1 p q A pq. Then B q is an increasing sequence in F 0 and it is convergent to G so that G G and so µ 0 (G) = lim q N µ 0 (B q ). Certainly µ 0 (G) µ 0 (G p ) for any p by the preceding Lemma. On the other hand µ 0 (G p ) µ 0 (B p ) so that lim p N µ 0 (G p ) lim p N µ 0 (B p ) = µ 0 (G). This establishes Part b. To verify Part c, it suffices to check that, for any n N µ 0 ( 1 p n G p ) µ 0 (G p ). 1 p n because we may take the limit in n N and applying Part b above. In the case n = 2 we have µ 0 (G 1 G 2 ) µ 0 (G 1 )+µ 0 (G 2 ) by Part a. The case of general n follows by induction. The proof is complete.. Thus extension µ 0 is a countably additive set function and G F 0 is closed under countable unions, but A G does not imply A c G. Also unions of sets in G may not be expressible as unions of disjoint sets in G. Definition: A mapping µ on the power set P() of a set to R + is said to be an outer measure if (1) µ ( ) = 0..

25 4. EXTENSIONS AND MEASURES: 49 (2) If A B then µ (A) µ (B). (3) If A α I is a countable collection of sets in then µ ( α I A α ) α I µ (A α ) Frequently an outer measure will not be a measure because it is not additive but it is possible that a restriction to a σ-algebra of subsets of may indeed be a measure. We now suppose that µ 0 is a finite premeasure on an algebra F 0 and that µ 0 is the extension of µ 0 to the G of the preceding Lemma. Later in this Section we weaken the assumption of finite to σ-finite to be defined below. Define (4.1) µ (A) = inf{µ 0 (G) : G A,G G} for any A. Alternatively, in terms of µ 0 itself, we define { } λ(a) = inf µ 0 (A p ) : A p F 0, p N A p A p N We claim µ (A) = λ(a). For suppose that A p, p N is a sequence in F 0 and p N A p A, Define G = p N A p so that G G and µ 0 (G) = lim n µ 0 ( 1 p n A p ) p N µ 0(A p ). Consequently µ (A) λ(a). Conversely suppose G G so that there is a sequence A p F 0 so that A p ր G and we can form a sequence B p F 0 which is pairwise disjoint and p N B p = G so that µ 0 (G) = p N µ 0(B p ). This shows that µ (A) λ(a) and complete the verification that λ = µ. Now let us check that µ is indeed an outer measure and record some of its properties. Lemma 4.3. Suppose that µ 0 is a finite premeasure on an algebra F 0 of subsets of a set and that µ is defined as indicated above; (see (4.1)). Then µ is an outer measure and agrees with µ 0 on F 0 and µ 0 on G. Moreover (1) µ (A B)+µ (A B) µ (A)+µ (B) for any sets A,B. In particular µ (A)+µ (A c ) µ 0 (). (2) If A p, p N is an increasing sequence of sets in then lim p N µ (A p ) = µ ( p N A p ). Proof: It is clear that µ (G) = µ 0 (G) if G G, by the definition (4.1)ofµ andbecauseµ 0 (G) µ 0 (G )ifg G andg G. Similarly one sees that, if A B then µ (A) µ (B), by the definition (4.1) of µ.

26 50 1. MEASURE THEORY AND INTEGRATION Therefore, to complete the check that µ is an outer measure, we suppose that A p, p N is a sequence of subsets. of. We choose G p G, G p A p so that µ 0 (G p ) µ (A p )+2 p ǫ for each p N. Then µ ( p N A p ) µ 0 ( p N G p ) p N µ 0 (G p ) p N µ (A p )+ǫ/2 p where we have applied Part c of the preceding Lemma. Therefore µ is an outer measure. Check next Part 1. We suppose that A,B and ǫ > 0 is given. Choose G 1,G 2 G A G 1 and B G 2 and µ 0 (G 1 ) < µ (A)+ǫ and µ 0 (G 2 ) < µ (B)+ǫ. Then µ (A)+µ (B) > µ 0 (G 1 )+µ 0 (G 2 ) 2ǫ = µ 0 (G 1 G 2 )+µ 0 (G 1 G 2 ) 2ǫ by Part a of the preceding Lemma. Since G 1 G 2 A B and G 1 G 2 A B and G 1 G 2 G and G 1 G 2 G, we have µ (A)+µ (B) > µ 0 (G 1 )+µ 0 (G 2 ) 2ǫ µ (A B)+µ (A B) 2ǫ and, since ǫ > 0 was arbitrary this implies Part 1. It remains to check Part 2. Certainly µ (A n ) µ ( p N A p ) for any n N so that lim p N µ (A p ) µ ( p N A p ). To check the converse, suppose that ǫ > 0 is arbitrary, and that, for each p N, G p G is chosen so that G p A p and µ 0 (G p ) µ (A p ) + 2 p ǫ. We shall show that there is a increasing sequence H p G so that H p A p µ 0 (H p ) µ (A p ) + 1 q p 2 q ǫ. The existence of such a sequence would imply that µ ( p N A p ) µ 0 ( p N H p ) = limµ 0 (H p ) limµ (A p )+ 2 q ǫ. p N p N 1 q p so that µ ( p N A p ) lim p N µ (A p ) + ǫ and since ǫ is arbitrary this would complete the proof. To construct the sequence H p we proceed by induction on n supposing H 1 H 2... H n have been constructed in G and H p A p and µ 0 (H p ) µ (A p )+ 1 q p 2 q ǫ for 1 p n. Define H n+1 = H n G n+1 so that H n+1 G and µ 0 (H n+1 ) = µ 0 (H n G n+1 ) = µ 0 (H n )+µ 0 (G n+1 ) µ 0 (H n G n+1 ) µ (A n )+ 2 p ǫ+µ (A n+1 )+ǫ/2 n+1 µ (A n ) 1 p n since A n H n G n+1. Thus µ 0 (H n+1 ) µ (A n+1 ) + 1 p n+1 2 p ǫ and that completes the construction and therefore the proof. Thus every finite premeasure µ 0 extends to an outer measure µ. One of the less desirable features of µ is that there may exist sets A

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India Measure and Integration: Concepts, Examples and Exercises INDER K. RANA Indian Institute of Technology Bombay India Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076,

More information

DRAFT MAA6616 COURSE NOTES FALL 2015

DRAFT MAA6616 COURSE NOTES FALL 2015 Contents 1. σ-algebras 2 1.1. The Borel σ-algebra over R 5 1.2. Product σ-algebras 7 2. Measures 8 3. Outer measures and the Caratheodory Extension Theorem 11 4. Construction of Lebesgue measure 15 5.

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Construction of a general measure structure

Construction of a general measure structure Chapter 4 Construction of a general measure structure We turn to the development of general measure theory. The ingredients are a set describing the universe of points, a class of measurable subsets along

More information

Measures. Chapter Some prerequisites. 1.2 Introduction

Measures. Chapter Some prerequisites. 1.2 Introduction Lecture notes Course Analysis for PhD students Uppsala University, Spring 2018 Rostyslav Kozhan Chapter 1 Measures 1.1 Some prerequisites I will follow closely the textbook Real analysis: Modern Techniques

More information

Real Analysis Chapter 1 Solutions Jonathan Conder

Real Analysis Chapter 1 Solutions Jonathan Conder 3. (a) Let M be an infinite σ-algebra of subsets of some set X. There exists a countably infinite subcollection C M, and we may choose C to be closed under taking complements (adding in missing complements

More information

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland.

Measures. 1 Introduction. These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. Measures These preliminary lecture notes are partly based on textbooks by Athreya and Lahiri, Capinski and Kopp, and Folland. 1 Introduction Our motivation for studying measure theory is to lay a foundation

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

The Caratheodory Construction of Measures

The Caratheodory Construction of Measures Chapter 5 The Caratheodory Construction of Measures Recall how our construction of Lebesgue measure in Chapter 2 proceeded from an initial notion of the size of a very restricted class of subsets of R,

More information

Lebesgue Measure on R n

Lebesgue Measure on R n CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

MORE ON CONTINUOUS FUNCTIONS AND SETS

MORE ON CONTINUOUS FUNCTIONS AND SETS Chapter 6 MORE ON CONTINUOUS FUNCTIONS AND SETS This chapter can be considered enrichment material containing also several more advanced topics and may be skipped in its entirety. You can proceed directly

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Introduction to Real Analysis

Introduction to Real Analysis Christopher Heil Introduction to Real Analysis Chapter 0 Online Expanded Chapter on Notation and Preliminaries Last Updated: January 9, 2018 c 2018 by Christopher Heil Chapter 0 Notation and Preliminaries:

More information

1.1. MEASURES AND INTEGRALS

1.1. MEASURES AND INTEGRALS CHAPTER 1: MEASURE THEORY In this chapter we define the notion of measure µ on a space, construct integrals on this space, and establish their basic properties under limits. The measure µ(e) will be defined

More information

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1 MATH 5310.001 & MATH 5320.001 FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING 2016 Scientia Imperii Decus et Tutamen 1 Robert R. Kallman University of North Texas Department of Mathematics 1155

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures

Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon Measures 2 1 Borel Regular Measures We now state and prove an important regularity property of Borel regular outer measures: Stanford Mathematics Department Math 205A Lecture Supplement #4 Borel Regular & Radon

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

Abstract Measure Theory

Abstract Measure Theory 2 Abstract Measure Theory Lebesgue measure is one of the premier examples of a measure on R d, but it is not the only measure and certainly not the only important measure on R d. Further, R d is not the

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

Lebesgue Integration on R n

Lebesgue Integration on R n Lebesgue Integration on R n The treatment here is based loosely on that of Jones, Lebesgue Integration on Euclidean Space We give an overview from the perspective of a user of the theory Riemann integration

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

1.4 Outer measures 10 CHAPTER 1. MEASURE

1.4 Outer measures 10 CHAPTER 1. MEASURE 10 CHAPTER 1. MEASURE 1.3.6. ( Almost everywhere and null sets If (X, A, µ is a measure space, then a set in A is called a null set (or µ-null if its measure is 0. Clearly a countable union of null sets

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

Lebesgue Measure. Dung Le 1

Lebesgue Measure. Dung Le 1 Lebesgue Measure Dung Le 1 1 Introduction How do we measure the size of a set in IR? Let s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION 1 INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION Eduard EMELYANOV Ankara TURKEY 2007 2 FOREWORD This book grew out of a one-semester course for graduate students that the author have taught at

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as FUNDAMENTALS OF REAL ANALYSIS by Doğan Çömez II. MEASURES AND MEASURE SPACES II.1. Prelude Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as b n f(xdx :=

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

REAL ANALYSIS I Spring 2016 Product Measures

REAL ANALYSIS I Spring 2016 Product Measures REAL ANALSIS I Spring 216 Product Measures We assume that (, M, µ), (, N, ν) are σ- finite measure spaces. We want to provide the Cartesian product with a measure space structure in which all sets of the

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

Compendium and Solutions to exercises TMA4225 Foundation of analysis

Compendium and Solutions to exercises TMA4225 Foundation of analysis Compendium and Solutions to exercises TMA4225 Foundation of analysis Ruben Spaans December 6, 2010 1 Introduction This compendium contains a lexicon over definitions and exercises with solutions. Throughout

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Lebesgue Measure on R n

Lebesgue Measure on R n 8 CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1 Appendix To understand weak derivatives and distributional derivatives in the simplest context of functions of a single variable, we describe without proof some results from real analysis (see [7] and

More information

arxiv: v1 [math.fa] 14 Jul 2018

arxiv: v1 [math.fa] 14 Jul 2018 Construction of Regular Non-Atomic arxiv:180705437v1 [mathfa] 14 Jul 2018 Strictly-Positive Measures in Second-Countable Locally Compact Non-Atomic Hausdorff Spaces Abstract Jason Bentley Department of

More information

Measure on the Real Line

Measure on the Real Line Chapter 2 Measure on the Real Line 2.1 Introduction There are many examples of functions that associate a nonnegative real number or + with a set. There is, for example, the number of members forming the

More information

MATS113 ADVANCED MEASURE THEORY SPRING 2016

MATS113 ADVANCED MEASURE THEORY SPRING 2016 MATS113 ADVANCED MEASURE THEORY SPRING 2016 Foreword These are the lecture notes for the course Advanced Measure Theory given at the University of Jyväskylä in the Spring of 2016. The lecture notes can

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Measure Theory. John K. Hunter. Department of Mathematics, University of California at Davis

Measure Theory. John K. Hunter. Department of Mathematics, University of California at Davis Measure Theory John K. Hunter Department of Mathematics, University of California at Davis Abstract. These are some brief notes on measure theory, concentrating on Lebesgue measure on R n. Some missing

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

MATH5011 Real Analysis I. Exercise 1 Suggested Solution

MATH5011 Real Analysis I. Exercise 1 Suggested Solution MATH5011 Real Analysis I Exercise 1 Suggested Solution Notations in the notes are used. (1) Show that every open set in R can be written as a countable union of mutually disjoint open intervals. Hint:

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

General Notation. Exercises and Problems

General Notation. Exercises and Problems Exercises and Problems The text contains both Exercises and Problems. The exercises are incorporated into the development of the theory in each section. Additional Problems appear at the end of most sections.

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Measure Theory & Integration

Measure Theory & Integration Measure Theory & Integration Lecture Notes, Math 320/520 Fall, 2004 D.H. Sattinger Department of Mathematics Yale University Contents 1 Preliminaries 1 2 Measures 3 2.1 Area and Measure........................

More information

A Measure and Integral over Unbounded Sets

A Measure and Integral over Unbounded Sets A Measure and Integral over Unbounded Sets As presented in Chaps. 2 and 3, Lebesgue s theory of measure and integral is limited to functions defined over bounded sets. There are several ways of introducing

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information

Measure Theoretic Probability. P.J.C. Spreij

Measure Theoretic Probability. P.J.C. Spreij Measure Theoretic Probability P.J.C. Spreij this version: September 16, 2009 Contents 1 σ-algebras and measures 1 1.1 σ-algebras............................... 1 1.2 Measures...............................

More information

2 Sequences, Continuity, and Limits

2 Sequences, Continuity, and Limits 2 Sequences, Continuity, and Limits In this chapter, we introduce the fundamental notions of continuity and limit of a real-valued function of two variables. As in ACICARA, the definitions as well as proofs

More information

7 Complete metric spaces and function spaces

7 Complete metric spaces and function spaces 7 Complete metric spaces and function spaces 7.1 Completeness Let (X, d) be a metric space. Definition 7.1. A sequence (x n ) n N in X is a Cauchy sequence if for any ɛ > 0, there is N N such that n, m

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

212a1214Daniell s integration theory.

212a1214Daniell s integration theory. 212a1214 Daniell s integration theory. October 30, 2014 Daniell s idea was to take the axiomatic properties of the integral as the starting point and develop integration for broader and broader classes

More information

The small ball property in Banach spaces (quantitative results)

The small ball property in Banach spaces (quantitative results) The small ball property in Banach spaces (quantitative results) Ehrhard Behrends Abstract A metric space (M, d) is said to have the small ball property (sbp) if for every ε 0 > 0 there exists a sequence

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

RS Chapter 1 Random Variables 6/5/2017. Chapter 1. Probability Theory: Introduction

RS Chapter 1 Random Variables 6/5/2017. Chapter 1. Probability Theory: Introduction Chapter 1 Probability Theory: Introduction Basic Probability General In a probability space (Ω, Σ, P), the set Ω is the set of all possible outcomes of a probability experiment. Mathematically, Ω is just

More information