LECTURE 3 - Artificial Gauge Fields

Size: px
Start display at page:

Download "LECTURE 3 - Artificial Gauge Fields"

Transcription

1 LECTURE 3 - Artificial Gauge Fields SSH model - the simplest Topological Insulator Probing the Zak Phase in the SSH model - Bulk-Edge correspondence in 1d - Aharonov Bohm Interferometry for Measuring Band Geometry - Berry connection/berry curvature - pi-flux Singularity in Graphene - Stückelberg Interferometry (non-abelian Berry connection, Wilson loops) Realizing Staggered Flux, Hofstadter & QSH Hamiltonian Hall Response and Chern Number in Hofstadter Bands

2 Measuring the Zak-Berry s Phase of Topological Bands M. Atala et al., Nature Physics (213)

3 Berry Phase Berry Phase in Quantum Mechanics (R)! e i(' Berry+' dyn ) (R) Adiabatic evolution through closed loop ' Berry = ' Berry = I C I A n (R)dR = i A n (R) da I C hn(r) r R n(r)i dr Berry Phase M.V. Berry, Proc. R. Soc. A (1984) Berry connection A n (R) =ihn(r) r R n(r)i Example: Spin-1/2 particle in magnetic field Berry curvature n,µ µ A n,µ

4 Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky ky Berry phase is fundamental to characterize topology of energy bands kx kx kx n Chern = 1 2 I BZ A k dk = 1 2 Z BZ k d 2 k xy = n Chern e 2 /h Chern Number (Topological Invariant) Quantized Hall Conductance Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 1982 Kohmoto Ann. of Phys Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE!

5 Berry Phase Berry Phase for Periodic Potentials k(r) =e ikr u k (r) Bloch wave in periodic potential Adiabatic motion in momentum space generates Berry phase! ky ky ky Berry phase is fundamental to characterize topology of energy bands kx kx kx n Chern = 1 2 I BZ A k dk = 1 2 Z BZ k d 2 k xy = n Chern e 2 /h Chern Number (Topological Invariant) Quantized Hall Conductance Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 1982 Kohmoto Ann. of Phys What is the extension to 1D? Mention Problem with going on a line is generally NOT A LOOP IN PARAMETER SPACE!

6 Berry Phase Zak Phase 2D Brillouin Zone ky kx going straight means going around! Band structure has torus topology!

7 Berry Phase Zak Phase 2D Brillouin Zone ky kx going straight means going around! Band structure has torus topology! ' Zak = i Z k +G hu k u k i dk Zak Phase - the 1D Berry Phase k J. Zak, Phys. Rev. Lett. 62, 2747 (1989)

8 Berry Phase Zak Phase 2D Brillouin Zone ky kx going straight means going around! Band structure has torus topology! ' Zak = i Z k +G hu k u k i dk Zak Phase - the 1D Berry Phase k J. Zak, Phys. Rev. Lett. 62, 2747 (1989) Non-trivial Zak phase: Topological Band Edge States (for finite system) Domain walls with fractional quantum numbers Polarization of solids R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976) J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (1981) R. King-Smith and D. Vanderbilt, Phys. Rev. B 46, 1651 (1993)

9 Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979). H SSH = Â n Jâ n ˆb n + J â n ˆb n 1 + h.c.

10 Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979). H SSH = Â n Jâ n ˆb n + J â n ˆb n 1 + h.c. Two topologically distinct phases: D1: J>J D2: J >J J J J J J J J J J J

11 Berry Phase Su-Shrieffer-Heeger Model (SSH) Polyacetylene W. P. Su, J. R. Schrieffer & A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979). H SSH = Â n Jâ n ˆb n + J â n ˆb n 1 + h.c. Two topologically distinct phases: D1: J>J D2: J >J J J J J J J J J J J ' Zak = ' D1 Zak ' D2 Zak = Topological properties: domain wall features fractionalized excitations Zak phase difference ' Zak is gauge-invariant

12 Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n-1 b n-1 a n b n a n+1 b n+1 J J J J J J J

13 Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n-1 b n-1 a n b n a n+1 b n+1...ababa... Lattice Structure... J J J J J J J X x x = X x e ikx ( k k e ikd/2

14 Berry Phase SSH Energy Bands - Eigenstates V(x) x d a n-1 b n-1 a n b n a n+1 b n+1...ababa... Lattice Structure... J J J J J J J X x x = X x e ikx ( k k e ikd/2 2x2 Hamiltonian: apple k k k k = k k k with k = Je ikd/2 + J e ikd/2 = k e i k

15 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k

16 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Adiabatic evolution in momentum space

17 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Adiabatic evolution in momentum space

18 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k ' Zak = i Z k +G k ( k@ k k + k@ k k ) dk Zak Phase SSH Model

19 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k ' Zak = 1 2 Z G+k k k dk

20 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 D1: Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k D1: J>J ' D1 Zak = 2

21 Berry Phase SSH Energy Bands - Eigenstates...ABABA... Lattice Structure... X x = X ( e ikx k x x k e ikd/2 Eigenstates k, k, = 1 p 2 ±1 e i k /4 D1: Energy k /4 D2: /d Quasimomentum k /d /d /d Quasimomentum k D1: J>J ' D1 Zak = 2 D2: J >J ' D2 Zak = 2

22 Berry Phase Realization with ultracold atoms H SSH = Â n Ja nb n + J a nb n 1 + h.c. 767 nm 1534 nm D1: J>J D2: J >J Phase shift J J J J J J J J J J ' Zak = ' D1 Zak ' D2 Zak =

23 Berry Phase D1: J>J Measuring the Berry-Zak Phase (SSH Model) Spin-dependent Bloch oscillations + Ramsey interferometry /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Prepare BEC in state, ki = #, i, with =", #

24 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k MW /2-pulse Create coherent superposition 1 p ( ", i + #, i) 2

25 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k MW /2-pulse Create coherent superposition 1 p ( ", i + #, i) 2 Spin components with opposite magnetic moments!

26 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Closed Loop in k-space Apply magnetic field gradient! adiabatic evolution in momentum space

27 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Closed Loop in k-space Apply magnetic field gradient! adiabatic evolution in momentum space

28 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k ' Zak = ' D1 Zak + ' dyn + ' Zeeman

29 Berry Phase Measuring the Berry-Zak Phase (SSH Model) D1: J>J /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k Z ' dyn = E(t)/~ dt ' Zak = ' D1 Zak + ' X dyn + ' Zeeman E(k) =E( k)

30 Berry Phase Reference measurement Phase of reference fringe: 1 Fraction in /2 3 /2 2 Microwave pulse MW ( ) ' 6= Average of five individual measurements Exp. imperfections: - Small detuning of the MW-pulse - Magnetic field drifts

31 Berry Phase Measuring the Zak Phase (SSH Model) Measured Topological invariant: Zak phase difference ' D1 Zak ' D2 Zak = 1 Fraction in /2 3 /2 2 Microwave pulse MW ( ) ' Zak =.97(2) obtained from 14 independent measurements

32 Berry Phase Measuring the Zak Phase (SSH Model) Measured Topological invariant: Zak phase difference ' D1 Zak ' D2 Zak = 1 2 Fraction in Zak /2 3 /2 2 Microwave pulse MW ( ) Data set 2 4 Occurences ' Zak =.97(2) obtained from 14 independent measurements

33 Geometric Phase Fractional Zak Phase Zak Phase becomes fractional for heteropolar dimerization!

34 SSH Measuring Fractional Charge Probability Density of Eigenstates Lattice Topology Mode function Topologically Trivial Lattice site Mode function Lattice site Topologically Non-Trivial

35 SSH Fractional Charge /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k R. Rajaraman & J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

36 SSH Fractional Charge /4 Energy k /4 /d Quasimomentum k /d /d /d Quasimomentum k R. Rajaraman & J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

37 SSH Fractional Charge /4 1. Energy k Density.5 /d Quasimomentum k /d / /d Lattice Site /d Quasimomentum k R. Rajaraman & J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

38 SSH Fractional Charge /4 1. Energy k Density.5 /d Always one atom /4 on the Lattice Site /dedge! /d /d Quasimomentum k Quasimomentum k R. Rajaraman & J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

39 An Aharonov Bohm Interferomer for Determining Bloch Band Topology -Magnetic Flux -Berry Flux Real space Crystal momentum space D. Abanin E. Demler D. Abanin et al. PRL 11, (213)

40 AB Aharonov-Bohm Effect Real Space j AB = q h y x B I Z A(r)dr = q h C Z j AB = q h BdS = 2p F/F S A(r) d 2 r Y. Aharonov D. Bohm..., contrary to the conclusions of classical mechanics, there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish. Y. Aharonov & D. Bohm Phys. Rev.(1959) W. Ehrenberg & R. Siday Proc. Phys. Soc B (1949) Exp: A. Tonomura, et al. Phys. Rev. Lett. (1986) Aharonov-Bohm Phase

41 Band Topology Hexagonal Lattices Lattice: A and B degenerate sublattices H = H JÂ R 3 Â â R ˆb R+d i + h.c. i=1 Real Space Lowest energy bands: Reciprocal Space Dirac points at the corners of the first BZ k y A. Castro Neto et al., Rev. Mod. Phys. 81, 19 (29) cold atoms: hexagonal - K. Sengtsock (Hamburg), brick wall - T. Esslinger (Zürich) k x

42 Scalar & Geometric Features Band Topology Band structure characterized by scalar & geometric features! Eigenstates: Bloch waves Scalar Features Dispersion relation Eq,n yq,n (r) = eiqr uq,n (r) Geometric Features Berry connection An (q) = ihuq,n q uq,n i Berry curvature Wn (q) = q An (q) ez ky ' kx

43 Mapping'the'dispersion'relaon' Preliminary'.8'E r' Mapped'path' Energy'difference'(kHz)'' 2.5'E r' Energy'difference'at'the'K'point'<1%'of'la?ce'bandwidth!'

44 Band Topolgy Aharonov Bohm Interferometer in Momentum Space Real Space y B j AB = q h x I Z A(r)dr = q h C Z j AB = q h BdS = 2p F/F Aharonov-Bohm Phase S A(r) d 2 r

45 Band Topolgy Aharonov Bohm Interferometer in Momentum Space Real Space Momentum Space B y q y j AB = q h x I Z A(r)dr = q h C Z j AB = q h BdS = 2p F/F Aharonov-Bohm Phase S A(r) d 2 r j Berry = I C q x A n (q)dq = Z Z S q A n (r) ds q j Berry = W n (q)ds q Berry Phase

46 Band Topology Berry Curvature in Hexagonal Lattices Berry curvature concentrated to Dirac cones, alternating in sign! Breaking time reversal or inversion symmetry gaps Dirac cones and spreads Berry curvature out Hexagonal Lattice Hamiltonian H(q)= D f (q) f (q) D Expanding momenta close to K Dirac point H( q)= q x + i q y q x i q y ' Eigenstates e iq(q)/2 ± e iq(q)/2 u ± K, q = 1 2

47 Band Topology Berry Phases in Graphene Berry Phase around K-Dirac cone I j Berry,K = C A(q)dq = p Berry Phase around K -Dirac cone j Berry,K = p k y K K ' k x

48 Stückelberg Accelerating the Lattice Arbitrary accelerations in any direction can be applied!

49 Band Topology The Interferometer k y k x /2,, /2, MW t Forces applied by lattice acceleration and magnetic gradients!

50 Band Topology The Interferometer k y k x /2,, /2, MW t Forces applied by lattice acceleration and magnetic gradients!

51 Band Topology The Interferometer k y k x /2,, /2, MW t Forces applied by lattice acceleration and magnetic gradients!

52 Band Topology The Interferometer k y k x /2,, /2, MW t Forces applied by lattice acceleration and magnetic gradients!

53 Band Topology The Interferometer k y k x /2,, /2, MW t Forces applied by lattice acceleration and magnetic gradients!

54 Stückelberg Interferometry

55 Stückelberg Accelerating the Lattice Arbitrary accelerations in any direction can be applied!

56 Bloch Oscillations Stückelberg Bloch oscillations induced by accelerating the lattice weaker force "us" 1"us" 2"us" 3"us" 4"us" 5"us" 6"us" 7"us" 8"us" 9"us" 1"us" 11"us" quasi-momentum distribution stronger force "us" 5"us" 1"us" 15"us" 2"us" 25"us" 3"us" 35"us" 4"us" 45"us" 5"us" 55"us" 6"us" 65"us" 7us" 75us"

57 Stückelberg Probing the Scalar Band Structure Force" "us" 5"us" 1"us" 15"us" 4"us" 2"us" 25"us" 3"us" 45"us" 5"us" 55"us" 6"us" 65"us" 7us" 35"us" 75us" Landau Zener acts as beam splitter between bands! Interband transitions at edge

58 Stückelberg Stückelberg oscillations: Double Landau Zener j 2 E# LZ# q# j 2 (t hold ) j 1 ##E### j 1 (t hold ) Final band populations encode j = j 1 j 2 q# ##E### LZ# ##q### Stückelberg, Helv. Phys. Acta 5, 369 (1932), Shevchenko et al., Phys. Rep. 492, 1 (21), Zanesini et al., PRA 82, 6561, (21), Weitz PRL 15, (21)

59 Stückelberg Stückelberg oscillations: Double Landau Zener j 2 E# LZ# q# j 2 (t hold ) j 1 ##E### j 1 (t hold ) Final band populations encode j = j 1 j 2 q# n =(E 2 E 1 )/h ##E### LZ# ##q### Stückelberg, Helv. Phys. Acta 5, 369 (1932), Shevchenko et al., Phys. Rep. 492, 1 (21), Zanesini et al., PRA 82, 6561, (21), Weitz PRL 15, (21)

60 Stückelberg Mapping the Dispersion Relation Frequency control on all three beams allows for arbitrary accelerations! Mapped path Energy$difference$(kHz)$$.8$E r$ 2.5$E r$

61 Interferometer & Loops j 1 j = j 1 j 2 j j 2 Interferometer Phase = Phase of closed loop

62 Stückelberg Geometric Phases Berry s Phase Cyclic adiabatic evolution in parameter space of H(R) F(T )i = e i(j dyn+j Berry ) F()i j Berry = i Z C hf R FidR Aharonov-Anandan Phase Assume evolution that is cyclic in state Y(T )i = e ij Y()i j = j 1 (T )+j AA j dyn = 1 h Z T E(t)dt : geometric phase, independent of evolution speed j AA : geometric phase, independent of evolution speed Y. Aharonov & J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

63 Stückelberg Closed Loops Y(q x,q y )i Closed loop within band

64 Stückelberg Closed Loops Y(q x,q y )i Closed loop within band Y + (q x,q y )i Closed loop between bands Y (q x,q y )i

65 Stückelberg Geometric Phases in Stückelberg Interferometry j 2 j = j i j 1 = j AA i j AA 1 purely geometrical! j 1 j i = j dyn i + j AA i j dyn i = const.

66 Stückelberg Geometric Phases in Stückelberg Interferometry j 2 j = j i j 1 = j AA i j AA 1 purely geometrical! j 1 j i = j dyn i + j AA i j dyn i = const.

67 Stückelberg Path without Dirac Cone

68 Stückelberg Path without Dirac Cone

69 Band Topology Outlook ToDo: Measure amplitude of off-diagonal Berry connection momentum resolved Lattice acceleration allows for arbitrary path choice Ramsey & Stückelberg allow for a full determination of band structure Dispersion relation + full geometric tensor

70 Band Topology Outlook ToDo: Measure amplitude of off-diagonal Berry connection momentum resolved Lattice acceleration allows for arbitrary path choice Ramsey & Stückelberg allow for a full determination of band structure Dispersion relation + full geometric tensor Next: Turn band topological! Turn on interactions! Haldane PRL (1988) Lindner et al. Nat. Phys. (211) Kitagawa et al. PRB (211) Rechtsman et al. Nature (213) Aidelsburger PRL (213)

71 Band Topology Outlook ToDo: Measure amplitude of off-diagonal Berry connection momentum resolved Lattice acceleration allows for arbitrary path choice Ramsey & Stückelberg allow for a full determination of band structure Dispersion relation + full geometric tensor Next: Turn band topological! Turn on interactions! Or: Turn off interactions! Haldane PRL (1988) Lindner et al. Nat. Phys. (211) Kitagawa et al. PRB (211) Rechtsman et al. Nature (213) Aidelsburger PRL (213) Veselago lens, Klein tunneling,... Cheianov, Fal ko, Altshuler, Science (27)

72 Hall Response & Chern Number Measurement in Hofstadter Bands M. Aidelsburger et al. (in preparation) N. Goldman N. Cooper

73 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â + J â + h.c. RâR+dx RâR+dy K e i 2 d x d y Magnetic flux through a plaquette: Z f = BdS = j 1 j 2 y x J K e i 1 J D. Jaksch & P. Zoller, New J. Phys. (23) F. Gerbier & J. Dalibard, New J. Phys. (21) N. Cooper, PRL (211) E. Mueller, Phys. Rev. A (24) L.-K. Lim et al. Phys. Rev. A (21) A. Kolovsky, Europhys. Lett. (211) see also: lattice shaking E. Arimondo, PRL(27), K. Sengstock, Science (211), M. Rechtsman & M. Segev, Nature (213)

74 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â + J â + h.c. RâR+dx RâR+dy K e i 2 d x d y Magnetic flux through a plaquette: Z f = BdS = j 1 j 2 y x J K e i 1 J D. Jaksch & P. Zoller, New J. Phys. (23) F. Gerbier & J. Dalibard, New J. Phys. (21) N. Cooper, PRL (211) E. Mueller, Phys. Rev. A (24) L.-K. Lim et al. Phys. Rev. A (21) A. Kolovsky, Europhys. Lett. (211) see also: lattice shaking E. Arimondo, PRL(27), K. Sengstock, Science (211), M. Rechtsman & M. Segev, Nature (213)

75 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â + J â + h.c. RâR+dx RâR+dy K e i 2 d x d y Magnetic flux through a plaquette: Z f = BdS = j 1 j 2 y x J K e i 1 J D. Jaksch & P. Zoller, New J. Phys. (23) F. Gerbier & J. Dalibard, New J. Phys. (21) N. Cooper, PRL (211) E. Mueller, Phys. Rev. A (24) L.-K. Lim et al. Phys. Rev. A (21) A. Kolovsky, Europhys. Lett. (211) see also: lattice shaking E. Arimondo, PRL(27), K. Sengstock, Science (211), M. Rechtsman & M. Segev, Nature (213)

76 Gauge Fields Artificial B-Fields with Ultracold Atoms Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase j(r) Ĥ = Â R Ke ij(r) â + J â + h.c. RâR+dx RâR+dy Magnetic flux through a plaquette: magnetic field strength f = are BdS = j 1 j 2 K e i 2 d x Fluxes corresponding to severals thousand Tesla d y Z y x J K e i 1 J possible! D. Jaksch & P. Zoller, New J. Phys. (23) F. Gerbier & J. Dalibard, New J. Phys. (21) N. Cooper, PRL (211) E. Mueller, Phys. Rev. A (24) L.-K. Lim et al. Phys. Rev. A (21) A. Kolovsky, Europhys. Lett. (211) see also: lattice shaking E. Arimondo, PRL(27), K. Sengstock, Science (211), M. Rechtsman & M. Segev, Nature (213)

77 Gauge Fields Harper Hamiltonian and Hofstadter Butterfly Harper Hamiltonian: J=K and φ uniform E/J The lowest band is topologically equivalent to the lowest Landau level. D.R. Hofstadter, Phys. Rev. B14, 2239 (1976) see alo Y. Avron, D. Osadchy, R. Seiler, Physics Today 38, 23

78 Artificial magnetic fields Experimental method Atoms in a 2D lattice Tunneling inhibited along one direction using energy offsets e.g. by using a linear potential y J x J x x

79 Artificial magnetic fields Experimental method Atoms in a 2D lattice Tunneling inhibited along one direction using energy offsets 2! 2! 1 = /~ 1 e.g. by using a linear potential y J x J x x Induce resonant tunneling with a pair of far-detuned running-wave beams Reduced heating due to spontaneous emission compared to Raman-assisted tunneling! Independent of the internal structure of the atom

80 Artificial magnetic fields Experimental method Interference creates a running-wave that modulates the lattice The phase of the modulation depends on the position in the lattice k 1, 1 k 2, 2 y Lattice modulation: VKcos(!t + (r)) with spatial-dependent phase (r) = k r x k = k 2 k 1! =! 2! 1 Realization of time-dependent Hamiltonian, where tunneling is restored Discretization of the phase due to underlying lattice m,n M. Aidelsburger et al., PRL (211); M. Aidelsburger et al., Appl. Phys. B (213)

81 Artificial magnetic fields Experimental method Time-dependent Hamiltonian: Ĥ(t) = X J x â m+1,nâm,n m,n J y â m,n+1âm,n +h.c. + X m,n m +V K cos(!t + m,n ) ˆn m,n

82 Artificial magnetic fields Experimental method Time-dependent Hamiltonian: Ĥ(t) = X J x â m+1,nâm,n m,n J y â m,n+1âm,n +h.c. + X m,n m +V K cos(!t + m,n ) ˆn m,n Can be mapped on an effective time-averaged time-independent Hamiltonian for ~! J x,j y,u Ĥ eff = X m,n Ke i m,n â m+1,nâm,n J â m,n+1âm,n +h.c. To avoid excitations to higher bands has to be smaller than the band gap ~! F. Grossmann and P. Hänggi, EPL (1992) M. Holthaus, PRL (1992) A. Kolovsky, EPL (211); A. Eckardt, PRL (25) A. Eckhardt, EPL (27); P. Hauke, PRL (212) A. Bermudez, PRL (211); A. Bermudez, NJP (212)

83 Artificial magnetic fields Experimental method Time-dependent Hamiltonian: Ĥ(t) = X J x â m+1,nâm,n m,n J y â m,n+1âm,n +h.c. + X m,n m +V K cos(!t + m,n ) ˆn m,n Note: Corrections could be important! Can be mapped on an effective time-averaged time-independent Hamiltonian for ~! J x,j y,u see e.g. N. Goldman & J. Dalibard arxiv: & related work A. Polkovnikov Ĥ eff = X m,n Ke i m,n â m+1,nâm,n J â m,n+1âm,n +h.c. To avoid excitations to higher bands has to be smaller than the band gap ~! F. Grossmann and P. Hänggi, EPL (1992) M. Holthaus, PRL (1992) A. Kolovsky, EPL (211); A. Eckardt, PRL (25) A. Eckhardt, EPL (27); P. Hauke, PRL (212) A. Bermudez, PRL (211); A. Bermudez, NJP (212)

84 Uniform flux Hamiltonian Realization of the Hofstadter-Harper Hamiltonian Ĥ = Ke i m,nâ m+1,nâm,n + Jâ m,n+1âm,n X m,n +h.c. k 2, 2 k 1, 1 J + _ 2 Scheme allows for the realization of an effective uniform flux of = /2 K B x M. Aidelsburger et al., PRL 111, (213) H. Miyake et al., PRL 111, (213)

85 Uniform flux Local observable Classical: Charged particle in magnetic field e - B

86 Uniform flux Local observable Classical: Charged particle in magnetic field e - Quantum Analogue: B Initial State: Single Atom in the ground state J D C J y i = Ai + Di p 2 of a tilted plaquette. A B

87 Uniform flux Local observable Classical: Charged particle in magnetic field e - Quantum Analogue: B Initial State: Single Atom in the ground state J D C J y i = Ai + Di p 2 of a tilted plaquette. A B Switch on running-wave to induce tunneling J D A K e i K C J B

88 Uniform flux A Lattice of Plaquettes Using two superlattices, we realize a lattice whose elementary cell is a 4-site plaquette.

89 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =1,m F = 1i B-field gradient tilted lattice potential

90 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =1,m F = 1i #i = F =2,m F = 1i B-field gradient B-field gradient tilted lattice potential tilted lattice potential

91 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =1,m F = 1i #i = F =2,m F = 1i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: ()

92 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =1,m F = 1i #i = F =2,m F = 1i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: () Spin-dependent complex tunneling amplitudes: Ke i mn () Ke i mn

93 Uniform flux Quantum Spin Hall Hamiltonian Value of the flux depends on the internal state of the atom "i = F =1,m F = 1i #i = F =2,m F = 1i B-field gradient B-field gradient tilted lattice potential tilted lattice potential Spin-dependent optical potential: () Spin-dependent complex tunneling amplitudes: Ke i mn () Ke i mn Spin-dependent effective magnetic field: = /2 () = /2

94 Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+1,nâm,n + Jâ m,n+1âm,n X m,n +h.c. Bernevig and Zhang, PRL 96, 1682 (26); N. Goldman et al., PRL (21)

95 Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+1,nâm,n + Jâ m,n+1âm,n X m,n +h.c. k 2, 2 k 1, 1 + _ 2 J K B x " = /2 Bernevig and Zhang, PRL 96, 1682 (26); N. Goldman et al., PRL (21)

96 Uniform flux Quantum Spin Hall Hamiltonian Time-reversal-symmetric quantum spin Hall Hamiltonian: Ĥ ",# = Ke ±i m,nâ m+1,nâm,n + Jâ m,n+1âm,n X m,n +h.c. k 2, 2 k 1, 1 + _ 2 - _ 2 J K B x B x " = /2 # = /2 Bernevig and Zhang, PRL 96, 1682 (26); N. Goldman et al., PRL (21)

97 Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p 2 Y dy Time (ms) X d x

98 Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p 2 Y dy Time (ms) X d x Spin down: D C A B #i =( Bi + Ci)/ p 2 v

99 Uniform flux Spin-dependent cyclotron orbit Spin up: D C A B v "i =( Ai + Di)/ p 2 Y dy Time (ms) X d x Spin down:.1 D A C B Y dy -.1 #i =( Bi + Ci)/ p 2 v -.2 Time (ms) X d x

100 Uniform flux Spin-dependent cyclotron orbit Spin up:.1 D C A B v "i =( Ai + Di)/ p 2 Y dy -.1 Time (ms) X d x Opposite chirality! Spin down:.1 D A C B Y dy -.1 #i =( Bi + Ci)/ p 2 v -.2 Time (ms) X d x

101 Uniform Flux New Flux Rectification Scheme a r2 b2 b a r1 a 3 /2 3 /2 3 /2 y b1 x J y J x J /2 J /2 /2 red & blue bonds can be modulated independently! Flux rectification possible (related Gerbier & Dalibard NJP (21))

102 Uniform Flux Loading and Probing Hofstadter Bands a y x b 1 Energy (a.u.).5 k y ( /a) k x ( /a).5 k y ( /a) Topologically trivial.5 k x ( /a) k y ( /a) k y ( /a) Detuning (J) k x ( /a).5 Topologically non-trivial k x ( /a) 3 =1 2 =-2 1 =1.5 Hofstadter model for /2 Key insight for adiabatic loading/probing: keep Brillouin zone of topologically trivial & non-trivial phase matched! Flat bands realized! E gap /E bw ' 8

103 Uniform Flux Hall Response & Anomalous Velocity F y v x 26 h dk c dt = e f(r c )+ dr c dt B(r c ) dr c dt = 1 h k c e n (k c ) dk c dt W(k c )ẑ Karplus & Luttinger, Phys. Rev. (1954) Sundaram & Niu, Phys. Rev. B (1999) anomalous velocity

104 Uniform Flux Cloud Deflection & Chern Number F y v x v(k c )= dr c dt = 1 h k c e n (k c ) dk c dt W(k c )ẑ

105 Uniform Flux Cloud Deflection & Chern Number F y v x v(k c )= dr c dt = 1 h k c e n (k c ) dk c dt W(k c )ẑ Assume uniformly filled band and rational flux p/q: hv x i = 1 N at Z = 1 N at 2p = (2p) 2 = F y qa 2 h r(k)v x (k)d 2 k N at dk x dk y Fy h 1 2p Z 1 (2p/a)(2p/qa) Fy h n W(k)d 2 k n H. Price & N. Cooper PRA (212) A. Dauphin & N. Goldman PRL (213)

106 Uniform Flux Understanding the Displacement Only lowest band homogenously populated x(t)= 4a2 F h n 1t Higher bands also populated (short times) x(t)= 4a2 g F h n 1 t, with g = h 1 h 2 + h 3 Filling factor (make use of particle-hole symmetry in Hofstadter model & Â µ Higher bands also populated (full time evolution) Z t x(t)= n 1 4a 2 F h g(t )dt n µ = But how to measure band-population???

107 Topology Conclusions First realization of topological Bloch bands in 1d & 2d (SSH, Hoftstadter, Quantum Spin Hall) First direct measurements of topological invariants in 1d & 2d Aharonov-Bohm interferometric determination of band topology Stückelberg Interferometry for dispersion relation Extensions to non-abelian Berry connection (Wilson loops) Framework for full determination of band geometry and experimental implementation! Questions: interactions, heating, adiabatic loading,...

108 Outlook Rectified Flux, Hofstadter Butterfly Novel Correlated Phases in Strong Fields, Transport Measurements Adiabatic loading schemes Spectroscopy of Hoftstadter bands Novel Topological Insulators Image Edge States - directly/spectroscopically Measure spatially resolved full current distribution Non-equilibrium dynamics in gauge fields Thermalization?

109 Gauge Field Team From left to right: Christian Schweizer Monika Aidelsburger I.B. Michael Lohse Marcos Atala Julio Barreiro

110 2D Berry Curvature Interferometer Team Lucia Duca Tracy Li Martin Reitter Monika Schleier-Smith IB Ulrich Schneider

111 Single Atom Team

112 Venice VIU 214

113

Engineering and Probing Topological Bloch Bands in Optical Lattices

Engineering and Probing Topological Bloch Bands in Optical Lattices Engineering and Probing Topological Bloch Bands in Optical Lattices Monika Aidelsburger, Marcos Atala, Michael Lohse, Christian Schweizer, Julio Barreiro Christian Gross, Stefan Kuhr, Manuel Endres, Marc

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Exploring topological states with cold atoms and photons

Exploring topological states with cold atoms and photons Exploring topological states with cold atoms and photons Theory: Takuya Kitagawa, Dima Abanin, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Immanuel Bloch, Eugene Demler Experiments: I. Bloch s group

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Experimental reconstruction of the Berry curvature in a topological Bloch band

Experimental reconstruction of the Berry curvature in a topological Bloch band Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015) Topological Insulators

More information

Measuring many-body topological invariants using polarons

Measuring many-body topological invariants using polarons 1 Anyon workshop, Kaiserslautern, 12/15/2014 Measuring many-body topological invariants using polarons Fabian Grusdt Physics Department and Research Center OPTIMAS, University of Kaiserslautern, Germany

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Topological Insulators and Superconductors

Topological Insulators and Superconductors Topological Insulators and Superconductors Lecture #1: Topology and Band Theory Lecture #: Topological Insulators in and 3 dimensions Lecture #3: Topological Superconductors, Majorana Fermions an Topological

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Mapping the Berry Curvature of Optical Lattices

Mapping the Berry Curvature of Optical Lattices Mapping the Berry Curvature of Optical Lattices Nigel Cooper Cavendish Laboratory, University of Cambridge Quantum Simulations with Ultracold Atoms ICTP, Trieste, 16 July 2012 Hannah Price & NRC, PRA 85,

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Artificial magnetism and optical flux lattices for ultra cold atoms

Artificial magnetism and optical flux lattices for ultra cold atoms Artificial magnetism and optical flux lattices for ultra cold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania Kraków, QTC, 31 August 2011

More information

Topological phases of matter give rise to quantized physical quantities

Topological phases of matter give rise to quantized physical quantities Quantized electric multipole insulators Benalcazar, W. A., Bernevig, B. A., & Hughes, T. L. (2017). Quantized electric multipole insulators. Science, 357(6346), 61 66. Presented by Mark Hirsbrunner, Weizhan

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Topological pumps and topological quasicrystals

Topological pumps and topological quasicrystals Topological pumps and topological quasicrstals PRL 109, 10640 (01); PRL 109, 116404 (01); PRL 110, 076403 (013); PRL 111, 6401 (013); PRB 91, 06401 (015); PRL 115, 195303 (015), PRA 93, 04387 (016), PRB

More information

Exploring Topological Phases With Quantum Walks

Exploring Topological Phases With Quantum Walks Exploring Topological Phases With Quantum Walks Tk Takuya Kitagawa, Erez Berg, Mark Rudner Eugene Demler Harvard University References: PRA 82:33429 and PRB 82:235114 (2010) Collaboration with A. White

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

Topological Phases of Matter Out of Equilibrium

Topological Phases of Matter Out of Equilibrium Topological Phases of Matter Out of Equilibrium Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Solvay Workshop on Quantum Simulation ULB, Brussels, 18 February 2019 Max McGinley

More information

Berry Phase Effects on Electronic Properties

Berry Phase Effects on Electronic Properties Berry Phase Effects on Electronic Properties Qian Niu University of Texas at Austin Collaborators: D. Xiao, W. Yao, C.P. Chuu, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C. Chang, T. Jungwirth, A.H.MacDonald,

More information

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice Gunnar Möller & Nigel R Cooper Cavendish Laboratory, University of Cambridge Physical Review Letters 108, 043506 (2012) LPTHE / LPTMC

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Artificial gauge potentials for neutral atoms Fabrice Gerbier Workshop Hadrons and Nuclear Physics meet ultracold atoms, IHP, Paris January

More information

Topological Bandstructures for Ultracold Atoms

Topological Bandstructures for Ultracold Atoms Topological Bandstructures for Ultracold Atoms Nigel Cooper Cavendish Laboratory, University of Cambridge New quantum states of matter in and out of equilibrium GGI, Florence, 12 April 2012 NRC, PRL 106,

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms interacting topological insulators Matteo Rizzi Johannes Gutenberg Universität Mainz J. Jünemann, et al., -- accepted on PRX ICTP Trieste, 14 September 2017 Motivation Topological phases of matter: academic

More information

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Distribution of Chern number by Landau level broadening in Hofstadter butterfly Journal of Physics: Conference Series PAPER OPEN ACCESS Distribution of Chern number by Landau level broadening in Hofstadter butterfly To cite this article: Nobuyuki Yoshioka et al 205 J. Phys.: Conf.

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Optical Flux Lattices for Cold Atom Gases

Optical Flux Lattices for Cold Atom Gases for Cold Atom Gases Nigel Cooper Cavendish Laboratory, University of Cambridge Artificial Magnetism for Cold Atom Gases Collège de France, 11 June 2014 Jean Dalibard (Collège de France) Roderich Moessner

More information

Manipulation of Dirac cones in artificial graphenes

Manipulation of Dirac cones in artificial graphenes Manipulation of Dirac cones in artificial graphenes Gilles Montambaux Laboratoire de Physique des Solides, Orsay CNRS, Université Paris-Sud, France - Berry phase Berry phase K K -p Graphene electronic

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

Interferometric probes of quantum many-body systems of ultracold atoms

Interferometric probes of quantum many-body systems of ultracold atoms Interferometric probes of quantum many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Dima Abanin, Thierry Giamarchi, Sarang Gopalakrishnan, Adilet Imambekov, Takuya Kitagawa,

More information

Topological Physics in Band Insulators IV

Topological Physics in Band Insulators IV Topological Physics in Band Insulators IV Gene Mele University of Pennsylvania Wannier representation and band projectors Modern view: Gapped electronic states are equivalent Kohn (1964): insulator is

More information

Single particle Green s functions and interacting topological insulators

Single particle Green s functions and interacting topological insulators 1 Single particle Green s functions and interacting topological insulators Victor Gurarie Nordita, Jan 2011 Topological insulators are free fermion systems characterized by topological invariants. 2 In

More information

Adiabatic particle pumping and anomalous velocity

Adiabatic particle pumping and anomalous velocity Adiabatic particle pumping and anomalous velocity November 17, 2015 November 17, 2015 1 / 31 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu,

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

arxiv: v1 [cond-mat.other] 20 Apr 2010

arxiv: v1 [cond-mat.other] 20 Apr 2010 Characterization of 3d topological insulators by 2d invariants Rahul Roy Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK arxiv:1004.3507v1 [cond-mat.other] 20 Apr 2010

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Phases of strongly-interacting bosons on a two-leg ladder

Phases of strongly-interacting bosons on a two-leg ladder Phases of strongly-interacting bosons on a two-leg ladder Marie Piraud Arnold Sommerfeld Center for Theoretical Physics, LMU, Munich April 20, 2015 M. Piraud Phases of strongly-interacting bosons on a

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Berry Phase Effects on Charge and Spin Transport

Berry Phase Effects on Charge and Spin Transport Berry Phase Effects on Charge and Spin Transport Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C.

More information

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015 Synthetic gauge fields in Bose-Einstein Condensates 1 Alexander Fetter Stanford University University of Hannover, May 2015 1. Two-component trapped spin-orbit coupled Bose-Einstein condensate (BEC) 2.

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Berry phase, Chern number

Berry phase, Chern number Berry phase, Chern number November 17, 2015 November 17, 2015 1 / 22 Literature: 1 J. K. Asbóth, L. Oroszlány, and A. Pályi, arxiv:1509.02295 2 D. Xiao, M-Ch Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959.

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Non-Abelian Berry phase and topological spin-currents

Non-Abelian Berry phase and topological spin-currents Non-Abelian Berry phase and topological spin-currents Clara Mühlherr University of Constance January 0, 017 Reminder Non-degenerate levels Schrödinger equation Berry connection: ^H() j n ()i = E n j n

More information

Interplay of micromotion and interactions

Interplay of micromotion and interactions Interplay of micromotion and interactions in fractional Floquet Chern insulators Egidijus Anisimovas and André Eckardt Vilnius University and Max-Planck Institut Dresden Quantum Technologies VI Warsaw

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Artificial electromagnetism and spin-orbit coupling for ultracold atoms

Artificial electromagnetism and spin-orbit coupling for ultracold atoms Artificial electromagnetism and spin-orbit coupling for ultracold atoms Gediminas Juzeliūnas Institute of Theoretical Physics and Astronomy,Vilnius University, Vilnius, Lithuania *******************************************************************

More information

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices IASTU Condensed Matter Seminar July, 2015 Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices Xiaopeng Li ( 李晓鹏 ) CMTC/JQI University of Maryland [Figure from JQI website] Gauge fields

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

Topological Physics in Band Insulators. Gene Mele DRL 2N17a

Topological Physics in Band Insulators. Gene Mele DRL 2N17a Topological Physics in Band Insulators Gene Mele DRL 2N17a Electronic States of Matter Benjamin Franklin (University of Pennsylvania) That the Electrical Fire freely removes from Place to Place in and

More information

Topology of electronic bands and Topological Order

Topology of electronic bands and Topological Order Topology of electronic bands and Topological Order R. Shankar The Institute of Mathematical Sciences, Chennai TIFR, 26 th April, 2011 Outline IQHE and the Chern Invariant Topological insulators and the

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto. QMath13, 10 th October 2016 Classification theory of topological insulators with Clifford algebras and its application to interacting fermions Takahiro Morimoto UC Berkeley Collaborators Akira Furusaki

More information

Adiabatic Control of Atomic Dressed States for Transport and Sensing

Adiabatic Control of Atomic Dressed States for Transport and Sensing Adiabatic Control of Atomic Dressed States for Transport and Sensing N. R. Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 HE, United Kingdom A.

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Topological fractional pumping with ultracold atoms (in synthetic ladders)

Topological fractional pumping with ultracold atoms (in synthetic ladders) Topological fractional pumping with ultracold atoms (in synthetic ladders) Rosario Fazio (on leave from) In collaboration with D. Rossini L. Taddia M. Calvanese Strinati E. Cornfeld E. Sela M. Dalmonte

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Characterization of Topological States on a Lattice with Chern Number

Characterization of Topological States on a Lattice with Chern Number Characterization of Topological States on a Lattice with Chern Number The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Synthetic topology and manybody physics in synthetic lattices

Synthetic topology and manybody physics in synthetic lattices Synthetic topology and manybody physics in synthetic lattices Alessio Celi EU STREP EQuaM May 16th, 2017 Atomtronics - Benasque Plan Integer Quantum Hall systems and Edge states Cold atom realizations:

More information

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg In collaboration with: Mark Rudner (Copenhagen) Netanel Lindner (Technion) Paraj Titum (Caltech

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology [1] Ch. 4 in Metal Clusters,

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information