Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7 The Algorithm (DSC): Mark all nodes as unscheduled WHILE there are unscheduled nodes DO In descending order of priority, sort list of free nodes In descending order of priority, sort list of partial free nodes Let n x be the free task with highest priority. Let n y be the partial free task with highest priority. IF(priority(n x )!priority(n y )) THEN IF ( CT) THEN accept zeroing for edge (c i, n x ) where c i gives min(st(c i, n x )) ELSE schedule n x on new cluster ENDIF ELSE IF ( CT & CT) THEN accept zeroing for edge (c i, n y ) where c i gives min(st(c i, n y )) ELSE schedule n x on new cluster ENDIF ENDIF Mark n x as scheduled Recalculate priorities & find new free & partial free nodes ENDWHILE DEFINE CT: /*Guarantees that parallel time is not increased if node nxis assigned to a Predecessor */ For all clusters c i that are parents of n x (min_start_time = MAXINT) { IF ( min_start_time > ST( c i, n x )) THEN min_start_time = ST(c i, n x ) } IF ( startbound(n x ) < min_start_time ) THEN return TRUE ELSE return FALSE ENDIF ENDDEF DEFINE CT: /*Guarantees that the starttime of partial free nodes is never increased */ For all scheduled clusters c i that are parents of n y { IF (startbound(n y ) < ST(c i, n y )) THEN return FALSE ENDIF } return TRUE ENDDEF

8 A B C C C unscheduled = { } scheduled = " PT = 0 C free= {} partial free = " unscheduled = { } scheduled = {} PT = 0 C free = { }} partial free = " unscheduled = { } scheduled = { } PT = C free = { } partial free = " D E F C C unscheduled = { } scheduled = { } PT = free = {} partial free = {} unscheduled = {} scheduled = { } PT = free = {} partial free = " unscheduled = " scheduled = { } PT = 0 free= " partial freel = "

9 The Algorithm (MCP): List_of_PEs = ". Perform ALAP binding and assign the resulting ALAP time T L to each node in the graph.. For each node n i create a list l(n i ) which consists of T L s of n i and all it s descendants, sort l(n i ) in decreasing order of T L.. Create L by concatenating the T L values for each l(n i ) and sort in decreasing order.. Schedule head(l) to a Processing Element (PE ) and remove head(l) List_of_PEs # PE (head(l)). While L is not empty Compute min(start_time) when head(l) is placed on PE i in List_of_PEs. If min(start_time exist_cluster ) > start time of head(l) when placed on a new PE then add new PE to List_of_PEs and place head(l) on new PE else place head(l) on PE that gives min(starttime)

10 A TL(n) = 0 TL(n) = 76 TL(n) = TL(n) = TL(n) = 00 l(n) = (n, 00), (n, 76), (n, ), (n, ), (n, 0) l(n) = (n, 00), (n, 76) l(n) = (n, 00), (n, ), (n, ) l(n) = (n, 00), (n, ) l(n) = (n, 00) L = {n, n, n, n, n} B PE head(l) = n $ PE # n C PE 0.0 D PE 0.0 E PE PE PE head(l) = n $min( start_time(n)) $PE # n 0.0 head(l) = n $min(start_time(n)) $ PE # n 0.0 head(l) = n $min(start_time(n)) $ PE # n F PE 0.0 PE head(l) = n $min(start_time(n)) $ PE # n PT = 0

11 The Algorithm. Parse the PDG into a hierarchy of clans. The root is the entire graph and the leaves are the graph nodes. The original node execution costs are applied to the leaves.. Traverse the tree from the bottom up making local decisions at linear clans. The decision made at a linear clan is the best sequence of clustering and concurrency for its independent children.

12 A 0.0 B C L C I C L L - Linear Clan I - Independent Clan 0.0 Parse Tree C 0.0 PE PE Parallelization of independent clan C causes node to execute separately from nodes and. Schedule completes in parallel time

13

14

15 Granularity ANCHOR ANCHOR ANCHOR ANCHOR Node Weight Range # of Graphs Node Weight Range # of Graphs Node Weight Range # of Graphs Node Weight Range # of Graphs G< <G<0. 0.<G<0,8 0.8<G<.0.0<G

16 Granularity Range CLANS DSC MCP G < < G < < G < < G < < G 0 0 0

17 0.00% 00.00% 0.00% 0.00% MCP G < 0.08 DSC 0.08 < G < < G < 0.8 CLANS.0 < G 0.8 < G <.0 CLANS DSC MCP Vertical axis: Average Relative Parallel Time Base axis: Granularity Range Granularity Range CLANS DSC MCP G < % 69.% 0.00% 0.08 < G < 0..% 0.%.% 0. < G < 0.8.8% 6.%.% 0.8 < G <.0 6.8%.% 0.%.0 < G.7% 0.6% 0.%

18 < G 0.8 < G <.0 0. < G < < G < 0. G < 0.08 CLANS DSC MCP CLANS DSC MCP Vertical axis: Average Speedup Base axis: Granularity Range Granularity Range CLANS DSC MCP G < < G < < G < < G < < G...

19 G < < G < < G < 0.8 MCP 0.8 < G <.0 DSC CLANS.0 < G CLANS DSC MCP Vertical axis: Average Efficiency Base axis: Granularity Range

20 Granularity Range CLANS DSC MCP G < < G < < G < < G < < G Node Weight Range CLANS DSC MCP Node Weight Range CLANS DSC MCP % %.088% % % % 0-00.% 8.90% 8.66%

21 % % % % % 0-00 CLANS DSC 0-00 MCP 0-00 CLANS DSC MCP Vertical axis: Average relative parallel time Base axis: Node weight range Node Weight Range CLANS DSC MCP

22 MCP DSC CLANS 0-00 CLANS DSC MCP Vertical axis: Average speedup Base axis: Node weight range DSC MCP 0-00 CLANS CLANS DSC MCP Vertical axis: Average efficiency Base axis: Node weight range

23 Node Weight Range CLANS DSC MCP Anchor OD CLANS DSC MCP Anchor OD CLANS DSC MCP

24

25

26

8 Priority Queues. 8 Priority Queues. Prim s Minimum Spanning Tree Algorithm. Dijkstra s Shortest Path Algorithm

8 Priority Queues. 8 Priority Queues. Prim s Minimum Spanning Tree Algorithm. Dijkstra s Shortest Path Algorithm 8 Priority Queues 8 Priority Queues A Priority Queue S is a dynamic set data structure that supports the following operations: S. build(x 1,..., x n ): Creates a data-structure that contains just the elements

More information

3/11/18. Final Code Generation and Code Optimization

3/11/18. Final Code Generation and Code Optimization Final Code Generation and Code Optimization 1 2 3 for ( i=0; i < N; i++) { base = &a[0]; crt = *(base + i); } original code base = &a[0]; for ( i=0; i < N; i++) { crt = *(base + i); } optimized code e1

More information

Assignment 5: Solutions

Assignment 5: Solutions Comp 21: Algorithms and Data Structures Assignment : Solutions 1. Heaps. (a) First we remove the minimum key 1 (which we know is located at the root of the heap). We then replace it by the key in the position

More information

Binary Decision Diagrams. Graphs. Boolean Functions

Binary Decision Diagrams. Graphs. Boolean Functions Binary Decision Diagrams Graphs Binary Decision Diagrams (BDDs) are a class of graphs that can be used as data structure for compactly representing boolean functions. BDDs were introduced by R. Bryant

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Binary Search Introduction Problem Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Strategy 1: Random Search Randomly select a page until the page containing

More information

CS 161: Design and Analysis of Algorithms

CS 161: Design and Analysis of Algorithms CS 161: Design and Analysis of Algorithms Greedy Algorithms 3: Minimum Spanning Trees/Scheduling Disjoint Sets, continued Analysis of Kruskal s Algorithm Interval Scheduling Disjoint Sets, Continued Each

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling EECS 571 Principles of Real-Time Embedded Systems Lecture Note #7: More on Uniprocessor Scheduling Kang G. Shin EECS Department University of Michigan Precedence and Exclusion Constraints Thus far, we

More information

Incremental Path Planning

Incremental Path Planning Incremental Path Planning Dynamic and Incremental A* Prof. Brian Williams (help from Ihsiang Shu) 6./6.8 Cognitive Robotics February 7 th, Outline Review: Optimal Path Planning in Partially Known Environments.

More information

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed

What is SSA? each assignment to a variable is given a unique name all of the uses reached by that assignment are renamed Another Form of Data-Flow Analysis Propagation of values for a variable reference, where is the value produced? for a variable definition, where is the value consumed? Possible answers reaching definitions,

More information

ALG 5.4. Lexicographical Search: Applied to Scheduling Theory. Professor John Reif

ALG 5.4. Lexicographical Search: Applied to Scheduling Theory. Professor John Reif Algorithms Professor John Reif ALG 54 input assume problem Scheduling Problems Set of n tasks in precidence relation on tasks Also, given m processors Unit time cost to process task using single processor

More information

16. Binary Search Trees. [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap ]

16. Binary Search Trees. [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap ] 418 16. Binary Search Trees [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1-12.3] 419 Dictionary implementation Hashing: implementation of dictionaries with expected very fast access times. Disadvantages

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Binary Decision Diagrams (BDDs) are a class of graphs that can be used as data structure for compactly representing boolean functions. BDDs were introduced by R. Bryant in 1986.

More information

Class 5. Review; questions. Data-flow Analysis Review. Slicing overview Problem Set 2: due 9/3/09 Problem Set 3: due 9/8/09

Class 5. Review; questions. Data-flow Analysis Review. Slicing overview Problem Set 2: due 9/3/09 Problem Set 3: due 9/8/09 Class 5 Review; questions Assign (see Schedule for links) Slicing overview Problem Set 2: due 9/3/09 Problem Set 3: due 9/8/09 1 Data-flow Analysis Review Start at slide 21 of Basic Analysis 3 1 Static

More information

16. Binary Search Trees. [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap ]

16. Binary Search Trees. [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap ] 423 16. Binary Search Trees [Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1-12.3] Dictionary implementation 424 Hashing: implementation of dictionaries with expected very fast access times. Disadvantages

More information

VLSI System Design Part V : High-Level Synthesis(2) Oct Feb.2007

VLSI System Design Part V : High-Level Synthesis(2) Oct Feb.2007 VLSI System Design Part V : High-Level Synthesis(2) Oct.2006 - Feb.2007 Lecturer : Tsuyoshi Isshiki Dept. Communications and Integrated Systems, Tokyo Institute of Technology isshiki@vlsi.ss.titech.ac.jp

More information

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling 1 Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling Saswati Sarkar and Koushik Kar Abstract In this paper, we consider queue-length stability in wireless

More information

Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn

Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn Chapter 5 Data Structures Algorithm Theory WS 2017/18 Fabian Kuhn Priority Queue / Heap Stores (key,data) pairs (like dictionary) But, different set of operations: Initialize-Heap: creates new empty heap

More information

Analytical Modeling of Parallel Programs. S. Oliveira

Analytical Modeling of Parallel Programs. S. Oliveira Analytical Modeling of Parallel Programs S. Oliveira Fall 2005 1 Scalability of Parallel Systems Efficiency of a parallel program E = S/P = T s /PT p Using the parallel overhead expression E = 1/(1 + T

More information

Self-Stabilizing Silent Disjunction in an Anonymous Network

Self-Stabilizing Silent Disjunction in an Anonymous Network Self-Stabilizing Silent Disjunction in an Anonymous Network Ajoy K. Datta 1, Stéphane Devismes 2, and Lawrence L. Larmore 1 1 Department of Computer Science, University of Nevada Las Vegas, USA 2 VERIMAG

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk I. Yu, D. Karabeg INF2220: algorithms and data structures Series 1 Topic Function growth & estimation of running time, trees (Exercises with hints for solution)

More information

Algorithms PART II: Partitioning and Divide & Conquer. HPC Fall 2007 Prof. Robert van Engelen

Algorithms PART II: Partitioning and Divide & Conquer. HPC Fall 2007 Prof. Robert van Engelen Algorithms PART II: Partitioning and Divide & Conquer HPC Fall 2007 Prof. Robert van Engelen Overview Partitioning strategies Divide and conquer strategies Further reading HPC Fall 2007 2 Partitioning

More information

EE382V: System-on-a-Chip (SoC) Design

EE382V: System-on-a-Chip (SoC) Design EE82V: SystemonChip (SoC) Design Lecture EE82V: SystemonaChip (SoC) Design Lecture Operation Scheduling Source: G. De Micheli, Integrated Systems Center, EPFL Synthesis and Optimization of Digital Circuits,

More information

EE382V-ICS: System-on-a-Chip (SoC) Design

EE382V-ICS: System-on-a-Chip (SoC) Design EE8VICS: SystemonChip (SoC) EE8VICS: SystemonaChip (SoC) Scheduling Source: G. De Micheli, Integrated Systems Center, EPFL Synthesis and Optimization of Digital Circuits, McGraw Hill, 00. Additional sources:

More information

Lecture: Workload Models (Advanced Topic)

Lecture: Workload Models (Advanced Topic) Lecture: Workload Models (Advanced Topic) Real-Time Systems, HT11 Martin Stigge 28. September 2011 Martin Stigge Workload Models 28. September 2011 1 System

More information

ENS Lyon Camp. Day 2. Basic group. Cartesian Tree. 26 October

ENS Lyon Camp. Day 2. Basic group. Cartesian Tree. 26 October ENS Lyon Camp. Day 2. Basic group. Cartesian Tree. 26 October Contents 1 Cartesian Tree. Definition. 1 2 Cartesian Tree. Construction 1 3 Cartesian Tree. Operations. 2 3.1 Split............................................

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 5 Greedy Algorithms Interval Scheduling Interval Partitioning Guest lecturer: Martin Furer Review In a DFS tree of an undirected graph, can there be an edge (u,v)

More information

Algorithms Theory. 08 Fibonacci Heaps

Algorithms Theory. 08 Fibonacci Heaps Algorithms Theory 08 Fibonacci Heaps Prof. Dr. S. Albers Priority queues: operations Priority queue Q Operations: Q.initialize(): initializes an empty queue Q Q.isEmpty(): returns true iff Q is empty Q.insert(e):

More information

Even More on Dynamic Programming

Even More on Dynamic Programming Algorithms & Models of Computation CS/ECE 374, Fall 2017 Even More on Dynamic Programming Lecture 15 Thursday, October 19, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 26 Part I Longest Common Subsequence

More information

Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks

Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks Luis Alejandro Cortés, Petru Eles, and Zebo Peng Embedded Systems Laboratory Department of Computer and Information

More information

Math Models of OR: Branch-and-Bound

Math Models of OR: Branch-and-Bound Math Models of OR: Branch-and-Bound John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA November 2018 Mitchell Branch-and-Bound 1 / 15 Branch-and-Bound Outline 1 Branch-and-Bound

More information

Fast Planning by Search in Domain Transition Graph

Fast Planning by Search in Domain Transition Graph Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (28) Fast Planning by Search in Domain Transition Graph Yixin Chen, Ruoyun Huang, and Weixiong Zhang Department of Computer Science

More information

CPSC 320 Sample Final Examination December 2013

CPSC 320 Sample Final Examination December 2013 CPSC 320 Sample Final Examination December 2013 [10] 1. Answer each of the following questions with true or false. Give a short justification for each of your answers. [5] a. 6 n O(5 n ) lim n + This is

More information

Maximal Antichain Lattice Algorithms for Distributed Computatio

Maximal Antichain Lattice Algorithms for Distributed Computatio Maximal Antichain Lattice Algorithms for Distributed Computations Vijay K. Garg Parallel and Distributed Systems Lab, Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Zebo Peng Embedded Systems Laboratory IDA, Linköping University

Zebo Peng Embedded Systems Laboratory IDA, Linköping University TDTS 01 Lecture 8 Optimization Heuristics for Synthesis Zebo Peng Embedded Systems Laboratory IDA, Linköping University Lecture 8 Optimization problems Heuristic techniques Simulated annealing Genetic

More information

Review Of Topics. Review: Induction

Review Of Topics. Review: Induction Review Of Topics Asymptotic notation Solving recurrences Sorting algorithms Insertion sort Merge sort Heap sort Quick sort Counting sort Radix sort Medians/order statistics Randomized algorithm Worst-case

More information

B- TREE. Michael Tsai 2017/06/06

B- TREE. Michael Tsai 2017/06/06 B- TREE Michael Tsai 2017/06/06 2 B- Tree Overview Balanced search tree Very large branching factor Height = O(log n), but much less than that of RB tree Usage: Large amount of data to be stored - - Partially

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture VII: Chapter 6, part 2 R. Paul Wiegand George Mason University, Department of Computer Science March 22, 2006 Outline 1 Balanced Trees 2 Heaps &

More information

Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks

Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks in Proc. Intl. Conference on Real-Time and Embedded Computing Systems and Applications, 200, pp. 422-428. Quasi-Static Scheduling for Multiprocessor Real-Time Systems with Hard and Soft Tasks Luis Alejandro

More information

Bayesian networks. Chapter Chapter

Bayesian networks. Chapter Chapter Bayesian networks Chapter 14.1 3 Chapter 14.1 3 1 Outline Syntax Semantics Parameterized distributions Chapter 14.1 3 2 Bayesian networks A simple, graphical notation for conditional independence assertions

More information

Introduction to Automata

Introduction to Automata Introduction to Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 /

More information

ECE 5775 (Fall 17) High-Level Digital Design Automation. Scheduling: Exact Methods

ECE 5775 (Fall 17) High-Level Digital Design Automation. Scheduling: Exact Methods ECE 5775 (Fall 17) High-Level Digital Design Automation Scheduling: Exact Methods Announcements Sign up for the first student-led discussions today One slot remaining Presenters for the 1st session will

More information

Approximation Algorithms for scheduling

Approximation Algorithms for scheduling Approximation Algorithms for scheduling Ahmed Abu Safia I.D.:119936343, McGill University, 2004 (COMP 760) Approximation Algorithms for scheduling Leslie A. Hall The first Chapter of the book entitled

More information

Binary Search Trees. Motivation

Binary Search Trees. Motivation Binary Search Trees Motivation Searching for a particular record in an unordered list takes O(n), too slow for large lists (databases) If the list is ordered, can use an array implementation and use binary

More information

Recitation 2: Binding, Semantics, and Safety : Foundations of Programming Languages

Recitation 2: Binding, Semantics, and Safety : Foundations of Programming Languages Recitation 2: Binding, Semantics, and Safety 15-312: Foundations of Programming Languages Charles Yuan, Jeanne Luning Prak September 5, 2018 1 Abstract Binding Trees The abstract syntax trees we saw previously

More information

CSE 473: Artificial Intelligence Spring 2014

CSE 473: Artificial Intelligence Spring 2014 CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer Outline Agents that

More information

Notes on Paths, Trees and Lagrange Inversion

Notes on Paths, Trees and Lagrange Inversion Notes on Paths, Trees and Lagrange Inversion Today we are going to start with a problem that may seem somewhat unmotivated, and solve it in two ways. From there, we will proceed to discuss applications

More information

Divide-and-Conquer Algorithms Part Two

Divide-and-Conquer Algorithms Part Two Divide-and-Conquer Algorithms Part Two Recap from Last Time Divide-and-Conquer Algorithms A divide-and-conquer algorithm is one that works as follows: (Divide) Split the input apart into multiple smaller

More information

The STATEMATE Semantics of Statecharts. Presentation by: John Finn October 5, by David Harel

The STATEMATE Semantics of Statecharts. Presentation by: John Finn October 5, by David Harel The STATEMATE Semantics of Statecharts Presentation by: John Finn October 5, 2010 by David Harel Outline Introduction The Basics System Reactions Compound Transitions History Scope of Transitions Conflicting

More information

CS325: Analysis of Algorithms, Fall Final Exam

CS325: Analysis of Algorithms, Fall Final Exam CS: Analysis of Algorithms, Fall 0 Final Exam I don t know policy: you may write I don t know and nothing else to answer a question and receive percent of the total points for that problem whereas a completely

More information

A 2-Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value

A 2-Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value A -Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value Shuhui Li, Miao Song, Peng-Jun Wan, Shangping Ren Department of Engineering Mechanics,

More information

Reading: Chapter 9.3. Carnegie Mellon

Reading: Chapter 9.3. Carnegie Mellon I II Lecture 3 Foundation of Data Flow Analysis Semi-lattice (set of values, meet operator) Transfer functions III Correctness, precision and convergence IV Meaning of Data Flow Solution Reading: Chapter

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Trees H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2016 License You are free to: c 2001-2016 T. Uyar, A. Yayımlı, E. Harmancı Share copy and redistribute the material

More information

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting

Outline for today. Information Retrieval. Cosine similarity between query and document. tf-idf weighting Outline for today Information Retrieval Efficient Scoring and Ranking Recap on ranked retrieval Jörg Tiedemann jorg.tiedemann@lingfil.uu.se Department of Linguistics and Philology Uppsala University Efficient

More information

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis Context-free grammars Derivations Parse Trees Left-recursive grammars Top-down parsing non-recursive predictive parsers construction of parse tables Bottom-up parsing shift/reduce parsers LR parsers GLR

More information

Allocation and Scheduling of Conditional Task Graphs

Allocation and Scheduling of Conditional Task Graphs Allocation and Scheduling of Conditional Task Graphs Michele Lombardi, Michela Milano DEIS Universita di Bologna - Viale Risorgimento, 2 40136 Bologna Italy Abstract We propose an original, complete and

More information

First Lemma. Lemma: The cost function C h has the ASI-Property. Proof: The proof can be derived from the definition of C H : C H (AUVB) = C H (A)

First Lemma. Lemma: The cost function C h has the ASI-Property. Proof: The proof can be derived from the definition of C H : C H (AUVB) = C H (A) IKKBZ First Lemma Lemma: The cost function C h has the ASI-Property. Proof: The proof can be derived from the definition of C H : and, hence, C H (AUVB) = C H (A) +T(A)C H (U) +T(A)T(U)C H (V) +T(A)T(U)T(V)C

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

Regular Expressions. Definitions Equivalence to Finite Automata

Regular Expressions. Definitions Equivalence to Finite Automata Regular Expressions Definitions Equivalence to Finite Automata 1 RE s: Introduction Regular expressions are an algebraic way to describe languages. They describe exactly the regular languages. If E is

More information

Advanced Implementations of Tables: Balanced Search Trees and Hashing

Advanced Implementations of Tables: Balanced Search Trees and Hashing Advanced Implementations of Tables: Balanced Search Trees and Hashing Balanced Search Trees Binary search tree operations such as insert, delete, retrieve, etc. depend on the length of the path to the

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Bayesian networks. Chapter 14, Sections 1 4

Bayesian networks. Chapter 14, Sections 1 4 Bayesian networks Chapter 14, Sections 1 4 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1 4 1 Bayesian networks

More information

Scheduling Conditional Task Graphs

Scheduling Conditional Task Graphs Scheduling Conditional Task Graphs Michele Lombardi and Michela Milano DEIS, University of Bologna V.le Risorgimento 2, 40136, Bologna, Italy Abstract. This paper describes a complete and efficient solution

More information

Sorting Algorithms. We have already seen: Selection-sort Insertion-sort Heap-sort. We will see: Bubble-sort Merge-sort Quick-sort

Sorting Algorithms. We have already seen: Selection-sort Insertion-sort Heap-sort. We will see: Bubble-sort Merge-sort Quick-sort Sorting Algorithms We have already seen: Selection-sort Insertion-sort Heap-sort We will see: Bubble-sort Merge-sort Quick-sort We will show that: O(n log n) is optimal for comparison based sorting. Bubble-Sort

More information

Algorithms: Lecture 12. Chalmers University of Technology

Algorithms: Lecture 12. Chalmers University of Technology Algorithms: Lecture 1 Chalmers University of Technology Today s Topics Shortest Paths Network Flow Algorithms Shortest Path in a Graph Shortest Path Problem Shortest path network. Directed graph G = (V,

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Digital Design. Register Transfer Specification And Design

Digital Design. Register Transfer Specification And Design Principles Of Digital Design Chapter 8 Register Transfer Specification And Design Chapter preview Boolean algebra 3 Logic gates and flip-flops 3 Finite-state machine 6 Logic design techniques 4 Sequential

More information

Machine Learning: Exercise Sheet 2

Machine Learning: Exercise Sheet 2 Machine Learning: Exercise Sheet 2 Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg mblum@informatik.uni-freiburg.de Manuel Blum Machine Learning

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam Logic and Modelling Introduction to Predicate Logic Jörg Endrullis VU University Amsterdam Predicate Logic In propositional logic there are: propositional variables p, q, r,... that can be T or F In predicate

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26. Homework #2. ( Due: Nov 8 )

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26. Homework #2. ( Due: Nov 8 ) CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: Oct 26 Homework #2 ( Due: Nov 8 ) Task 1. [ 80 Points ] Average Case Analysis of Median-of-3 Quicksort Consider the median-of-3 quicksort algorithm

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

Solutions BAPC October University of Amsterdam. Solutions BAPC 2017 October / 31

Solutions BAPC October University of Amsterdam. Solutions BAPC 2017 October / 31 Solutions BAPC 2017 University of Amsterdam October 2017 Solutions BAPC 2017 October 2017 1 / 31 Falling Apart (54/77) Sort the input in descending order (a 1 a 2 a n ). Output a 1 + a 3 + a 5 +... and

More information

Query Processing in Spatial Network Databases

Query Processing in Spatial Network Databases Temporal and Spatial Data Management Fall 0 Query Processing in Spatial Network Databases SL06 Spatial network databases Shortest Path Incremental Euclidean Restriction Incremental Network Expansion Spatial

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

: Advanced Compiler Design Compu=ng DF(X) 3.4 Algorithm for inser=on of φ func=ons 3.5 Algorithm for variable renaming

: Advanced Compiler Design Compu=ng DF(X) 3.4 Algorithm for inser=on of φ func=ons 3.5 Algorithm for variable renaming 263-2810: Advanced Compiler Design 3.3.2 Compu=ng DF(X) 3.4 Algorithm for inser=on of φ func=ons 3.5 Algorithm for variable renaming Thomas R. Gross Computer Science Department ETH Zurich, Switzerland

More information

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin Chapter 0 Introduction Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin October 2014 Automata Theory 2 of 22 Automata theory deals

More information

Theoretical Foundations of the UML Lecture 18: Statecharts Semantics (1)

Theoretical Foundations of the UML Lecture 18: Statecharts Semantics (1) Theoretical Foundations of the UML Lecture 18: Statecharts Semantics (1) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ws-1415/uml/

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Efficient Computation of Causal Behavioural Profiles using Structural Decomposition

Efficient Computation of Causal Behavioural Profiles using Structural Decomposition Efficient Computation of Causal Behavioural Profiles using Structural Decomposition Matthias Weidlich 1, Artem Polyvyanyy 1, Jan Mendling 2, and Mathias Weske 1 1 Hasso Plattner Institute at the University

More information

A Self-Stabilizing Minimal Dominating Set Algorithm with Safe Convergence

A Self-Stabilizing Minimal Dominating Set Algorithm with Safe Convergence A Self-Stabilizing Minimal Dominating Set Algorithm with Safe Convergence Hirotsugu Kakugawa and Toshimitsu Masuzawa Department of Computer Science Graduate School of Information Science and Technology

More information

Priority Operators for Fairshare Scheduling

Priority Operators for Fairshare Scheduling Priority Operators for Fairshare Scheduling Gonzalo P. Rodrigo, Per-Olov Östberg, and Erik Elmroth Distributed systems group, Department of Computing Science, Umeå Univeristy, SE-901 87, Umeå Sweden {gonzalo,p-o,elmroth}@cs.umu.se

More information

The Weakest Failure Detector to Solve Mutual Exclusion

The Weakest Failure Detector to Solve Mutual Exclusion The Weakest Failure Detector to Solve Mutual Exclusion Vibhor Bhatt Nicholas Christman Prasad Jayanti Dartmouth College, Hanover, NH Dartmouth Computer Science Technical Report TR2008-618 April 17, 2008

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

A* Search. 1 Dijkstra Shortest Path

A* Search. 1 Dijkstra Shortest Path A* Search Consider the eight puzzle. There are eight tiles numbered 1 through 8 on a 3 by three grid with nine locations so that one location is left empty. We can move by sliding a tile adjacent to the

More information

Control Dependence. Stanford University CS243 Winter 2006 Wei Li 1

Control Dependence. Stanford University CS243 Winter 2006 Wei Li 1 Control Dependence Wei Li 1 Control Dependence Introduction Formal Definition Optimal Control Dependence Computation 2 xample START a b c d CFG ND b is control dependent on a c is control dependent on

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

CSE 591 Foundations of Algorithms Homework 4 Sample Solution Outlines. Problem 1

CSE 591 Foundations of Algorithms Homework 4 Sample Solution Outlines. Problem 1 CSE 591 Foundations of Algorithms Homework 4 Sample Solution Outlines Problem 1 (a) Consider the situation in the figure, every edge has the same weight and V = n = 2k + 2. Easy to check, every simple

More information

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination Outline Syntax Semantics Exact inference by enumeration Exact inference by variable elimination s A simple, graphical notation for conditional independence assertions and hence for compact specication

More information

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II.

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II. Copyright Richard J. Povinelli rev 1.0, 10/1//2001 Page 1 Probabilistic Reasoning Systems Dr. Richard J. Povinelli Objectives You should be able to apply belief networks to model a problem with uncertainty.

More information

CS357: CTL Model Checking (two lectures worth) David Dill

CS357: CTL Model Checking (two lectures worth) David Dill CS357: CTL Model Checking (two lectures worth) David Dill 1 CTL CTL = Computation Tree Logic It is a propositional temporal logic temporal logic extended to properties of events over time. CTL is a branching

More information

Preserving the Fault-Containment of Ring Protocols Executed on Trees

Preserving the Fault-Containment of Ring Protocols Executed on Trees The Computer Journal Advance Access published November 21, 2008 # The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions,

More information

CPU Scheduling Exercises

CPU Scheduling Exercises CPU Scheduling Exercises NOTE: All time in these exercises are in msec. Processes P 1, P 2, P 3 arrive at the same time, but enter the job queue in the order presented in the table. Time quantum = 3 msec

More information

Problem: Data base too big to fit memory Disk reads are slow. Example: 1,000,000 records on disk Binary search might take 20 disk reads

Problem: Data base too big to fit memory Disk reads are slow. Example: 1,000,000 records on disk Binary search might take 20 disk reads B Trees Problem: Data base too big to fit memory Disk reads are slow Example: 1,000,000 records on disk Binary search might take 20 disk reads Disk reads are done in blocks Example: One block read can

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Notation. Bounds on Speedup. Parallel Processing. CS575 Parallel Processing

Notation. Bounds on Speedup. Parallel Processing. CS575 Parallel Processing Parallel Processing CS575 Parallel Processing Lecture five: Efficiency Wim Bohm, Colorado State University Some material from Speedup vs Efficiency in Parallel Systems - Eager, Zahorjan and Lazowska IEEE

More information

Alpha-Beta Pruning: Algorithm and Analysis

Alpha-Beta Pruning: Algorithm and Analysis Alpha-Beta Pruning: Algorithm and Analysis Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Introduction Alpha-beta pruning is the standard searching procedure used for solving

More information