Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

Size: px
Start display at page:

Download "Likelihood Ratio Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42"

Transcription

1 Likelihood Ratio Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

2 Consider the Likelihood Ratio Test of H 0 : Cβ = d vs H A : Cβ d. Suppose y N(Xβ, σ 2 I). The likelihood function is L(β, σ 2 y) = (2πσ 2 ) n/2 e 1 2σ 2 (y Xβ) (y Xβ) for β R p and σ 2 > 0. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

3 Note that L(β, σ 2 y) = (2πσ 2 ) n/2 e 1 2σ 2 Q(β), where Q(β) = (y Xβ) (y Xβ) = y Xβ 2. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

4 The parameter space under the null hypothesis H 0 : Cβ = d is Ω 0 = {(β, σ 2 ) : Cβ = d, σ 2 > 0}. The parameter space corresponding to the union of the null and alternative parameter spaces is Ω = {(β, σ 2 ) : β R p, σ 2 > 0}. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

5 The likelihood ratio test rejects H 0 iff is sufficiently small. Λ(y) = sup Ω 0 L(β, σ 2 y) sup Ω L(β, σ 2 y) Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

6 To conduct a significance level α likelihood ratio test, we reject H 0 iff Λ(y) c α, where c α satisfies sup{p(λ(y) c α β, σ 2 ) : (β, σ 2 ) Ω 0 } α. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

7 To find Λ(y), we must maximize the likelihood over Ω 0 and Ω. For any fixed β R p, we can find the value of σ 2 > 0 that maximizes L(β, σ 2 y) as follows. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

8 Because log is a strictly increasing function, the value of σ 2 that maximizes L(β, σ 2 y) is the same as the value of σ 2 that maximizes l(β, σ 2 y) log L(β, σ 2 y). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

9 l(β, σ 2 y) = n 2 log(2πσ2 ) 1 2σ 2 Q(β) l(β, σ 2 y) σ 2 = n 2σ 2 + Q(β) 2σ 4. Equating to 0 and solving for σ 2 yields ˆσ 2 (β) = Q(β) n. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

10 Furthermore, examination l(β,σ2 y) as a function of σ 2 shows that σ 2 l(β, σ 2 y) as a function of σ 2 is increasing to the left of Q(β)/n and decreasing to the right of Q(β)/n. Thus, for any fixed β R p, the likelihood is maximized over σ 2 > 0 at Q(β)/n. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

11 Now note that L(β, ˆσ 2 (β) y) = (2πQ(β)/n) n/2 e n 2Q(β) Q(β) = (2πeQ(β)/n) n/2, which is clearly maximized over β by minimizing Q(β) over β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

12 Let ˆβ be any minimizer of Q(β) over β R p. We know from previous results that ˆβ minimizes Q(β) over β R p iff ˆβ is a solution to NE. (X X) X y is one solution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

13 Thus, the maximum likelihood estimator (MLE) of σ 2 is ˆσ 2 MLE = Q(ˆβ)/n = y Xˆβ 2 /n, where ˆβ is any solution to the NE. Recall that Xˆβ = P X y is the same for all solution to NE. Thus, ˆσ 2 MLE is the same for any ˆβ that solves the NE. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

14 Note that the MLE of σ 2 ˆσ 2 MLE = Q(ˆβ) n Q(ˆβ) n rank(x) = n rank(x) n = y (I P X )y n rank(x) n rank(x) n = ˆσ 2 n rank(x). n Recall Thus, E(ˆσ 2 ) = σ 2. E(ˆσ MLE) 2 = n rank(x) σ 2 < σ 2. n Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

15 If X is of full-column rank, then ˆβ = (X X) 1 X y is the maximum likelihood estimator (MLE) of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

16 We have sup L(β, σ 2 y) = L(ˆβ, ˆσ MLE y) 2 Ω = (2πeQ(ˆβ)/n) n/2. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

17 If we let β denote the minimizer of Q(β) over β R p satisfying Cβ = d, then sup L(β, σ 2 y) Ω 0 = L( β, Q( β)/n y) = (2πeQ( β)/n) n/2. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

18 Thus Λ(y) = = (2πeQ( β)/n) n/2 (2πeQ(ˆβ)/n) n/2 [ ] n/2 Q( β). Q(ˆβ) Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

19 Now note that Λ(y) c α [ ] Q( β) n/2 c α Q(ˆβ) Q( β) Q(ˆβ) c 2/n α Q( β) Q(ˆβ) 1 c 2/n α 1 Q( β) Q(ˆβ) Q(ˆβ) c 2/n α 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

20 [Q( β) Q(ˆβ)]/q Q(ˆβ)/(n r) n r q (c 2/n α 1), where q = rank(c) and n r = n rank(x). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

21 Example: Suppose where y = Xβ + ε, ε N(0, σ 2 I). Furthermore, suppose rank( n p X ) = p. Partition X = [X 1, X 2 ] and β = where X 1 is n p 1 and β 1 is p 1 1. [ β1 β 2 ], Suppose we wish to test H 0 : β 2 = 0. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

22 H 0 : β 2 = 0 is a GLH H 0 : Cβ = d with C = [ 0, q p 1 q q I ] and d = 0, q 1 where q = p p 1. This GLH is testable because q p C has rank q and Cβ is estimable due to full-column rank of X. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

23 Q( β) = min{q(β) : Cβ = d} = min{ y Xβ 2 : β R p β 2 = 0} = min{ y X 1 β 1 2 : β 1 R p 1 } = y X 1 ˆβ1 2 = y P X1 y 2 = (I P X1 )y 2 = y (I P X1 )y = SSE Reduced. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

24 Q(ˆβ) = y Xˆβ 2 = y P X y 2 = (I P X )y 2 = y (I P X )y = SSE Full. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

25 The DF for SSE Full is DF F = rank(i P X ) = n p. The DF for SSE Reduced is DF R = rank(i P X1 ) = n p 1. DF R DF F = p p 1 = q. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

26 We have shown that, in the general case, the likelihood ratio test (LRT) of H 0 : Cβ = d rejects for sufficiently large [Q( β) Q(ˆβ)]/q. Q(ˆβ)/(n r) Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

27 In this example, [Q( β) Q(ˆβ)]/q Q(ˆβ)/(n r) = [SSE Reduced SSE Full ]/(DF R DF F ) SSE Full /DF F, which should look familiar. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

28 We now show that for a testable GLH H 0 : Cβ = d, the GLT statistic F = (Cˆβ d) (C(X X) C ) 1 (Cˆβ d)/q ˆσ 2 = [Q( β) Q(ˆβ)]/q. Q(ˆβ)/(n r) Thus, the GLT is equivalent to the LRT. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

29 Note that ( ) I Q(ˆβ)/(n r) = y PX y n r = ˆσ 2. Thus, it remains to show Q( β) Q(ˆβ) = (Cˆβ d) (C(X X) C ) 1 (Cˆβ d). From 3.10, we know that β is leading subvector of solution to RNE. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

30 Theorem 6.1: If Cβ = d is testable and β is the leading subvecctor of a solution to the RNE [ ] [ ] [ ] X X C b X y =, C 0 λ d then Q( β) Q(ˆβ) = (ˆβ β) X X(ˆβ β) = (Cˆβ d) (C(X X) C ) 1 (Cˆβ d). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

31 Proof of Result 6.1: First show that Q( β) Q(ˆβ) = (ˆβ β) X X(ˆβ β). Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

32 Now let λ denote the trailing subvector of the solution to RNE whose leading subvector is β; i.e., suppose ] [ β λ is solution to RNE. Show X X(ˆβ β) = C λ. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

33 Now show λ = (C(X X) C ) 1 (Cˆβ d). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

34 We have established (1) Q(ˆβ) Q( β) = (ˆβ β) X X(ˆβ β) (2) X X(ˆβ β) = C λ (3) λ = (C(X X) C ) 1 (Cˆβ d). Use these results to finish the proof. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

35 Corollary 6.4: Suppose Cβ = d is testable, and suppose ˆβ is a solution to the NE. Then the leading subvector of a solution to the RNE with constraint Cβ = d can be found by solving for b in the equations X Xb = X y C (C(X X) C ) 1 (C ˆβ d). opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 42

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35

General Linear Test of a General Linear Hypothesis. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 35 General Linear Test of a General Linear Hypothesis Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 35 Suppose the NTGMM holds so that y = Xβ + ε, where ε N(0, σ 2 I). opyright

More information

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58

ML and REML Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 58 ML and REML Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 58 Suppose y = Xβ + ε, where ε N(0, Σ) for some positive definite, symmetric matrix Σ.

More information

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Estimable Functions and Their Least Squares Estimators Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Consider the GLM y = n p X β + ε, where E(ε) = 0. p 1 n 1 n 1 Suppose

More information

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28

2. A Review of Some Key Linear Models Results. Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics / 28 2. A Review of Some Key Linear Models Results Copyright c 2018 Dan Nettleton (Iowa State University) 2. Statistics 510 1 / 28 A General Linear Model (GLM) Suppose y = Xβ + ɛ, where y R n is the response

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37

Scheffé s Method. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 37 Scheffé s Method opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 37 Scheffé s Method: Suppose where Let y = Xβ + ε, ε N(0, σ 2 I). c 1β,..., c qβ be q estimable functions, where

More information

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

Constraints on Solutions to the Normal Equations. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 Constraints on Solutions to the Normal Equations Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 If rank( n p X) = r < p, there are infinitely many solutions to the NE X Xb

More information

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61

The Gauss-Markov Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 61 The Gauss-Markov Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 61 Recall that Cov(u, v) = E((u E(u))(v E(v))) = E(uv) E(u)E(v) Var(u) = Cov(u, u) = E(u E(u)) 2 = E(u 2

More information

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31

Distributions of Quadratic Forms. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 31 Distributions of Quadratic Forms Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 31 Under the Normal Theory GMM (NTGMM), y = Xβ + ε, where ε N(0, σ 2 I). By Result 5.3, the NTGMM

More information

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41

The Aitken Model. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 41 The Aitken Model Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 41 The Aitken Model (AM): Suppose where y = Xβ + ε, E(ε) = 0 and Var(ε) = σ 2 V for some σ 2 > 0 and some known

More information

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43

3. The F Test for Comparing Reduced vs. Full Models. opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics / 43 3. The F Test for Comparing Reduced vs. Full Models opyright c 2018 Dan Nettleton (Iowa State University) 3. Statistics 510 1 / 43 Assume the Gauss-Markov Model with normal errors: y = Xβ + ɛ, ɛ N(0, σ

More information

Lecture 1: Linear Models and Applications

Lecture 1: Linear Models and Applications Lecture 1: Linear Models and Applications Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction to linear models Exploratory data analysis (EDA) Estimation

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Miscellaneous Results, Solving Equations, and Generalized Inverses. opyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Miscellaneous Results, Solving Equations, and Generalized Inverses opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Result A.7: Suppose S and T are vector spaces. If S T and

More information

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36

20. REML Estimation of Variance Components. Copyright c 2018 (Iowa State University) 20. Statistics / 36 20. REML Estimation of Variance Components Copyright c 2018 (Iowa State University) 20. Statistics 510 1 / 36 Consider the General Linear Model y = Xβ + ɛ, where ɛ N(0, Σ) and Σ is an n n positive definite

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32

ANOVA Variance Component Estimation. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 32 ANOVA Variance Component Estimation Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 32 We now consider the ANOVA approach to variance component estimation. The ANOVA approach

More information

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34

Linear Mixed-Effects Models. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 34 Linear Mixed-Effects Models Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 34 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p design matrix of known constants β R

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40

When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 40 When is the OLSE the BLUE? Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 40 When is the Ordinary Least Squares Estimator (OLSE) the Best Linear Unbiased Estimator (BLUE)? Copyright

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Mixed models Yan Lu March, 2018, week 8 1 / 32 Restricted Maximum Likelihood (REML) REML: uses a likelihood function calculated from the transformed set

More information

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49

11. Linear Mixed-Effects Models. Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics / 49 11. Linear Mixed-Effects Models Copyright c 2018 Dan Nettleton (Iowa State University) 11. Statistics 510 1 / 49 The Linear Mixed-Effects Model y = Xβ + Zu + e X is an n p matrix of known constants β R

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36

The Multivariate Normal Distribution. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 36 The Multivariate Normal Distribution Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 36 The Moment Generating Function (MGF) of a random vector X is given by M X (t) = E(e t X

More information

General Linear Model: Statistical Inference

General Linear Model: Statistical Inference Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter 4), least

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

CAS MA575 Linear Models

CAS MA575 Linear Models CAS MA575 Linear Models Boston University, Fall 2013 Midterm Exam (Correction) Instructor: Cedric Ginestet Date: 22 Oct 2013. Maximal Score: 200pts. Please Note: You will only be graded on work and answers

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

Formulary Applied Econometrics

Formulary Applied Econometrics Department of Economics Formulary Applied Econometrics c c Seminar of Statistics University of Fribourg Formulary Applied Econometrics 1 Rescaling With y = cy we have: ˆβ = cˆβ With x = Cx we have: ˆβ

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Financial Econometrics

Financial Econometrics Material : solution Class : Teacher(s) : zacharias psaradakis, marian vavra Example 1.1: Consider the linear regression model y Xβ + u, (1) where y is a (n 1) vector of observations on the dependent variable,

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS

THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS THE ANOVA APPROACH TO THE ANALYSIS OF LINEAR MIXED EFFECTS MODELS We begin with a relatively simple special case. Suppose y ijk = µ + τ i + u ij + e ijk, (i = 1,..., t; j = 1,..., n; k = 1,..., m) β =

More information

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58

Generalized Linear Mixed-Effects Models. Copyright c 2015 Dan Nettleton (Iowa State University) Statistics / 58 Generalized Linear Mixed-Effects Models Copyright c 2015 Dan Nettleton (Iowa State University) Statistics 510 1 / 58 Reconsideration of the Plant Fungus Example Consider again the experiment designed to

More information

Chapter 1. Linear Regression with One Predictor Variable

Chapter 1. Linear Regression with One Predictor Variable Chapter 1. Linear Regression with One Predictor Variable 1.1 Statistical Relation Between Two Variables To motivate statistical relationships, let us consider a mathematical relation between two mathematical

More information

Lecture 26: Likelihood ratio tests

Lecture 26: Likelihood ratio tests Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for

More information

Answer Key for STAT 200B HW No. 7

Answer Key for STAT 200B HW No. 7 Answer Key for STAT 200B HW No. 7 May 5, 2007 Problem 2.2 p. 649 Assuming binomial 2-sample model ˆπ =.75, ˆπ 2 =.6. a ˆτ = ˆπ 2 ˆπ =.5. From Ex. 2.5a on page 644: ˆπ ˆπ + ˆπ 2 ˆπ 2.75.25.6.4 = + =.087;

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

STAT 730 Chapter 5: Hypothesis Testing

STAT 730 Chapter 5: Hypothesis Testing STAT 730 Chapter 5: Hypothesis Testing Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 28 Likelihood ratio test def n: Data X depend on θ. The

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Random and Mixed Effects Models - Part III

Random and Mixed Effects Models - Part III Random and Mixed Effects Models - Part III Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Quasi-F Tests When we get to more than two categorical factors, some times there are not nice F tests

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Is the cholesterol concentration in blood related to the body mass index (bmi)?

Is the cholesterol concentration in blood related to the body mass index (bmi)? Regression problems The fundamental (statistical) problems of regression are to decide if an explanatory variable affects the response variable and estimate the magnitude of the effect Major question:

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares

13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares 13. The Cochran-Satterthwaite Approximation for Linear Combinations of Mean Squares opyright c 2018 Dan Nettleton (Iowa State University) 13. Statistics 510 1 / 18 Suppose M 1,..., M k are independent

More information

Inference in Constrained Linear Regression

Inference in Constrained Linear Regression Inference in Constrained Linear Regression by Xinyu Chen A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Master of

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25

Determinants. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 25 Determinants opyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 25 Notation The determinant of a square matrix n n A is denoted det(a) or A. opyright c 2012 Dan Nettleton (Iowa State

More information

Handout 4: Simple Linear Regression

Handout 4: Simple Linear Regression Handout 4: Simple Linear Regression By: Brandon Berman The following problem comes from Kokoska s Introductory Statistics: A Problem-Solving Approach. The data can be read in to R using the following code:

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

A Likelihood Ratio Test

A Likelihood Ratio Test A Likelihood Ratio Test David Allen University of Kentucky February 23, 2012 1 Introduction Earlier presentations gave a procedure for finding an estimate and its standard error of a single linear combination

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Likelihood-based inference with missing data under missing-at-random

Likelihood-based inference with missing data under missing-at-random Likelihood-based inference with missing data under missing-at-random Jae-kwang Kim Joint work with Shu Yang Department of Statistics, Iowa State University May 4, 014 Outline 1. Introduction. Parametric

More information

STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test.

STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test. STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test. Rebecca Barter March 30, 2015 Mann-Whitney Test Mann-Whitney Test Recall that the Mann-Whitney

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Data Structures for Disjoint Sets

Data Structures for Disjoint Sets Data Structures for Disjoint Sets Advanced Data Structures and Algorithms (CLRS, Chapter 2) James Worrell Oxford University Computing Laboratory, UK HT 200 Disjoint-set data structures Also known as union

More information

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100 Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness Information in Data Sufficiency, Ancillarity, Minimality, and Completeness Important properties of statistics that determine the usefulness of those statistics in statistical inference. These general properties

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

A Note on UMPI F Tests

A Note on UMPI F Tests A Note on UMPI F Tests Ronald Christensen Professor of Statistics Department of Mathematics and Statistics University of New Mexico May 22, 2015 Abstract We examine the transformations necessary for establishing

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

Infinitely Imbalanced Logistic Regression

Infinitely Imbalanced Logistic Regression p. 1/1 Infinitely Imbalanced Logistic Regression Art B. Owen Journal of Machine Learning Research, April 2007 Presenter: Ivo D. Shterev p. 2/1 Outline Motivation Introduction Numerical Examples Notation

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 3 Jakub Mućk Econometrics of Panel Data Meeting # 3 1 / 21 Outline 1 Fixed or Random Hausman Test 2 Between Estimator 3 Coefficient of determination (R 2

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Lecture One: A Quick Review/Overview on Regular Linear Regression Models

Lecture One: A Quick Review/Overview on Regular Linear Regression Models Lecture One: A Quick Review/Overview on Regular Linear Regression Models Outline The topics to be covered include: Model Specification Estimation(LS estimators and MLEs) Hypothesis Testing and Model Diagnostics

More information

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014

Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Ph.D. Qualifying Exam Friday Saturday, January 3 4, 2014 Put your solution to each problem on a separate sheet of paper. Problem 1. (5166) Assume that two random samples {x i } and {y i } are independently

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options.

Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam. Please choose ONE of the following options. 1 Biostatistics 533 Classical Theory of Linear Models Spring 2007 Final Exam Name: Problems do not have equal value and some problems will take more time than others. Spend your time wisely. You do not

More information