Lecture 26: Likelihood ratio tests

Size: px
Start display at page:

Download "Lecture 26: Likelihood ratio tests"

Transcription

1 Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for some c 0 > 0. The following definition is a natural extension of this idea. Definition 6.2 Let l(θ) = f θ (X) be the likelihood function. For testing H 0 : θ Θ 0 versus H 1 : θ Θ 1, a likelihood ratio (LR) test is any test that rejects H 0 if and only if λ(x) < c, where c [0,1] and λ(x) is the likelihood ratio defined by / λ(x) = sup l(θ) θ Θ 0 supl(θ). θ Θ UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

2 Lecture 26: Likelihood ratio tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f θ0 (X) > c 0 for some c 0 > 0. The following definition is a natural extension of this idea. Definition 6.2 Let l(θ) = f θ (X) be the likelihood function. For testing H 0 : θ Θ 0 versus H 1 : θ Θ 1, a likelihood ratio (LR) test is any test that rejects H 0 if and only if λ(x) < c, where c [0,1] and λ(x) is the likelihood ratio defined by / λ(x) = sup l(θ) θ Θ 0 supl(θ). θ Θ UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

3 Discussions If λ(x) is well defined, then λ(x) 1. The rationale behind LR tests is that when H 0 is true, λ(x) tends to be close to 1, whereas when H 1 is true, λ(x) tends to be away from 1. If there is a sufficient statistic, then λ(x) depends only on the sufficient statistic. LR tests are as widely applicable as MLE s in 4.4 and, in fact, they are closely related to MLE s. If θ is an MLE of θ and θ 0 is an MLE of θ subject to θ Θ 0 (i.e., Θ 0 is treated as the parameter space), then λ(x) = l( θ 0 ) / l( θ). For a given α (0,1), if there exists a c α [0,1] such that sup P θ (λ(x) < c α ) = α, θ Θ 0 then an LR test of size α can be obtained. Even when the c.d.f. of λ(x) is continuous or randomized LR tests are introduced, it is still possible that such a c α does not exist. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

4 Optimality When a UMP or UMPU test exists, an LR test is often the same as this optimal test. Proposition 6.5 Suppose that X has a p.d.f. in a one-parameter exponential family: f θ (x) = exp{η(θ)y(x) ξ(θ)}h(x) w.r.t. a σ-finite measure ν, where η is a strictly increasing and differentaible function of θ. (i) For testing H 0 : θ θ 0 versus H 1 : θ > θ 0, there is an LR test whose rejection region is the same as that of the UMP test T given in Theorem 6.2. (ii) For testing H 0 : θ θ 1 or θ θ 2 versus H 1 : θ 1 < θ < θ 2, there is an LR test whose rejection region is the same as that of the UMP test T given in Theorem 6.3. (iii) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to Y(X) < c 1 or Y(X) > c 2 for some constants c 1 and c 2. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

5 Optimality When a UMP or UMPU test exists, an LR test is often the same as this optimal test. Proposition 6.5 Suppose that X has a p.d.f. in a one-parameter exponential family: f θ (x) = exp{η(θ)y(x) ξ(θ)}h(x) w.r.t. a σ-finite measure ν, where η is a strictly increasing and differentaible function of θ. (i) For testing H 0 : θ θ 0 versus H 1 : θ > θ 0, there is an LR test whose rejection region is the same as that of the UMP test T given in Theorem 6.2. (ii) For testing H 0 : θ θ 1 or θ θ 2 versus H 1 : θ 1 < θ < θ 2, there is an LR test whose rejection region is the same as that of the UMP test T given in Theorem 6.3. (iii) For testing the other two-sided hypotheses, there is an LR test whose rejection region is equivalent to Y(X) < c 1 or Y(X) > c 2 for some constants c 1 and c 2. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

6 Proof We prove (i) only. Let θ be the MLE of θ. Note that l(θ) is increasing when θ θ and decreasing when θ > θ. Thus, { 1 θ θ 0 λ(x) = l(θ 0 ) l( θ) θ > θ 0. Then λ(x) < c is the same as θ > θ 0 and l(θ 0 )/l( θ) < c. From the property of exponential families, θ is a solution of the likelihood equation logl(θ) θ = η (θ)y(x) ξ (θ) = 0 and ψ(θ) = ξ (θ)/η (θ) has a positive derivative ψ (θ). Since η ( θ)y ξ ( θ) = 0, θ is an increasing function of Y and d θ dy > 0. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

7 Proof (continued) Consequently, for any θ 0 Θ, d [ ] logl( θ) logl(θ 0 ) dy = d [ ] η( θ)y ξ( θ) η(θ 0 )Y + ξ(θ 0 ) dy = d θ dy η ( θ)y + η( θ) d θ dy ξ ( θ) η(θ 0 ) = d θ dy [η ( θ)y ξ ( θ)]+η( θ) η(θ 0 ) = η( θ) η(θ 0 ), which is positive (or negative) if θ > θ 0 (or θ < θ 0 ), i.e., logl( θ) logl(θ 0 ) is strictly increasing in Y when θ > θ 0 and strictly decreasing in Y when θ < θ 0. Hence, for any d R, θ > θ 0 and l(θ 0 )/l( θ) < c is equivalent to Y > d for some c (0,1). UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

8 Example 6.20 Consider the testing problem H 0 : θ = θ 0 versus H 1 : θ θ 0 based on i.i.d. X 1,...,X n from the uniform distribution U(0,θ). We now show that the UMP test with rejection region X (n) > θ 0 or X (n) θ 0 α 1/n given in Exercise 19(c) is an LR test. Note that l(θ) = θ n I (X(n), )(θ). Hence { (X(n) /θ λ(x) = 0 ) n X (n) θ 0 0 X (n) > θ 0 and λ(x) < c is equivalent to X (n) > θ 0 or X (n) /θ 0 < c 1/n. Taking c = α ensures that the LR test has size α. Example 6.21 Consider normal linear model X = N n (Z β,σ 2 I n ) and the hypotheses H 0 : Lβ = 0 versus H 1 : Lβ 0, where L is an s p matrix of rank s r and all rows of L are in R(Z). UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

9 Example 6.20 Consider the testing problem H 0 : θ = θ 0 versus H 1 : θ θ 0 based on i.i.d. X 1,...,X n from the uniform distribution U(0,θ). We now show that the UMP test with rejection region X (n) > θ 0 or X (n) θ 0 α 1/n given in Exercise 19(c) is an LR test. Note that l(θ) = θ n I (X(n), )(θ). Hence { (X(n) /θ λ(x) = 0 ) n X (n) θ 0 0 X (n) > θ 0 and λ(x) < c is equivalent to X (n) > θ 0 or X (n) /θ 0 < c 1/n. Taking c = α ensures that the LR test has size α. Example 6.21 Consider normal linear model X = N n (Z β,σ 2 I n ) and the hypotheses H 0 : Lβ = 0 versus H 1 : Lβ 0, where L is an s p matrix of rank s r and all rows of L are in R(Z). UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

10 Example 6.21 (continued) The likelihood function in this problem is l(θ) = ( 1 2πσ 2 ) n/2 exp { 1 2σ 2 X Z β 2 }, θ = (β,σ 2 ). Since X Z β 2 X Z β 2 for any β and the LSE β, ( ) n/2 { l(θ) 1 2πσ exp 1 X Z β } σ 2 Treating the right-hand side of this expression as a function of σ 2, it is easy to show that it has a maximum at σ 2 = σ 2 = X Z β 2 /n and supl(θ) = (2π σ 2 ) n/2 e n/2. θ Θ Similarly, let β H0 be the LSE under H 0 and σ H 2 0 = X Z β H0 2 /n. Then sup l(θ) = (2π σ H 2 0 ) n/2 e n/2. θ Θ 0 Thus, ( λ(x) = ( σ 2 / σ H 2 0 ) n/2 X Z = β ) n/2 2 X Z β. H0 2 UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

11 Example 6.21 (continued) For a two-sample problem, we let n = n 1 + n 2, β = (µ 1, µ 2 ), and ( Jn1 0 Z = 0 J n2 Testing H 0 : µ 1 = µ 2 versus H 1 : µ 1 µ 2 is the same as testing H 0 : Lβ = 0 versus H 1 : Lβ 0 with L = ( 1 1 ). Since β H0 = X and β = ( X 1, X 2 ), where X 1 and X 2 are the sample means based on X 1,...,X n1 and X n1 +1,...,X n, respectively, we have and n σ 2 = n 1 i=1 (X i X 1 ) 2 + n i=n 1 +1 ). (X i X 2 ) 2 = (n 1 1)S 2 1 +(n 2 1)S 2 2 n σ 2 H 0 = (n 1)S 2 = n 1 n 1 n 2 ( X 1 X 2 ) 2 +(n 1 1)S 2 1 +(n 2 1)S 2 2. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

12 Example 6.21 (continued) Therefore, λ(x) < c is equivalent to t(x) > c 0, where t(x) = ( X 2 X 1 ) / n n 1 2, [(n 1 1)S1 2 +(n 2 1)S2 2]/(n 1 + n 2 2) and LR tests are the same as the two-sample two-sided t-tests in Asymptotic tests It is often difficult to construct tests (such as LR tests) with exactly size α or level α. Asymptotic approximation can be used Statistical inference based on asymptotic criteria and approximations is called asymptotic statistical inference or simply asymptotic inference. We now focus on asymptotic hypothesis tests. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

13 Example 6.21 (continued) Therefore, λ(x) < c is equivalent to t(x) > c 0, where t(x) = ( X 2 X 1 ) / n n 1 2, [(n 1 1)S1 2 +(n 2 1)S2 2]/(n 1 + n 2 2) and LR tests are the same as the two-sample two-sided t-tests in Asymptotic tests It is often difficult to construct tests (such as LR tests) with exactly size α or level α. Asymptotic approximation can be used Statistical inference based on asymptotic criteria and approximations is called asymptotic statistical inference or simply asymptotic inference. We now focus on asymptotic hypothesis tests. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

14 Definition 2.13 Let X = (X 1,...,X n ) be a sample from P P and T n (X) be a test for H 0 : P P 0 versus H 1 : P P 1. (i) If limsup n α Tn (P) α for any P P 0, then α is an asymptotic significance level of T n. (ii) If lim n sup P P0 α Tn (P) exists, it is called the limiting size of T n. (iii) T n is consistent iff the type II error probability converges to 0. Discussion If P 0 is not a parametric family, it is likely that the limiting size of T n is 1 (see, e.g., Example 2.37). This is the reason why we consider the weaker requirement in Definition 2.13(i). If α (0,1) is a pre-assigned level of significance for the problem, then a consistent test T n having asymptotic significance level α is called asymptotically correct, and a consistent test having limiting size α is called strongly asymptotically correct. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

15 Definition 2.13 Let X = (X 1,...,X n ) be a sample from P P and T n (X) be a test for H 0 : P P 0 versus H 1 : P P 1. (i) If limsup n α Tn (P) α for any P P 0, then α is an asymptotic significance level of T n. (ii) If lim n sup P P0 α Tn (P) exists, it is called the limiting size of T n. (iii) T n is consistent iff the type II error probability converges to 0. Discussion If P 0 is not a parametric family, it is likely that the limiting size of T n is 1 (see, e.g., Example 2.37). This is the reason why we consider the weaker requirement in Definition 2.13(i). If α (0,1) is a pre-assigned level of significance for the problem, then a consistent test T n having asymptotic significance level α is called asymptotically correct, and a consistent test having limiting size α is called strongly asymptotically correct. UW-Madison (Statistics) Stat 710, Lecture 26 Jan / 10

Stat 710: Mathematical Statistics Lecture 27

Stat 710: Mathematical Statistics Lecture 27 Stat 710: Mathematical Statistics Lecture 27 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 27 April 3, 2009 1 / 10 Lecture 27:

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma

Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma Chapter 6. Hypothesis Tests Lecture 20: UMP tests and Neyman-Pearson lemma Theory of testing hypotheses X: a sample from a population P in P, a family of populations. Based on the observed X, we test a

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

Lecture 23: UMPU tests in exponential families

Lecture 23: UMPU tests in exponential families Lecture 23: UMPU tests in exponential families Continuity of the power function For a given test T, the power function β T (P) is said to be continuous in θ if and only if for any {θ j : j = 0,1,2,...}

More information

Lecture 13: p-values and union intersection tests

Lecture 13: p-values and union intersection tests Lecture 13: p-values and union intersection tests p-values After a hypothesis test is done, one method of reporting the result is to report the size α of the test used to reject H 0 or accept H 0. If α

More information

Stat 710: Mathematical Statistics Lecture 40

Stat 710: Mathematical Statistics Lecture 40 Stat 710: Mathematical Statistics Lecture 40 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 40 May 6, 2009 1 / 11 Lecture 40: Simultaneous

More information

Lecture 17: Minimal sufficiency

Lecture 17: Minimal sufficiency Lecture 17: Minimal sufficiency Maximal reduction without loss of information There are many sufficient statistics for a given family P. In fact, X (the whole data set) is sufficient. If T is a sufficient

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets

Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets Chapter 7. Confidence Sets Lecture 30: Pivotal quantities and confidence sets Confidence sets X: a sample from a population P P. θ = θ(p): a functional from P to Θ R k for a fixed integer k. C(X): a confidence

More information

Lecture 20: Linear model, the LSE, and UMVUE

Lecture 20: Linear model, the LSE, and UMVUE Lecture 20: Linear model, the LSE, and UMVUE Linear Models One of the most useful statistical models is X i = β τ Z i + ε i, i = 1,...,n, where X i is the ith observation and is often called the ith response;

More information

Stat 710: Mathematical Statistics Lecture 31

Stat 710: Mathematical Statistics Lecture 31 Stat 710: Mathematical Statistics Lecture 31 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 31 April 13, 2009 1 / 13 Lecture 31:

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Monday, September 26, 2011 Lecture 10: Exponential families and Sufficient statistics Exponential Families Exponential families are important parametric families

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES

557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES 557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING: EXAMPLES Example Suppose that X,..., X n N, ). To test H 0 : 0 H : the most powerful test at level α is based on the statistic λx) f π) X x ) n/ exp

More information

Lecture 16: Sample quantiles and their asymptotic properties

Lecture 16: Sample quantiles and their asymptotic properties Lecture 16: Sample quantiles and their asymptotic properties Estimation of quantiles (percentiles Suppose that X 1,...,X n are i.i.d. random variables from an unknown nonparametric F For p (0,1, G 1 (p

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Chapter 4. Theory of Tests. 4.1 Introduction

Chapter 4. Theory of Tests. 4.1 Introduction Chapter 4 Theory of Tests 4.1 Introduction Parametric model: (X, B X, P θ ), P θ P = {P θ θ Θ} where Θ = H 0 +H 1 X = K +A : K: critical region = rejection region / A: acceptance region A decision rule

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Lecture 28: Asymptotic confidence sets

Lecture 28: Asymptotic confidence sets Lecture 28: Asymptotic confidence sets 1 α asymptotic confidence sets Similar to testing hypotheses, in many situations it is difficult to find a confidence set with a given confidence coefficient or level

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Exercises Chapter 4 Statistical Hypothesis Testing

Exercises Chapter 4 Statistical Hypothesis Testing Exercises Chapter 4 Statistical Hypothesis Testing Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans December 5, 013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Lecture 12 November 3

Lecture 12 November 3 STATS 300A: Theory of Statistics Fall 2015 Lecture 12 November 3 Lecturer: Lester Mackey Scribe: Jae Hyuck Park, Christian Fong Warning: These notes may contain factual and/or typographic errors. 12.1

More information

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 STA 73: Inference Notes. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 1 Testing as a rule Fisher s quantification of extremeness of observed evidence clearly lacked rigorous mathematical interpretation.

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Probability and Statistics qualifying exam, May 2015

Probability and Statistics qualifying exam, May 2015 Probability and Statistics qualifying exam, May 2015 Name: Instructions: 1. The exam is divided into 3 sections: Linear Models, Mathematical Statistics and Probability. You must pass each section to pass

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Math 152. Rumbos Fall Solutions to Assignment #12

Math 152. Rumbos Fall Solutions to Assignment #12 Math 52. umbos Fall 2009 Solutions to Assignment #2. Suppose that you observe n iid Bernoulli(p) random variables, denoted by X, X 2,..., X n. Find the LT rejection region for the test of H o : p p o versus

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Lecture 21. Hypothesis Testing II

Lecture 21. Hypothesis Testing II Lecture 21. Hypothesis Testing II December 7, 2011 In the previous lecture, we dened a few key concepts of hypothesis testing and introduced the framework for parametric hypothesis testing. In the parametric

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Stat 8931 (Aster Models) Lecture Slides Deck 8

Stat 8931 (Aster Models) Lecture Slides Deck 8 Stat 8931 (Aster Models) Lecture Slides Deck 8 Charles J. Geyer School of Statistics University of Minnesota June 7, 2015 Conditional Aster Models A conditional aster model is a submodel parameterized

More information

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Review Quiz 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Cramér Rao lower bound (CRLB). That is, if where { } and are scalars, then

More information

Goodness-of-Fit Testing with. Discrete Right-Censored Data

Goodness-of-Fit Testing with. Discrete Right-Censored Data Goodness-of-Fit Testing with Discrete Right-Censored Data Edsel A. Pe~na Department of Statistics University of South Carolina June 2002 Research support from NIH and NSF grants. The Problem T1, T2,...,

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

LECTURE NOTES 57. Lecture 9

LECTURE NOTES 57. Lecture 9 LECTURE NOTES 57 Lecture 9 17. Hypothesis testing A special type of decision problem is hypothesis testing. We partition the parameter space into H [ A with H \ A = ;. Wewrite H 2 H A 2 A. A decision problem

More information

Lecture 14: Multivariate mgf s and chf s

Lecture 14: Multivariate mgf s and chf s Lecture 14: Multivariate mgf s and chf s Multivariate mgf and chf For an n-dimensional random vector X, its mgf is defined as M X (t) = E(e t X ), t R n and its chf is defined as φ X (t) = E(e ıt X ),

More information

On the GLR and UMP tests in the family with support dependent on the parameter

On the GLR and UMP tests in the family with support dependent on the parameter STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 3, September 2015, pp 221 228. Published online in International Academic Press (www.iapress.org On the GLR and UMP tests

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Non-parametric Inference and Resampling

Non-parametric Inference and Resampling Non-parametric Inference and Resampling Exercises by David Wozabal (Last update. Juni 010) 1 Basic Facts about Rank and Order Statistics 1.1 10 students were asked about the amount of time they spend surfing

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

2.6.3 Generalized likelihood ratio tests

2.6.3 Generalized likelihood ratio tests 26 HYPOTHESIS TESTING 113 263 Generalized likelihood ratio tests When a UMP test does not exist, we usually use a generalized likelihood ratio test to verify H 0 : θ Θ against H 1 : θ Θ\Θ It can be used

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

Hypothesis Testing - Frequentist

Hypothesis Testing - Frequentist Frequentist Hypothesis Testing - Frequentist Compare two hypotheses to see which one better explains the data. Or, alternatively, what is the best way to separate events into two classes, those originating

More information

Empirical Likelihood

Empirical Likelihood Empirical Likelihood Patrick Breheny September 20 Patrick Breheny STA 621: Nonparametric Statistics 1/15 Introduction Empirical likelihood We will discuss one final approach to constructing confidence

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Eric Zivot Winter 013 1 Wald, LR and LM statistics based on generalized method of moments estimation Let 1 be an iid sample

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

ST495: Survival Analysis: Hypothesis testing and confidence intervals

ST495: Survival Analysis: Hypothesis testing and confidence intervals ST495: Survival Analysis: Hypothesis testing and confidence intervals Eric B. Laber Department of Statistics, North Carolina State University April 3, 2014 I remember that one fateful day when Coach took

More information

Estimation of Dynamic Regression Models

Estimation of Dynamic Regression Models University of Pavia 2007 Estimation of Dynamic Regression Models Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy.

More information

1 Hypothesis Testing and Model Selection

1 Hypothesis Testing and Model Selection A Short Course on Bayesian Inference (based on An Introduction to Bayesian Analysis: Theory and Methods by Ghosh, Delampady and Samanta) Module 6: From Chapter 6 of GDS 1 Hypothesis Testing and Model Selection

More information

Lecture 21: October 19

Lecture 21: October 19 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 21: October 19 21.1 Likelihood Ratio Test (LRT) To test composite versus composite hypotheses the general method is to use

More information

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by specifying one or more values called parameters. The number

More information

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X).

parameter space Θ, depending only on X, such that Note: it is not θ that is random, but the set C(X). 4. Interval estimation The goal for interval estimation is to specify the accurary of an estimate. A 1 α confidence set for a parameter θ is a set C(X) in the parameter space Θ, depending only on X, such

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Chapter 11. Hypothesis Testing (II)

Chapter 11. Hypothesis Testing (II) Chapter 11. Hypothesis Testing (II) 11.1 Likelihood Ratio Tests one of the most popular ways of constructing tests when both null and alternative hypotheses are composite (i.e. not a single point). Let

More information

SOLUTION FOR HOMEWORK 6, STAT 6331

SOLUTION FOR HOMEWORK 6, STAT 6331 SOLUTION FOR HOMEWORK 6, STAT 633. Exerc.7.. It is given that X,...,X n is a sample from N(θ, σ ), and the Bayesian approach is used with Θ N(µ, τ ). The parameters σ, µ and τ are given. (a) Find the joinf

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Stat 512 Homework key 2

Stat 512 Homework key 2 Stat 51 Homework key October 4, 015 REGULAR PROBLEMS 1 Suppose continuous random variable X belongs to the family of all distributions having a linear probability density function (pdf) over the interval

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

Fundamentals of Statistics

Fundamentals of Statistics Chapter 2 Fundamentals of Statistics This chapter discusses some fundamental concepts of mathematical statistics. These concepts are essential for the material in later chapters. 2.1 Populations, Samples,

More information

Testing Algebraic Hypotheses

Testing Algebraic Hypotheses Testing Algebraic Hypotheses Mathias Drton Department of Statistics University of Chicago 1 / 18 Example: Factor analysis Multivariate normal model based on conditional independence given hidden variable:

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Bootstrap and Parametric Inference: Successes and Challenges

Bootstrap and Parametric Inference: Successes and Challenges Bootstrap and Parametric Inference: Successes and Challenges G. Alastair Young Department of Mathematics Imperial College London Newton Institute, January 2008 Overview Overview Review key aspects of frequentist

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Lecture 16 November Application of MoUM to our 2-sided testing problem

Lecture 16 November Application of MoUM to our 2-sided testing problem STATS 300A: Theory of Statistics Fall 2015 Lecture 16 November 17 Lecturer: Lester Mackey Scribe: Reginald Long, Colin Wei Warning: These notes may contain factual and/or typographic errors. 16.1 Recap

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information