A Likelihood Ratio Test

Size: px
Start display at page:

Download "A Likelihood Ratio Test"

Transcription

1 A Likelihood Ratio Test David Allen University of Kentucky February 23, 2012

2 1 Introduction Earlier presentations gave a procedure for finding an estimate and its standard error of a single linear combination of elements of β. Depending on the context, these are used for testing a null hypothesis or establishing a confidence interval. Here the likelihood ratio test used to simultaneously test multiple null hypotheses is given. It is assumed that all alternative hypotheses are two-sided. The derivation is based on the fixed effects only model. Adjustments for mixed models are considered later. Back 2

3 An Alternate Expression of the Linear Model Heretofore, the representation of the linear model has been Y = Xβ + ε. (1) An alternate definition of the linear model is Y = μ + ε (2) where μ V(X). In both representations, Y is an n-component vector of responses, X is a model matrix, and ε N n (0, σ 2 ). Back 3

4 Coordinate free representation The difference between the two representations is a matter of emphasis. In Equation (1) the columns of X are axes of a coordinate system and the elements of β are the coordinates of a point in the system. In Equation (2) the set of possible values of μ is important but not the specific axes. Back 4

5 Testing the null hypothesis The objective versus the alternate hypothesis H 0 : μ V(X 0 ) (3) H 1 : μ / V(X 0 ) (4) where V(X 0 ) V(X) is the subject of this section. Testing (3) is done using the likelihood ratio principle. For this, the likelihood function is needed. Back 5

6 The likelihood function The density function for the multivariate normal distribution was given earlier. With n components and = σ 2 the density function becomes 1 ƒ (y) = (2πσ 2 ) n/2 exp y μ 2 2σ 2 This expression viewed as a function of the parameters is called the likelihood function: L(μ, σ 2 1 y μ 2 ) = (2πσ 2 exp ) n/2 2σ 2 (5) Back 6

7 The likelihood ratio is The likelihood ratio λ = s p ω L(μ, σ 2 ) s p Ω L(μ, σ 2 ) (6) where Ω is the full parameter space and ω is the parameter space under the null hypothesis. The null hypothesis is rejected for small values of λ. The likelihood ratio test is discussed by Casella and Berger [1, Section 8.2.1]. Back 7

8 The log likelihood function First, consider the denominator of the likelihood ratio (6). The logarithm of the likelihood function is easier to maximize than the likelihood function. The log likelihood function, apart from an additive constant, is log L(μ, σ 2 ) = n 2 log σ 2 y μ 2 2σ 2 (7) The next step is to find values of σ 2 and μ V(X) such that Equation (7) is maximized. Back 8

9 The Estimate of σ 2 Regardless of the value of σ 2, the log likelihood function is maximized with respect to μ if y μ 2 is minimized with respect to μ. From the vector spaces presentation, this minimum is obtained when μ = ŷ where ŷ is the projection of y onto V(X). See also Scheffé [3, page 383]. Now let SSR = y ŷ 2 and substitute into Equation (7) to obtain log L( ˆμ, σ 2 ) = n 2 log σ 2 SSR 2σ 2 (8) Back 9

10 Take the derivative of Equation (8) with respect to σ 2. Setting the result equal to zero and solving yields σ 2 = SSR n. (9) Back 10

11 The Denominator Now ˆμ and σ 2 are substituted in Formula 5 to obtain the denominator of the likelihood ratio: L ˆμ, σ 1 2 = (2πσ exp n. (10) 2 ) n/2 2 Back 11

12 The Ratio The mechanics for maximizing the numerator of (6) is identical to that for the denominator. Let ŷ 0 be the projection of y onto V(X 0 ) and SSR 0 = y ŷ 0 2. The likelihood ratio, after some simplification, is λ = SSR SSR 0 n/2 (11) The null hypothesis (3) is rejected if λ < c where λ is from Equation (11) and c, called the critical value, is chosen so that the test has the specified probability of a type I error. Back 12

13 An Alternate Statistic Define the sum of squares for hypothesis, SSH = SSR 0 SSR, and F = SSH/(r r 0) SSR/(n r) (12) where r = r nk(x) and r 0 = r nk(x 0 ). An equivalent test is to reject the null hypothesis (3) if F > ƒ where ƒ is chosen so that the test has the specified probability of a type I error. The following sections consider computation of F and its distribution. Back 13

14 2 The transformed model approach Select a matrix X 1 such that V( X 0 X 1 ) = V(X). The choice X 1 = X always works and is particularly useful if you would like an expression for the null hypothesis in terms of β. Let R be an orthogonal matrix such that R t X 0 X 1 is an echelon matrix. Partition R as R0 R 1 R The number of columns in the respective partitions of (13) are r 0, r r 0, and n r. (13) Back 14

15 Components of the Transformed Model Let Y 0 = R t 0 Y, Y 1 = R t 1 Y, and Y = R t Y. The components of the transformed model are Y = Y 0 Y 1 Y, X 0 = E , and X = E 00 E 01 0 E 11. (14) 0 0 Back 15

16 Projections The definition of a projection in the presentation on vector spaces is repeated here: Let V r V n and y V n. There exists vectors and z such that y = + z (15) V r (16) z V r (17) This decomposition is unique. The vector is called the projection of y onto V r. See also Scheffé [3, page 383]. Back 16

17 Partition Y as Projection onto X Y 0 Y = Y Y. (18) Refer to Conditions (15) (17). Verify that the first term on the right in Equation (18) is in V(X ) and the second term is perpendicular to V(X ). Thus SSR = Y 2. Back 17

18 Projection onto X 0 Now partition Y as Y 0 0 Y = 0 + Y 1. (19) 0 Verify that the first term on the right in Equation (19) is in V(X 0 ) and the second term is perpendicular to V(X 0 ). Thus SSR 0 = Y Y 2. Y Back 18

19 The test statistic Thus SSH = SSR 0 SSR = Y 1 2 and the test statistic is F = SSH/(r r 0) SSR/(n r) (20) Exercise 2.1. Find the distribution of F in Equation (20) Back 19

20 3 A Completely Randomized Design The principles are illustrated using data from a completely randomized design as given in Kuehl [2]: Bacteria Package condition log(co nt/cm 2 ) Plastic wrap Vacuum packaged Mixed gas CO We refer to this data as the bacteria data. Back 20

21 The full model The matrix representation of the model for the bacteria data is μ y = μ μ 3 + ε (21) μ Back 21

22 The reduced model If the means are all equal, the model is reduced to y = μ + ε (22) Back 22

23 The Defining Matrices In the notation of the section of the likelihood ratio test, X 1 is the matrix in Equation (21), and X 0 is the matrix in Equation (22). The matrix X 0 X 1 y is transformed to E 00 E 01 Y 0 0 E 11 Y Y Back 23

24 The Transformed Matrix Numerically, the transformed matrix is Back 24

25 The analysis of variance table The sums of squares, degrees of freedom, mean squares, and inference statistics are displayed in an analysis of variance table: Sum of Degrees of Mean Source squares freedom square F p-value Treatment Residuals The null hypothesis is soundly rejected. Back 25

26 4 Mixed Models To use the likelihood ratio technique with mixed models, one would need to consider each model separately. However, for balanced models, usable techniques arise from calculating the statistics assuming everything is fixed. Then deriving the distribution of the statistics assuming the mixed model. Back 26

27 Randomized Complete Block Data This example uses simulated data from a randomized complete block design with three treatments and four blocks. There are two objectives: test H 0 that treatment means are equal and H 0 that σ 2 b = 0. Back 27

28 The Reduced Matrix The matrix X 0 X Z Y reduced by an orthogonal transformation is: Addressing the objectives is an in class exercise. Back 28

29 An Exercise Exercise 4.1. Assume μ 1 = 4, μ 2 = 5, μ 3 = 6, σ 2 b σ 2 = 1. = 4, and 1. Give the power of the test for equality of means. 2. Give the power of the test for σ 2 b = 0. Back 29

30 References [1] George Casella and Roger L. Berger. Statistical Inference. Duxbury, second edition, [2] Robert O. Kuehl. Design of Experiments: Statistical Principles of Research Design and Analysis. Duxbury Press, second edition, [3] Henry Scheffé. The Analysis of Variance. John Wiley & Sons, Inc., New York, Back 30

Randomized Complete Block Designs

Randomized Complete Block Designs Randomized Complete Block Designs David Allen University of Kentucky February 23, 2016 1 Randomized Complete Block Design There are many situations where it is impossible to use a completely randomized

More information

A Note on UMPI F Tests

A Note on UMPI F Tests A Note on UMPI F Tests Ronald Christensen Professor of Statistics Department of Mathematics and Statistics University of New Mexico May 22, 2015 Abstract We examine the transformations necessary for establishing

More information

MATH5745 Multivariate Methods Lecture 07

MATH5745 Multivariate Methods Lecture 07 MATH5745 Multivariate Methods Lecture 07 Tests of hypothesis on covariance matrix March 16, 2018 MATH5745 Multivariate Methods Lecture 07 March 16, 2018 1 / 39 Test on covariance matrices: Introduction

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

Topic 22 Analysis of Variance

Topic 22 Analysis of Variance Topic 22 Analysis of Variance Comparing Multiple Populations 1 / 14 Outline Overview One Way Analysis of Variance Sample Means Sums of Squares The F Statistic Confidence Intervals 2 / 14 Overview Two-sample

More information

I i=1 1 I(J 1) j=1 (Y ij Ȳi ) 2. j=1 (Y j Ȳ )2 ] = 2n( is the two-sample t-test statistic.

I i=1 1 I(J 1) j=1 (Y ij Ȳi ) 2. j=1 (Y j Ȳ )2 ] = 2n( is the two-sample t-test statistic. Serik Sagitov, Chalmers and GU, February, 08 Solutions chapter Matlab commands: x = data matrix boxplot(x) anova(x) anova(x) Problem.3 Consider one-way ANOVA test statistic For I = and = n, put F = MS

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Topic 19 Extensions on the Likelihood Ratio

Topic 19 Extensions on the Likelihood Ratio Topic 19 Extensions on the Likelihood Ratio Two-Sided Tests 1 / 12 Outline Overview Normal Observations Power Analysis 2 / 12 Overview The likelihood ratio test is a popular choice for composite hypothesis

More information

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1

exp{ (x i) 2 i=1 n i=1 (x i a) 2 (x i ) 2 = exp{ i=1 n i=1 n 2ax i a 2 i=1 4 Hypothesis testing 4. Simple hypotheses A computer tries to distinguish between two sources of signals. Both sources emit independent signals with normally distributed intensity, the signals of the first

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

Estadística II Chapter 5. Regression analysis (second part)

Estadística II Chapter 5. Regression analysis (second part) Estadística II Chapter 5. Regression analysis (second part) Chapter 5. Regression analysis (second part) Contents Diagnostic: Residual analysis The ANOVA (ANalysis Of VAriance) decomposition Nonlinear

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments The hypothesis testing framework The two-sample t-test Checking assumptions, validity Comparing more that

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Next is material on matrix rank. Please see the handout

Next is material on matrix rank. Please see the handout B90.330 / C.005 NOTES for Wednesday 0.APR.7 Suppose that the model is β + ε, but ε does not have the desired variance matrix. Say that ε is normal, but Var(ε) σ W. The form of W is W w 0 0 0 0 0 0 w 0

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

Stat 502 Design and Analysis of Experiments General Linear Model

Stat 502 Design and Analysis of Experiments General Linear Model 1 Stat 502 Design and Analysis of Experiments General Linear Model Fritz Scholz Department of Statistics, University of Washington December 6, 2013 2 General Linear Hypothesis We assume the data vector

More information

Interpreting Regression Results

Interpreting Regression Results Interpreting Regression Results Carlo Favero Favero () Interpreting Regression Results 1 / 42 Interpreting Regression Results Interpreting regression results is not a simple exercise. We propose to split

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

School of Mathematical Sciences. Question 1

School of Mathematical Sciences. Question 1 School of Mathematical Sciences MTH5120 Statistical Modelling I Practical 8 and Assignment 7 Solutions Question 1 Figure 1: The residual plots do not contradict the model assumptions of normality, constant

More information

Split-Plot Designs. David M. Allen University of Kentucky. January 30, 2014

Split-Plot Designs. David M. Allen University of Kentucky. January 30, 2014 Split-Plot Designs David M. Allen University of Kentucky January 30, 2014 1 Introduction In this talk we introduce the split-plot design and give an overview of how SAS determines the denominator degrees

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

2.830 Homework #6. April 2, 2009

2.830 Homework #6. April 2, 2009 2.830 Homework #6 Dayán Páez April 2, 2009 1 ANOVA The data for four different lithography processes, along with mean and standard deviations are shown in Table 1. Assume a null hypothesis of equality.

More information

Regression With a Categorical Independent Variable: Mean Comparisons

Regression With a Categorical Independent Variable: Mean Comparisons Regression With a Categorical Independent Variable: Mean Lecture 16 March 29, 2005 Applied Regression Analysis Lecture #16-3/29/2005 Slide 1 of 43 Today s Lecture comparisons among means. Today s Lecture

More information

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2

Multilevel Models in Matrix Form. Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Multilevel Models in Matrix Form Lecture 7 July 27, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Today s Lecture Linear models from a matrix perspective An example of how to do

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence la Non-ar Contents Non-ar Non-ar Non-ar Consider n observations (pairs) (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course.

* Tuesday 17 January :30-16:30 (2 hours) Recored on ESSE3 General introduction to the course. Name of the course Statistical methods and data analysis Audience The course is intended for students of the first or second year of the Graduate School in Materials Engineering. The aim of the course

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

The Standard Linear Model: Hypothesis Testing

The Standard Linear Model: Hypothesis Testing Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 25: The Standard Linear Model: Hypothesis Testing Relevant textbook passages: Larsen Marx [4]:

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation

Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Multivariate Regression Generalized Likelihood Ratio Tests for FMRI Activation Daniel B Rowe Division of Biostatistics Medical College of Wisconsin Technical Report 40 November 00 Division of Biostatistics

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

SIMPLE REGRESSION ANALYSIS. Business Statistics

SIMPLE REGRESSION ANALYSIS. Business Statistics SIMPLE REGRESSION ANALYSIS Business Statistics CONTENTS Ordinary least squares (recap for some) Statistical formulation of the regression model Assessing the regression model Testing the regression coefficients

More information

Linear Mixed Models: Methodology and Algorithms

Linear Mixed Models: Methodology and Algorithms Linear Mixed Models: Methodology and Algorithms David M. Allen University of Kentucky March 6, 2017 C Topics from Calculus Maximum likelihood and REML estimation involve the minimization of a negative

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Addressing ourliers 1 Addressing ourliers 2 Outliers in Multivariate samples (1) For

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Canonical Correlation Analysis of Longitudinal Data

Canonical Correlation Analysis of Longitudinal Data Biometrics Section JSM 2008 Canonical Correlation Analysis of Longitudinal Data Jayesh Srivastava Dayanand N Naik Abstract Studying the relationship between two sets of variables is an important multivariate

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

http://www.statsoft.it/out.php?loc=http://www.statsoft.com/textbook/ Group comparison test for independent samples The purpose of the Analysis of Variance (ANOVA) is to test for significant differences

More information

Applied Statistics Preliminary Examination Theory of Linear Models August 2017

Applied Statistics Preliminary Examination Theory of Linear Models August 2017 Applied Statistics Preliminary Examination Theory of Linear Models August 2017 Instructions: Do all 3 Problems. Neither calculators nor electronic devices of any kind are allowed. Show all your work, clearly

More information

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression

Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Computing FMRI Activations: Coefficients and t-statistics by Detrending and Multiple Regression Daniel B. Rowe and Steven W. Morgan Division of Biostatistics Medical College of Wisconsin Technical Report

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

2018 2019 1 9 sei@mistiu-tokyoacjp http://wwwstattu-tokyoacjp/~sei/lec-jhtml 11 552 3 0 1 2 3 4 5 6 7 13 14 33 4 1 4 4 2 1 1 2 2 1 1 12 13 R?boxplot boxplotstats which does the computation?boxplotstats

More information

Political Science 236 Hypothesis Testing: Review and Bootstrapping

Political Science 236 Hypothesis Testing: Review and Bootstrapping Political Science 236 Hypothesis Testing: Review and Bootstrapping Rocío Titiunik Fall 2007 1 Hypothesis Testing Definition 1.1 Hypothesis. A hypothesis is a statement about a population parameter The

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

Computational functional genomics

Computational functional genomics Computational functional genomics (Spring 2005: Lecture 8) David K. Gifford (Adapted from a lecture by Tommi S. Jaakkola) MIT CSAIL Basic clustering methods hierarchical k means mixture models Multi variate

More information

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern.

STAT 501 Assignment 2 NAME Spring Chapter 5, and Sections in Johnson & Wichern. STAT 01 Assignment NAME Spring 00 Reading Assignment: Written Assignment: Chapter, and Sections 6.1-6.3 in Johnson & Wichern. Due Monday, February 1, in class. You should be able to do the first four problems

More information

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA

Hypothesis Testing. Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Hypothesis Testing Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA An Example Mardia et al. (979, p. ) reprint data from Frets (9) giving the length and breadth (in

More information

CAS MA575 Linear Models

CAS MA575 Linear Models CAS MA575 Linear Models Boston University, Fall 2013 Midterm Exam (Correction) Instructor: Cedric Ginestet Date: 22 Oct 2013. Maximal Score: 200pts. Please Note: You will only be graded on work and answers

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

HYPOTHESIS TESTING: FREQUENTIST APPROACH.

HYPOTHESIS TESTING: FREQUENTIST APPROACH. HYPOTHESIS TESTING: FREQUENTIST APPROACH. These notes summarize the lectures on (the frequentist approach to) hypothesis testing. You should be familiar with the standard hypothesis testing from previous

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients

17: INFERENCE FOR MULTIPLE REGRESSION. Inference for Individual Regression Coefficients 17: INFERENCE FOR MULTIPLE REGRESSION Inference for Individual Regression Coefficients The results of this section require the assumption that the errors u are normally distributed. Let c i ij denote the

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

F-tests for Incomplete Data in Multiple Regression Setup

F-tests for Incomplete Data in Multiple Regression Setup F-tests for Incomplete Data in Multiple Regression Setup ASHOK CHAURASIA Advisor: Dr. Ofer Harel University of Connecticut / 1 of 19 OUTLINE INTRODUCTION F-tests in Multiple Linear Regression Incomplete

More information

The Newton-Raphson Algorithm

The Newton-Raphson Algorithm The Newton-Raphson Algorithm David Allen University of Kentucky January 31, 2013 1 The Newton-Raphson Algorithm The Newton-Raphson algorithm, also called Newton s method, is a method for finding the minimum

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Lecture 34: Properties of the LSE

Lecture 34: Properties of the LSE Lecture 34: Properties of the LSE The following results explain why the LSE is popular. Gauss-Markov Theorem Assume a general linear model previously described: Y = Xβ + E with assumption A2, i.e., Var(E

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information