Physical Chemistry I for Biochemists Chem340. Lecture 32 (4/4/11)

Size: px
Start display at page:

Download "Physical Chemistry I for Biochemists Chem340. Lecture 32 (4/4/11)"

Transcription

1 Physical Cheistry I for Biocheists Che340 Lecture 32 (4/4/11) Yoshitaka Ishii Ch If you have a note 33, skip printing p he Gibbs-Duhe Equation In Ch 6, we learned dg = -Sd + VdP + i dn i For a binary syste at constant and P. dg = 1 dn dn 2 (1) On the other hand, G = 1 n n 2, dg = d 1 n 1 + d 2 n dn dn 2 (2) (2) (1) yields 0 = (d 1 )n 1 + (d 2 )n 2 d 2 = -(n 1 /n 2 )d 1 = -(x 1 /x 2 )d 1 Changes in 1 and 2 are NO independent d 2 = -(x 1 /x 2 )d( 1* + Rlnx 1 ) = -(x 1 /x 2 )R(dx 1 /x 1 ) 1

2 Relation of olar fractions in gas phase (y) and solution phase (x) P total = P 1 + P 2 = x 1 P 1* + (1-x 1 )P 2 * =P * 2 + x 1 (P [Q1] 1 *-P 2 *) y 1 = P 1 /P total = x 1 P 1* /{P 2* +x 1 (P 1 *-P 2 *)} [Q2] x 1 = y[q3] 1 P 2* /{P 1* +y 1 (P 2 *-P 1 *)} P total = P 2* + x 1 (P 1 *-P 2 *) = P[Q4A] 1* P 2* /{P 1* +y 1 (P[Q4B] 2 *-P 1 *)} y 1 = (P 1* P total P 1* P 2* )/{P total (P 1 * - P 2 *)} P8.4) A and B for an ideal solution. At a total pressure of bar, y A = and x A = Using this inforation, calculate the vapor pressure of pure A and of pure B. y B = 1 y A & x B = 1 -x A So there are two unknown. P A * and P B * We need two uations: (1) P total = x A P A * + x[q1] B P A * (2) y A = x[q2] A P A * /P total 2

3 P8.5) A and B for an ideal solution at 298 K, with x A = 0.600, and P * * A 105 orr, P B 63.5 orr. a. Calculate the partial pressures of A and B in the gas phase. P = * P =(1-x * A [Q1] x A P A B [Q1] A )P B b. A portion of the gas phase is reoved and condensed in a separate container. Calculate the partial pressures of A and B in uilibriu with this liquid saple at 298 K. Assue that x A (new solution) = y A (old gas) and x B (new solution) = y B (old gas). P A (new) = x A (new)p A * = y A (old)p A * y A (old) = x[q2] 1 (old)p 1* /{P 2* +x 1 (old)(p 1 *-P 2 *)} How pressure P total depends on olar fractions in gas phase (y) and solution phase (x)? X benzene [Q1 ] [Q2 y Y ] benzene P total = P 1* P 2* /{P 1* +y 1 (P 2 *-P 1 *)} P total =P 2* + x 1 (P 1 *-P 2 *) Data fro Benzene + oluene 3

4 P-Z (average coposition) diagra P-X Z 1 = (n 1 liquid + n 1 gas )/(n 1 liquid + n 1 gas + n 2 liquid + n 2 gas ) P ressure P-Y Q. How is the phase changed along the line fro a to d? Q2. How uch is X benezen and Y benzene at the point b? Q3. Is n liquid > n gas correct at the point b? lb = Z B X B = n B total /n total -n B liq /n B+ liq b = Y B Z B = n B gas /n B+ gas -n B total /n total Gas Liq ie Line Lever Rule X B Z B Y B Q. What is the olar ratio between liquid and vapor phases (Z B -X B ) / (Y B -Z B ) = n Gas total / n Liq (n gas /n liq ) at point b (B & all ixed)? total 4

5 Physical Cheistry Fundaentals: Figure 5.33 Q. How is the phase changed along the line fro a to e? p b p c p d X 1b Ab X Ac X Ad b d y Ac c y Ab e Q2. How uch is n gas /n liquid at the point c? 2009 W.H. Freean Physical Cheistry Fundaentals: Figure W.H. Freean 5

6 8.7 Freezing Point Depression & Boiling Point Elevation () = *( 0 ) + S liq (- 0 ) + Rln(x ) Q1. How uch is Rln(x ) for pure liquid? 0 Q2. For a ixture, what is the sign of frl Rln(x )? Negative xsolv 1 Freezing Point Depression (Derivation) At a freezing point, liq () = solid *() * () + Rln(x ) = solid *() ln(x solv ) = - { solv* () - solid *()}/R = -(G fusion, )/R Let s find d vs d(lnx) d(ln x d(ln x 1 ( Gfusion, / ) ( Hfusion, ) ) d d R R solv 2 solv 1 ( H ) R 1 ( H R f fusion, ) 1 fusion, ) d 2 f, pure R ln x solv fusion fusion, pure Hfusion, Gibbs-Helholtz. 1 fusion 1 fusion, pure 6

7 1 1 R ln x solv f f, pure Hfusion, 1 1 Using ~ Q. Does this 2 f f, pure ff, pure f, pure depend and lnx = ln(1-x ) ~ -x on? x f R H f, pure x fusion, n n ~ n n n f R f, pure H M fusion, n M w Molality of Solute (ol/kg of ) K f M Boiling Point Elevation At a freezing point, liq () = gas *() * () + Rln(x ) = gas *() ln(x solv ) = { gas* () - *()}/R = (G vap, )/R b R b, pure H M vap, K b It does NO depend on! f f, purem R H fusion, K f 7

8 8.8 he Osotic Pressure Water and Sugar Water are separated by a ebrane that perits only water go through. H 2 O H 2 O + Sugar Q. Which way is H 2 O likely to ove to? Q2. How can we ake the two sections in uilibriu? d(p, ) = V dp S d Elucidation of the Osotic Pressure =P (P+P, )* + Rln(x ) = * (P,) (P, )* + V P + Rln(x ) = * (P, ) V = - Rln(x ) = - (R/V )ln(x ) ln(x ) =ln(1 - x ) ~ -x ~ -n /n = (R/V )(n /n ) =n R/(V n ) = n R/V (Vant Hoff Equation) or = c R, where c = n /V (olarity). 8

9 Osotic Pressures -Molecular weight deterination =n R/V =c R If we use C = w/v = n R/V = (w /M )(R/V) = {(w /V)/M }R = {C /M }R M = RC / P turgor = cell - ediu At isotonic c cell R = c ediu R Q. A ediu is a ixture. How do you define C ediu? Q2. What is C cell? 9

10 Osotic Pressure for a polydisperse or ixture syste otal = i = c i R = (C i /M i )R, where c i and C i are olar and ass concentration of i, respectively. So c ediu or c cell c i Define as otal =(C /M)R and C = C i M = (C i )/(C i /M i ) = (n i M i /V)/(n i /V) = (n i M i )/(n i ) = (n i M i )/(n otal ) P8.36) Assue sucrose and water for an ideal solution. What is the uilibriu vapor pressure of a solution of 2.0 gras of sucrose (olecular weight 342g ol 1 ) at = 293 K if the vapor pressure of pure water at 293 K is orr. Assue g of water. (Note density 1.00 L/g.) Use P /P *= x What is the osotic pressure of the sucrose solution versus pure water? Assue g of water. Just use = nr/v 10

11 Pressure (orr) or r X chlorofor X chlorofor 8.9 Real Solutions Exhibit Deviation fro Raoult s Law Q.Which is Raoult s Law? (a) Pi = x i Pi* (b) Pi = x i P total (c) Pi = n i R/V Q2. Which is for a real solution? Dotted or solid line? Q3. How does b -X cs2 curve look like for the solid curve? 11

12 8.10 he Ideal Dilute Solution solution i = * i + Rln(P i /P i *), where i* = i* (vapor) = i* (liquid) i0 (pure liquid, ) For a non-ideal solution P i x i P i *. For a dilute binary solution, we define activity a as a = P /P*. In general, a i P i /P* i. Naturally, for an ideal solution, a = x For a general case, a and x are related by activity constant = a /x i solution = i * + Rln(a i ). So use a i for a non-ideal solution in place of x i! Henry s law (useful when x i ~ 0) P acetone = x acetone k acetone H as x acetone 0 (or x CS2 1) In general, P i = x i k i H as x i 0 o find P i when x i ~ 0 look up the Henry s law constant for SOLUE An ideal dilute solution in this text eans a syste where Henry s law is valid for a and Raoult s law is valid for 12

13 Ex. Gas in solution x CO2 = P CO2 /k H CO2 In a soda ~3 g of CO2 (0.05 ol) in 450 L (H2O ~ 20 ol ) x CO2 << Activities Are Defined with Respect to Standard States In 8.10 a and were defined for a dilute solution by relations Activity a a i P i /P* i. i = a i /x i In a standard state for dilute solution (x 1) (Raoult s law standard state) a x ~ 1 solution = * + Rln(a ) a i = x i In Raoult s law standard state, the standard cheical potential for (x 1) is solution * 13

14 Activity in Henry s law Standard State Standard µ for a dilute P i = x i k i H solution i = * i + Rln(k Hi x i /P i *). = * i i + Rln(k Hi /P i *) + Rln(x i ) = i *H + Rln(x i ) he above uation is correct as x i 0. (In general, use a i in place of x i ). he standard-state (x i ~1; i.e. hypothetical pure ) cheical potential for a i is given by *H * i i Solute i + Rln(k Hi /P i *). In general, P i = a i k i H i = *H Solute i + Rln(a i ). In Henry s law standard state, (x i ~ 1) a i = P i /k ih (~ x i )& i = a i /x i (~1) Fro Atkins Physical Cheistry 9 th Ed 14

15 8.12 Henry s Law & Solubility of Gas in a Solvent N 2 (aq, c N2 ) N 2 (gas, P N2 ) In this case (x N2 ~0), we use µ following Henry s law µ solution N2 = µ *H N2 (vapor) + Rln(a N2 ) he ole fraction in solution is x N2 aq = n N2 aq /(n N2 aq + n H2O ) ~ n N2 aq /n H2O. he aount of dissolved gas is given by n N2 = n H2O x N2 ac ~ n H2O P N2 /k N2 H Cheical Equilibriu in Solution he concept of activity can be used to express the therodynaics uilibriu constant using activities. When a reaction in solution A+2B 3C + D is in uilibriu 3µ C + µ D -µ A -2µ B = 0 For a general uilibrated reaction in a solution, 0 = i µ i (solution) = i µ *H i (solution) +R ln(a i ) i c D ac ad K A a B A ab = ( i c i /c 0 ) i G 0 reaction = - R ln(a i ) i = - R lnk K = (a i ) i = ( i x i ) i For a dilute solution, i ~ 1. K ~ (c i /c 0 ) i By the way, for a dilute solution C 0 ~ C (~constant). 15

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Che340 hysical Cheistry for Biocheists Exa 3 Apr 5, 0 Your Nae _ I affir that I have never given nor received aid on this exaination. I understand that cheating in the exa will result in a grade F for

More information

Physical Chemistry I for Biochemists Chem340. Lecture 26 (3/14/11)

Physical Chemistry I for Biochemists Chem340. Lecture 26 (3/14/11) Physical Cheistry I or Biocheists Che340 Lecture 26 (3/14/11) Yoshitaka Ishii Ch 7.2, 7.4-5, & 7.10 Announceent Exa 2 this Friday. Please be well prepared! HW average 80-85. You will probably have one

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Cheistry I Lecture 12 Aleksey Kocherzhenko Aril 2, 2015" Last tie " Gibbs free energy" In order to analyze the sontaneity of cheical reactions, we need to calculate the entroy changes

More information

ln P 1 saturation = T ln P 2 saturation = T

ln P 1 saturation = T ln P 2 saturation = T More Tutorial at www.littledubdoctor.co Physical Cheistry Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your

More information

Chem 260 Quiz - Chapter 4 (11/19/99)

Chem 260 Quiz - Chapter 4 (11/19/99) Chem 260 Quiz - Chapter 4 (11/19/99) Name (print) Signature Terms in bold: phase transitions transition temperature phase diagram phase boundaries vapor pressure thermal analysis dynamic equilibrium boiling

More information

Phase Equilibrium: Preliminaries

Phase Equilibrium: Preliminaries Phase Equilibrium: Preliminaries Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between two phases.

More information

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0.

Thermodynamic condition for equilibrium between two phases a and b is G a = G b, so that during an equilibrium phase change, G ab = G a G b = 0. CHAPTER 5 LECTURE NOTES Phases and Solutions Phase diagrams for two one component systems, CO 2 and H 2 O, are shown below. The main items to note are the following: The lines represent equilibria between

More information

Boiling point elevation and freezing point depression

Boiling point elevation and freezing point depression Class 4.2 More Colligative Properties, Solutions & Distillation CHEM 102H T. Hughbanks Boiling point elevation and freezing point depression When nonvolatile solutes are present in a solvent, the solution

More information

Phase transitions. Lectures in Physical Chemistry 4. Tamás Turányi Institute of Chemistry, ELTE. Phases

Phase transitions. Lectures in Physical Chemistry 4. Tamás Turányi Institute of Chemistry, ELTE. Phases Phase transitions Lectures in Physical Cheistry 4 Taás Turányi Institute of Cheistry, ELTE Phases DEF a syste is hoogeneous, if () it does not contain arts searated by acroscoic surfaces, and () all intensive

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

Simple Mixtures. Chapter 7 of Atkins: Section

Simple Mixtures. Chapter 7 of Atkins: Section Simple Mixtures Chapter 7 of Atkins: Section 7.5-7.8 Colligative Properties Boiling point elevation Freezing point depression Solubility Osmotic Pressure Activities Solvent Activity Solute Activity Regular

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University School of Chemical & iological Engineering, Konkuk University Lecture 7 Ch. 5 Simple Mixtures Colligative properties Prof. Yo-Sep Min Physical Chemistry I, Spring 2009 Ch. 5-2 he presence of a solute in

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 14 Aleksey Kocherzhenko April 9, 2015" Last time " Chemical potential " Partial molar property the contribution per mole that a substance makes to an overall property

More information

Brief reminder of the previous lecture

Brief reminder of the previous lecture Brief reminder of the previous lecture partial molar quantities: contribution of each component to the properties of mixtures V j V = G µ = j n j n j pt,, n pt,, n dg = Vdp SdT + µ dn + µ dn +... A A B

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking

1.1 Heat and Mass transfer in daily life and process/mechanical engineering Heat transfer in daily life: Heating Cooling Cooking 1. Introduction 1.1 Heat and Mass transfer in daily life and process/echanical engineering Heat transfer in daily life: Heating Cooling Cooking ransfer of heat along a teperature difference fro one syste

More information

9.7 Freezing Point Depression & Boiling Point Elevation

9.7 Freezing Point Depression & Boiling Point Elevation Figure 9.11 9.7 Freezing Point Depression & Boiling Point Elevation If the solution is in equilibrium with the pure solid solvent, (9.25) μ solution = chemical potential of the solvent in the solution

More information

Lecture 6. NONELECTROLYTE SOLUTONS

Lecture 6. NONELECTROLYTE SOLUTONS Lecture 6. NONELECTROLYTE SOLUTONS NONELECTROLYTE SOLUTIONS SOLUTIONS single phase homogeneous mixture of two or more components NONELECTROLYTES do not contain ionic species. CONCENTRATION UNITS percent

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Marc R. Roussel February 12, 2019 Marc R. Roussel Temperature dependence of equilibrium February 12, 2019 1 / 15 Temperature

More information

Tables of data and equations are on the last pages of the exam.

Tables of data and equations are on the last pages of the exam. Nae 4 August 2005 CHM 112 Final Exa (150 pts total) Tables of data and equations are on the last pages of the exa. (1.) Methanol (CH 3 OH) is anufactured by the reaction of carbon onoxide with hydrogen

More information

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins

Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Lecture Announce: Chapter 11 section 6 and Chapter 8 Sections 1-4 from Atkins Outline: osmotic pressure electrolyte solutions phase diagrams of mixtures Gibbs phase rule liquid-vapor distillation azeotropes

More information

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street

Distillation. The Continuous Column. Learning Outcomes. Recap - VLE for Meth H 2 O. Gavin Duffy School of Electrical Engineering DIT Kevin Street Distillation The Continuous Colun Gavin Duffy School of Electrical Engineering DIT Kevin Street Learning Outcoes After this lecture you should be able to.. Describe how continuous distillation works List

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

Chapter 13. Ions in aqueous Solutions And Colligative Properties

Chapter 13. Ions in aqueous Solutions And Colligative Properties Chapter 13 Ions in aqueous Solutions And Colligative Properties Compounds in Aqueous Solution Dissociation The separation of ions that occurs when an ionic compound dissolves H2O NaCl (s) Na+ (aq) + Cl-

More information

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative properties to the concentrations of solutions. Calculate

More information

Colligative properties of solutions

Colligative properties of solutions Colligative properties of solutions Glucose and gycerol in the blood of the frog prevent it from freezing. Alcune immagine sono state prese e modificate da Chimica di Kotz, Treichel & Weaver, Edises 2007,

More information

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

concentration of solute (molality) Freezing point depression constant (for SOLVENT) 74 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

3 BaCl + 2 Na PO Ba PO + 6 NaCl

3 BaCl + 2 Na PO Ba PO + 6 NaCl Q. No. 1 In which mode of expression, the concentration of solution remains independent of temperature? Molarity Normality Formality Molality Explanation Molality because molality involves mass which is

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Solutions Outline 1. Solubility 2. Concentration Calculations 3. Colligative Properties 4. Freezing Point Depression or Boiling Point Elevation Problems 5. Graphs of Colligative Properties Review 1. Solubility

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics Conservation of Energy. 4) 2 nd Law of Thermodynamics Ever-Increasing Entropy. 5) Gibbs Free

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Ideal Gas Mixtures II. Lecture 32 Departent of Mechanical Engineering ME 322 Mechanical Engineering Therodnaics Ideal Gas Mixtures II Lecture 32 The Gibbs Phase Rule The nuber of independent, intensive properties required to fix the state

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)

- Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar) 68 HOW THINGS DISSOLVE - Let's look at how things dissolve into water, since aqueous solutions are quite common. sucrose (table sugar)... what happens? - Water molecules pull the sugar molecules out of

More information

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises

7 Simple mixtures. Solutions to exercises. Discussion questions. Numerical exercises 7 Simple mixtures Solutions to exercises Discussion questions E7.1(b For a component in an ideal solution, Raoult s law is: p xp. For real solutions, the activity, a, replaces the mole fraction, x, and

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017

CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017 1 CHEM 1032 PRACTICE EXAM I CLASS SPRING 2017 1. Select the characteristic(s) of the liquid phase: (You may need a periodic table. Useful information appears on page 5.) (i) adopts the shape of the container

More information

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases.

Freezing point depression - The freezing temperature of a SOLUTION gets lower as the CONCENTRATION of a solution increases. 73 COLLIGATIVE PROPERTIES - properties unique to solutions. - depend only on the CONCENTRATION of a solution and not the IDENTITY of the solute** **ionic solutes: Remember that they dissociate into MULTIPLE

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) The half-life of a first-order reaction. A) can be calculated from the reaction rate constant

More information

PC-1(A): PHASE EQULIBRIUM: SYNOPSIS

PC-1(A): PHASE EQULIBRIUM: SYNOPSIS PC-1(A):Phase equilibrium-synopsis; Dr. A. DAYALAN, Professor of Chemistry 1 PC-1(A): PHASE EQULIBRIUM: SYNOPSIS 1 PHASE (P)-Physically distinct and mechanically separable 2 COMPONENTS (C) Number of chemically

More information

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe

CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM. August 13, 2011 Robert Iafe CHEMISTRY XL-14A PHYSICAL EQUILIBRIUM August 13, 2011 Robert Iafe Chapter Overview 2 Phases and Phase Transitions Solubility Colligative Properties Binary Liquid Mixtures Phases and Phase Transitions 3

More information

Chapter 17: Phenomena

Chapter 17: Phenomena Chapter 17: Phenomena Phenomena: Different masses of solute were added to 1 kg of either H 2 O or C 6 H 6. The boiling and freezing points of the solutions were then measured. Examine the data to determine

More information

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another.

Introduction: Introduction. material is transferred from one phase (gas, liquid, or solid) into another. Introduction: Virtually all commercial chemical processes involve operations in which material is transferred from one phase (gas, liquid, or solid) into another. rewing a cup of Coffee (Leaching) Removal

More information

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom pubs.acs.org/jpcb Calculation of Partition Functions and Free Energies of a Binary Mixture Using the Energy Partitioning Method: Application to Carbon Dioxide and Methane Haina Do,* Jonathan D. Hirst,

More information

Week 14/Tu: Lecture Units 33 & 34

Week 14/Tu: Lecture Units 33 & 34 Week 14/Tu: Lecture Units 33 & 34 Exam 3 Unit 33: Colligative Properties -- Vapor pressure of solutions -- Freezing, boiling of solutions -- Osmotic pressure Unit 34: Introduction to Equilibria -- Rate

More information

Chapter 11. Properties of Solutions Solutions

Chapter 11. Properties of Solutions Solutions Chapter 11. Properties of Solutions Solutions Homogeneous Mixture 1 Solution Composition Equivalent moles of solute (mol) Acid-Base reaction Molarity (M) = liter of solution (L) 1 eq: the quantity of acid

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws Name -. Class/ sec.. Roll No.. A. Fill in the blanks: 1. Solutions are mixtures of two or more than two components. 2. Generally, the component

More information

For more info visit

For more info visit A solution is a homogeneous mixture of two (or more) substances, the composition of which may vary between certain limits. A solution consisting of two components is called binary solution. The component

More information

Colligative Properties

Colligative Properties Colligative Properties! Consider three beakers: " 50.0 g of ice " 50.0 g of ice + 0.15 moles NaCl " 50.0 g of ice + 0.15 moles sugar (sucrose)! What will the freezing temperature of each beaker be? " Beaker

More information

AP Chemistry--Chapter 11: Properties of Solutions

AP Chemistry--Chapter 11: Properties of Solutions AP Chemistry--Chapter 11: Properties of Solutions I. Solution Composition (ways of expressing concentration) 1. Qualitatively, use dilute or concentrated to describe 2. Quantitatively a. Mass Percentage

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

LECTURE 6 NON ELECTROLYTE SOLUTION

LECTURE 6 NON ELECTROLYTE SOLUTION LECTURE 6 NON ELECTROLYTE SOLUTION Ch 45.5 pplied Phy Chem First Sem 2014-15 Ch 45.5 Exam II September 1/3 (Multiple Choice/Problem Solving) Coverage: Second/Third Laws of Thermodynamics Nonelectrolyte

More information

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol

Molar mass, M, of the empirical formula C 4 H 9 : M 4M 9M g/mol g/mol g/mol olar ass,, of the unknown gas: n 10.00 g 0.088037 ol 113.16057 g/ ol olar ass,, of the epirical forula C 4 H 9 : 4 9 C4H9 C H 4 12.01 g/ol 9 1.01 g/ol 57.13 g/ol Ratio of olar asses: 113.16057 g/ol 1.9807

More information

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K.

m m 3 mol Pa = Pa or bar At this pressure the system must also be at approximately 1000 K. 5. PHASES AND SOLUTIONS n Thermodynamics of Vapor Pressure 5.. At equilibrium, G(graphite) G(diamond); i.e., G 2 0. We are given G 2900 J mol. ( G/ P) T V V 2.0 g mol.95 0 6 m 3 mol Holding T constant

More information

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations.

Included in this hand-out are five examples of problems requiring the solution of a system of linear algebraic equations. he Lecture Notes, Dept. of heical Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updated /) Eaple pplications of systes of linear equations Included in this hand-out are five eaples of probles

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

DATE: POGIL: Colligative Properties Part 1

DATE: POGIL: Colligative Properties Part 1 NAME: AP Chemistry DATE: POGIL: Colligative Properties Part 1 Why? There is a general misconception that adding sodium chloride to cooking water for pasta increases the temperature of the boiling water

More information

Colligative properties CH102 General Chemistry, Spring 2011, Boston University

Colligative properties CH102 General Chemistry, Spring 2011, Boston University Colligative properties CH12 General Chemistry, Spring 211, Boston University here are four colligative properties. vapor-pressure lowering boiling-point elevation freezing-point depression osmotic pressure

More information

Let's look at the following "reaction" Mixtures. water + salt > "salt water"

Let's look at the following reaction Mixtures. water + salt > salt water Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c)

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c) 47 Chapter Solutions 1. Freezing point of an aqueous solution is ( 0.186) C. Elevation of boiling point of the same solution is K b = 0.512 C,Kf = 1.86 C, find the increase in boiling point. [2002] (a)

More information

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS DATA THAT YOU MAY USE UNITS Conventional S.I. Volume ml or cm 3 = cm 3 or 0-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr =.03 0 5 Pa torr = 33.3 Pa Temperature C 0 C = 73.5 K PV L-atm =.03 0 5 dm 3

More information

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1

COLLIGATIVE PROPERTIES. Engr. Yvonne Ligaya F. Musico 1 COLLIGATIVE PROPERTIES Engr. Yvonne Ligaya F. Musico 1 Colligative Properties Properties that depend on the collective effect of the number of solute particles. Engr. Yvonne Ligaya F. Musico 2 COLLEGATIVE

More information

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Class XII Chapter 2 Solutions Chemistry

Class XII Chapter 2 Solutions Chemistry Class XII Chapter 2 Solutions Chemistry Question 2.1: Calculate the mass percentage of benzene (C 6 H 6 ) and carbon tetrachloride (CCl 4 ) if 22 g of benzene is dissolved in 122 g of carbon tetrachloride.

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics CHEM-UA 652: hermodynamics and Kinetics Notes for Lecture 6 I. SAISICAL MECHANICS OF SOLVAION: SOLVAION FREE ENERGIES We consider a solvent with coordinates r (a),...,r(a) N a in to which a solute with

More information

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout Mixtures What happens to the properties (phase changes) when we make a solution? Let's look at the following "reaction" water + salt ------> "salt water" Which has the higher entropy? A. The water + the

More information

Solutions: Formation and Properties

Solutions: Formation and Properties New Jersey Center for Teaching and Learning Slide 1 / 48 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Solutions to Problem Set 9

Solutions to Problem Set 9 Solutions to Problem Set 9 1. When possible, we want to write an equation with the quantity on the ordinate in terms of the quantity on the abscissa for each pf the labeled curves. A B C p CHCl3 = K H

More information

Thinking Like a Chemist About Solution Properties UNIT 5 DAY 4

Thinking Like a Chemist About Solution Properties UNIT 5 DAY 4 UNIT5-DAY4-LaB1230 Page 1 UNIT5-DAY4-LaB1230 Wednesday, January 23, 2013 5:43 PM Thinking Like a Chemist About Solution Properties UNIT 5 DAY 4 What are we going to learn today? Thinking Like a Chemist

More information

Chapter 12. Properties of Solutions

Chapter 12. Properties of Solutions Chapter 12. Properties of Solutions What we will learn: Types of solutions Solution process Interactions in solution Types of concentration Concentration units Solubility and temperature Solubility and

More information

CHAPTER 2 THERMODYNAMICS

CHAPTER 2 THERMODYNAMICS CHAPER 2 HERMODYNAMICS 2.1 INRODUCION herodynaics is the study of the behavior of systes of atter under the action of external fields such as teerature and ressure. It is used in articular to describe

More information

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER

SOLUTIONS. Dissolution of sugar in water. General Chemistry I. General Chemistry I CHAPTER 11 CHAPTER SOLUTIONS 11.1 Composition of Solutions 11.2 Nature of Dissolved Species 11.3 Reaction Stoichiometry in Solutions: Acid-Base Titrations 11.4 Reaction Stoichiometry in Solutions: Oxidation-Reduction

More information

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C). 1. Using your knowledge of the types of intermolecular forces present in CO 2, CH 3 CN, Ne, and CH 4 gases, assign each gas to its van der Waals a parameter. a ( ) 17.58 3.392 2.253 0.2107 gas 2. Match

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C?

21. Practice Problem (page 556) What is the volume of 5.65 mol of helium gas at a pressure of 98 kpa and a temperature of 18.0 C? Section 12.2 The Ideal Gas Law Solutions for Practice Probles Student Edition page 556 21. Practice Proble (page 556) What is the volue of 5.65 ol of heliu gas at a pressure of 98 kpa and a teperature

More information

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules

Molecular Speeds. Real Gasses. Ideal Gas Law. Reasonable. Why the breakdown? P-V Diagram. Using moles. Using molecules Kinetic Theory of Gases Connect icroscopic properties (kinetic energy and oentu) of olecules to acroscopic state properties of a gas (teperature and pressure). P v v 3 3 3 But K v and P kt K v kt Teperature

More information

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity.

An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is g/ml Find: molality, mole fraction, molarity. 66 An aqueous solution is 8.50% ammonium chloride by mass. The density of the solution is 1.024 g/ml Find: molality, mole fraction, molarity. Find molality: mass percent molality Assuming 100 g solution,

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown?

75 A solution of 2.500g of unknown dissolved in g of benzene has a freezing point of C. What is the molecular weight of the unknown? 75 A solution of 2.500g of unknown dissolved in 100.0 g of benzene has a freezing point of 4.880 C. What is the molecular weight of the unknown? Solving for Cm (molality) will allow us to calculate how

More information

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m.

ME 300 Thermodynamics II Exam 2 November 13, :00 p.m. 9:00 p.m. ME 300 Therodynaics II Exa 2 Noveber 3, 202 8:00 p.. 9:00 p.. Nae: Solution Section (Circle One): Sojka Naik :30 a.. :30 p.. Instructions: This is a closed book/notes exa. You ay use a calculator. You

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. 2. Which type of solid solution will result by mixing two solid components with large difference

More information

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule Slide 1 Colligative Properties Slide 2 Compounds in Aqueous Solution Dissociation - The separation of ions that occurs when an ionic compound dissolves Precipitation Reactions - A chemical reaction in

More information

CH 2: SOLUTIONS

CH 2: SOLUTIONS 1 CH 2: SOLUTIONS 2 SOLUTION, SOLVENT, SOLUTE Solutions are homogeneous mixtures of two or more than two components. i.e. composition and properties are uniform throughout the mixture. Eg: The component

More information

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces The Chemistry of Water and the Nature of Liquids Chapter 11 CHAPTER OUTLINE 11.2 I. The Structure of Water: An Introduction to Intermolecular Forces II. A Closer Look at Intermolecular lar Forces A. London

More information

Solution KEY CONCEPTS

Solution KEY CONCEPTS Solution KEY CONCEPTS Solution is the homogeneous mixture of two or more substances in which the components are uniformly distributed into each other. The substances which make the solution are called

More information

Solutions. π = n RT = M RT V

Solutions. π = n RT = M RT V Solutions Factors that affect solubility intermolecular interactions (like dissolves like) temperature pressure Colligative Properties vapor pressure lowering Raoult s Law: P A = X A P A boiling point

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.

70 Example: If a solution is m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1. 70 Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution? The density of the solution is 1.049 g/ml molality definition molarity definition To solve the problem,

More information

Physical Chemistry Chapter 4 The Properties of Mixtures

Physical Chemistry Chapter 4 The Properties of Mixtures Physical Chemistry Chapter 4 The Properties of Mixtures by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Determine the fugacity and fugacity coefficients for pure species using generic

More information

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30.

All Excuses must be taken to 233 Loomis before 4:15, Monday, April 30. Miscellaneous Notes he end is near don t get behind. All Excuses ust be taken to 233 Loois before 4:15, Monday, April 30. he PHYS 213 final exa ties are * 8-10 AM, Monday, May 7 * 8-10 AM, uesday, May

More information

Announcements. It is critical that you are keeping up. Ask or see me if you need help. Lecture slides updated and homework solutions posted.

Announcements. It is critical that you are keeping up. Ask or see me if you need help. Lecture slides updated and homework solutions posted. Announcements Dec. 18 Hour Exam 1 C-109 Start time 6PM Coverage is Chapter 12 and 13. 10-multiple choice 3-fairly short problems 3-longer problem solving 100 point Exam Lecture slides updated and homework

More information

CH1020 Exam #1 Study Guide

CH1020 Exam #1 Study Guide CH1020 Exam #1 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster Chapter 12: Thermodynamics Definitions & Concepts to know: Thermodynamics: the study of the

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information