10.5 Unsupervised Bayesian Learning

Size: px
Start display at page:

Download "10.5 Unsupervised Bayesian Learning"

Transcription

1 The Bayes Classifier Maximum-likelihood methods: Li Yu Hongda Mao Joan Wang parameter vetor is a fixed but unknown value Bayes methods: parameter vetor is a random variable with known prior distribution 10.5 Unsupervised Bayesian Learning The Bayes Classifier Bayes Formula: The Bayes Classifier information from samples unknown Assumptions: Based on the assumptions, we have 1. Classes number is known. 2. Prior probabilities for eah lass are known, k = 1,...,. 3. Forms of the lass-onditional probability densities 4. Part of our knowledge about is from a known prior density. are known. and 5. Rest knowledge about is from the set of samples D. x is independent of the samples lass has nothing to do with distribution of The Bayes Classifier The basi equations for unsupervised Bayesian learning The Posterior Density : Estimate of over is obtained by averaging The likelihood yielded by the samples: The task at hand now is to estimate sample set D. from the The Posterior Density in reursive form: 1

2 The relation between Bayesian and the M-L solutions Again, the posterior density: This equation emphasizes the relation between the Bayesian and the maximum-likelihood solutions. If is essentially uniform over the region peaks, then peaks at the same plae. 1. The only signifiant peak ours at 2. The peak is very sharp We an get: The relation between Bayesian and the M-L solutions ont d Conlusions: The use of the maximum-likelihood estimate as if it were the true value of in designing the Bayes lassifier. Disussions: If there are a large amounts of data, maximum-likelihood and Bayes methods will agree (or nearly agree). If there are only a small amounts of data, there exist some small problems the approximations are poor. Supervised and unsupervised learning Differenes: Lak of identifiability ( main differene) With supervised learning, it merely means that instead of obtaining a unique parameter vetor we obtain an equivalene lass of parameter vetors. With unsupervised learning, it may ause serious problems. When an t be determined uniquely, the mixture an t be deomposed into its true omponents. Computational omplexity Supervised learning: the possibility of finding suffiient statistis allows solutions that are analytially pleasing and omputationally feasible. Unsupervised learning: there is no way to avoid the fat that the samples are obtained from a mixture density. Supervised and unsupervised learning ont d From the above equation, it is not easy for us to find a simple exat solutions for Again, the likelihood n p(d θ) = [ p(x k w j,θ j ) p(w j )] k=1 j=1 1. p(d θ) is the sum of n produts of omponent densities. Eah term in this sum an be interpreted as the joint probability of obtaining the samples x 1, x n.. 2. If the omponent densities do not overlap, thus as varies, only one term in the mixture density is nonzero. Supervised and unsupervised learning ont d Another way to ompare supervised and unsupervised learning : Example 1: Unsupervised learning of Gaussian Data Consider the one-dimensional, two-omponent mixture with, P(w 1 ) and P(w 2 ) are known. Substitute the mixture density for Let p(w 1 )=1 and all the other prior probabilities are zero. Unsupervised We seek the mean of the seond omponent. Suppose that the prior density is uniform from a to b, Then after one observation (x=x 1 ) we an get. Supervised 2

3 Example 1 ont d Example 1 ont d Consider a seond sample x 2 Disussions: Unfortunately, the primary thing we learn from this expressios already Compliated when n=2. With n samples there will be 2 n terms, as a result, the omputational ost will be very heavy. Example 1 ont d Example 1 ont d So it is possible to use the following relation. Disussion: One of the main differenes between the Bayesian and the maximum-likelihood approahes to unsupervised learning is the presene of the prior density Deision-Direted Approximation Why: both maximum-likelihood and the bayesian methods have high omputational requirements. Solutions: beause the differene between supervised and unsupervised learning is the presene of labels, it is natural to propose the following: Use prior information to train a lassifier. Label new data with this lassifier. Use the new labeled samples to train a new (supervised) lassifier. This approah is known as the deision-direted approah [1] to unsupervised learning. Obvious limitations inlude: If the initial lassifier is not reasonably good, the proess an diverge. The tails of the distribution tend not to be modeled well this way, whih results in signifiant overlap between the omponent densities. In pratie, this approah works well beause it is easy to leverage previous work for the initial lassifier. Also, it is less omputationally expensive than the pure Bayesian unsupervised learning approah. [1] Classial adaptive algorithms (LMS, RLS, CMA, deision direted) seen as reursive strutures by P. Duhamel, M. Montazeri and K. Hilal Funtions For Clustering 3

4 Funtions for Clustering Purpose: measures the lustering quality of any partition of the data. Suppose: a set D of n samples X1, X2, Xs lassified into lusters D1, D2, D. Samples in the same luster are more similar than samples in different lusters. Finds a the partition that optimizes the riterion funtion The Sum-of-Squared-Error Simplest and most widely used one: Sum-of-squared errors: is the number of samples in is the mean of the samples is the number of lusters The optimal partitioning is defined as one that minimizes (minimum variane) The Sum-of-Squared-Error Problem: Work well when lusters form ompat louds Fail when there are great differenes in the number of samples in different lusters. Related Criteria Rewrite the riterion funtion J e = x m i 2 m i = 1 x D i x D i x J e = 1 2 s i s i = 1 2 x x' 2 x D i x' D i S i is the average squared distane between points in the i-th luster (a similarity funtion) Related Criteria - Continued Satter Criteria Another type of Funtions The similarity funtion an be replaed by other appropriate similarity funtions e.g. the average, the median or even the maximum distane between points in a luster Definition of Satter Matrix Satter matrix for the i-th luster S i = (x m i )(x m i ) t x D i Within-luster satter matrix S W = S i Between-luster satter matrix S B = (m i m)(m i m) t as m i = 1 n x D i x (Cluster mean) m = 1 n (Total mean) m i 4

5 10/21/08 Total Satter Matrix ST = m= (x m)(x m)t x D 1 mi n Trae (Total mean) Is the sum of within-luster satter matrix and between-luster satter matrix Not Sum of diagonal elements dependent on the formation of lusters Only How to measure a satter matrix? as Invariant Determinant of the matrix Appropriate Appropriate funtions funtionsof of eigenvalues eigenvalues dependent on all samples Determinant Trae Minimize Minimize Or Determinant the sum of diagonal elements of Sw - tr[sw ] J d = SW = tr[sb ] maximize the determinant of SW - Sw S i Interesting fat: SB is not hosen beause it will beome singular if the number of lusters is less than or equal to the dimensionality tr[sw ] = tr[si ] = x mi 2 = J e x Di Minimizing Jd is similar to minimizing Je, but not neessarily the same Invariant Criteria Maximize d Trae tr[sw 1SB ] = λi d Or minimize 1 1 λi J f = tr[st 1SW ] = Whereas λi are eigenvalues of Sum of diagonal elements Determinant Invariant Determinant of the matrix Appropriate funtions of eigenvalues SW 1SB Eigenvalue a salar value for linear transformation that only hanges the eigenvetor s length but not diretion Are they the same? 5

6 Trae riterion (Tend to equal the number of points in eah luster) Determinant riterion (Tend to form large and small lusters) Invariant riterion (subtle) Figure from R. O. Duda, P. E. Hart, Pattern lassifiation, A Comparison of Cluster Validity Criteria For a Mixture of Normal Distributed Data [2] Clustering experiment based on 21 different riteria for simulated Gaussian data sets Conlusion: the most reliable riteria among the ones that they tested were: (1) The trae average density riterion (trae of fuzzy ovariane matrix) (2) The Steinberg±Zeitouni riterion [3] (3) The modified trae riterion ( tr[s W ]/ ). [2] A. Geva et al, "A omparison of luster validity riteria for a mixture of normal distributed data", Pattern Reognition Letters, [3] Y. Steinberg and O. Zeitouni, On tests for normality, IEEE Trans. Inform. Theory, Vol. 38, Questions? Thank you 6

Model-based mixture discriminant analysis an experimental study

Model-based mixture discriminant analysis an experimental study Model-based mixture disriminant analysis an experimental study Zohar Halbe and Mayer Aladjem Department of Eletrial and Computer Engineering, Ben-Gurion University of the Negev P.O.Box 653, Beer-Sheva,

More information

Complexity of Regularization RBF Networks

Complexity of Regularization RBF Networks Complexity of Regularization RBF Networks Mark A Kon Department of Mathematis and Statistis Boston University Boston, MA 02215 mkon@buedu Leszek Plaskota Institute of Applied Mathematis University of Warsaw

More information

Optimization of Statistical Decisions for Age Replacement Problems via a New Pivotal Quantity Averaging Approach

Optimization of Statistical Decisions for Age Replacement Problems via a New Pivotal Quantity Averaging Approach Amerian Journal of heoretial and Applied tatistis 6; 5(-): -8 Published online January 7, 6 (http://www.sienepublishinggroup.om/j/ajtas) doi:.648/j.ajtas.s.65.4 IN: 36-8999 (Print); IN: 36-96 (Online)

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilisti Graphial Models David Sontag New York University Leture 12, April 19, 2012 Aknowledgement: Partially based on slides by Eri Xing at CMU and Andrew MCallum at UMass Amherst David Sontag (NYU)

More information

CSC2515 Winter 2015 Introduc3on to Machine Learning. Lecture 5: Clustering, mixture models, and EM

CSC2515 Winter 2015 Introduc3on to Machine Learning. Lecture 5: Clustering, mixture models, and EM CSC2515 Winter 2015 Introdu3on to Mahine Learning Leture 5: Clustering, mixture models, and EM All leture slides will be available as.pdf on the ourse website: http://www.s.toronto.edu/~urtasun/ourses/csc2515/

More information

Sensitivity Analysis in Markov Networks

Sensitivity Analysis in Markov Networks Sensitivity Analysis in Markov Networks Hei Chan and Adnan Darwihe Computer Siene Department University of California, Los Angeles Los Angeles, CA 90095 {hei,darwihe}@s.ula.edu Abstrat This paper explores

More information

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 10: The Bayesian way to fit models. Geoffrey Hinton

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 10: The Bayesian way to fit models. Geoffrey Hinton CSC31: 011 Introdution to Neural Networks and Mahine Learning Leture 10: The Bayesian way to fit models Geoffrey Hinton The Bayesian framework The Bayesian framework assumes that we always have a rior

More information

Sensor management for PRF selection in the track-before-detect context

Sensor management for PRF selection in the track-before-detect context Sensor management for PRF seletion in the tra-before-detet ontext Fotios Katsilieris, Yvo Boers, and Hans Driessen Thales Nederland B.V. Haasbergerstraat 49, 7554 PA Hengelo, the Netherlands Email: {Fotios.Katsilieris,

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Leture 5 for BST 63: Statistial Theory II Kui Zhang, Spring Chapter 8 Hypothesis Testing Setion 8 Introdution Definition 8 A hypothesis is a statement about a population parameter Definition 8 The two

More information

LOGISTIC REGRESSION IN DEPRESSION CLASSIFICATION

LOGISTIC REGRESSION IN DEPRESSION CLASSIFICATION LOGISIC REGRESSIO I DEPRESSIO CLASSIFICAIO J. Kual,. V. ran, M. Bareš KSE, FJFI, CVU v Praze PCP, CS, 3LF UK v Praze Abstrat Well nown logisti regression and the other binary response models an be used

More information

Methods of evaluating tests

Methods of evaluating tests Methods of evaluating tests Let X,, 1 Xn be i.i.d. Bernoulli( p ). Then 5 j= 1 j ( 5, ) T = X Binomial p. We test 1 H : p vs. 1 1 H : p>. We saw that a LRT is 1 if t k* φ ( x ) =. otherwise (t is the observed

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

MOLECULAR ORBITAL THEORY- PART I

MOLECULAR ORBITAL THEORY- PART I 5.6 Physial Chemistry Leture #24-25 MOLECULAR ORBITAL THEORY- PART I At this point, we have nearly ompleted our rash-ourse introdution to quantum mehanis and we re finally ready to deal with moleules.

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

V. Interacting Particles

V. Interacting Particles V. Interating Partiles V.A The Cumulant Expansion The examples studied in the previous setion involve non-interating partiles. It is preisely the lak of interations that renders these problems exatly solvable.

More information

Some facts you should know that would be convenient when evaluating a limit:

Some facts you should know that would be convenient when evaluating a limit: Some fats you should know that would be onvenient when evaluating a it: When evaluating a it of fration of two funtions, f(x) x a g(x) If f and g are both ontinuous inside an open interval that ontains

More information

A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems

A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems Neutrosophi Sets and Systems, Vol. 8, 05 63 A new method of measuring similarity between two neutrosophi soft sets and its appliation in pattern reognition problems Anjan Mukherjee, Sadhan Sarkar, Department

More information

A Spatiotemporal Approach to Passive Sound Source Localization

A Spatiotemporal Approach to Passive Sound Source Localization A Spatiotemporal Approah Passive Sound Soure Loalization Pasi Pertilä, Mikko Parviainen, Teemu Korhonen and Ari Visa Institute of Signal Proessing Tampere University of Tehnology, P.O.Box 553, FIN-330,

More information

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1

Case I: 2 users In case of 2 users, the probability of error for user 1 was earlier derived to be 2 A1 MUTLIUSER DETECTION (Letures 9 and 0) 6:33:546 Wireless Communiations Tehnologies Instrutor: Dr. Narayan Mandayam Summary By Shweta Shrivastava (shwetash@winlab.rutgers.edu) bstrat This artile ontinues

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

Controller Design Based on Transient Response Criteria. Chapter 12 1

Controller Design Based on Transient Response Criteria. Chapter 12 1 Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors

More information

Feature Selection by Independent Component Analysis and Mutual Information Maximization in EEG Signal Classification

Feature Selection by Independent Component Analysis and Mutual Information Maximization in EEG Signal Classification Feature Seletion by Independent Component Analysis and Mutual Information Maximization in EEG Signal Classifiation Tian Lan, Deniz Erdogmus, Andre Adami, Mihael Pavel BME Department, Oregon Health & Siene

More information

Error Bounds for Context Reduction and Feature Omission

Error Bounds for Context Reduction and Feature Omission Error Bounds for Context Redution and Feature Omission Eugen Bek, Ralf Shlüter, Hermann Ney,2 Human Language Tehnology and Pattern Reognition, Computer Siene Department RWTH Aahen University, Ahornstr.

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

Remarks Around Lorentz Transformation

Remarks Around Lorentz Transformation Remarks Around Lorentz Transformation Arm Boris Nima arm.boris@gmail.om Abstrat After diagonalizing the Lorentz Matrix, we find the frame where the Dira equation is one derivation and we alulate the speed

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

Danielle Maddix AA238 Final Project December 9, 2016

Danielle Maddix AA238 Final Project December 9, 2016 Struture and Parameter Learning in Bayesian Networks with Appliations to Prediting Breast Caner Tumor Malignany in a Lower Dimension Feature Spae Danielle Maddix AA238 Final Projet Deember 9, 2016 Abstrat

More information

THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION

THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION Peter G.Bass P.G.Bass www.relativitydomains.om January 0 ABSTRACT This short paper shows that the so alled "Twin Paradox" of Speial Relativity, is in fat

More information

Lecture 7: Sampling/Projections for Least-squares Approximation, Cont. 7 Sampling/Projections for Least-squares Approximation, Cont.

Lecture 7: Sampling/Projections for Least-squares Approximation, Cont. 7 Sampling/Projections for Least-squares Approximation, Cont. Stat60/CS94: Randomized Algorithms for Matries and Data Leture 7-09/5/013 Leture 7: Sampling/Projetions for Least-squares Approximation, Cont. Leturer: Mihael Mahoney Sribe: Mihael Mahoney Warning: these

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

Directional Coupler. 4-port Network

Directional Coupler. 4-port Network Diretional Coupler 4-port Network 3 4 A diretional oupler is a 4-port network exhibiting: All ports mathed on the referene load (i.e. S =S =S 33 =S 44 =0) Two pair of ports unoupled (i.e. the orresponding

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling

Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling Adaptive neuro-fuzzy inferene system-based ontrollers for smart material atuator modelling T L Grigorie and R M Botez Éole de Tehnologie Supérieure, Montréal, Quebe, Canada The manusript was reeived on

More information

Transformation to approximate independence for locally stationary Gaussian processes

Transformation to approximate independence for locally stationary Gaussian processes ransformation to approximate independene for loally stationary Gaussian proesses Joseph Guinness, Mihael L. Stein We provide new approximations for the likelihood of a time series under the loally stationary

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

Weighted K-Nearest Neighbor Revisited

Weighted K-Nearest Neighbor Revisited Weighted -Nearest Neighbor Revisited M. Biego University of Verona Verona, Italy Email: manuele.biego@univr.it M. Loog Delft University of Tehnology Delft, The Netherlands Email: m.loog@tudelft.nl Abstrat

More information

Development of Fuzzy Extreme Value Theory. Populations

Development of Fuzzy Extreme Value Theory. Populations Applied Mathematial Sienes, Vol. 6, 0, no. 7, 58 5834 Development of Fuzzy Extreme Value Theory Control Charts Using α -uts for Sewed Populations Rungsarit Intaramo Department of Mathematis, Faulty of

More information

Bilinear Formulated Multiple Kernel Learning for Multi-class Classification Problem

Bilinear Formulated Multiple Kernel Learning for Multi-class Classification Problem Bilinear Formulated Multiple Kernel Learning for Multi-lass Classifiation Problem Takumi Kobayashi and Nobuyuki Otsu National Institute of Advaned Industrial Siene and Tehnology, -- Umezono, Tsukuba, Japan

More information

Lecture 15 (Nov. 1, 2017)

Lecture 15 (Nov. 1, 2017) Leture 5 8.3 Quantum Theor I, Fall 07 74 Leture 5 (Nov., 07 5. Charged Partile in a Uniform Magneti Field Last time, we disussed the quantum mehanis of a harged partile moving in a uniform magneti field

More information

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk Einstein s Three Mistakes in Speial Relativity Revealed Copyright Joseph A. Rybzyk Abstrat When the evidene supported priniples of eletromagneti propagation are properly applied, the derived theory is

More information

LECTURE NOTES FOR , FALL 2004

LECTURE NOTES FOR , FALL 2004 LECTURE NOTES FOR 18.155, FALL 2004 83 12. Cone support and wavefront set In disussing the singular support of a tempered distibution above, notie that singsupp(u) = only implies that u C (R n ), not as

More information

arxiv: v1 [physics.gen-ph] 5 Jan 2018

arxiv: v1 [physics.gen-ph] 5 Jan 2018 The Real Quaternion Relativity Viktor Ariel arxiv:1801.03393v1 [physis.gen-ph] 5 Jan 2018 In this work, we use real quaternions and the basi onept of the final speed of light in an attempt to enhane the

More information

Robust Recovery of Signals From a Structured Union of Subspaces

Robust Recovery of Signals From a Structured Union of Subspaces Robust Reovery of Signals From a Strutured Union of Subspaes 1 Yonina C. Eldar, Senior Member, IEEE and Moshe Mishali, Student Member, IEEE arxiv:87.4581v2 [nlin.cg] 3 Mar 29 Abstrat Traditional sampling

More information

Handling Uncertainty

Handling Uncertainty Handling Unertainty Unertain knowledge Typial example: Diagnosis. Name Toothahe Cavity Can we ertainly derive the diagnosti rule: if Toothahe=true then Cavity=true? The problem is that this rule isn t

More information

Nonreversibility of Multiple Unicast Networks

Nonreversibility of Multiple Unicast Networks Nonreversibility of Multiple Uniast Networks Randall Dougherty and Kenneth Zeger September 27, 2005 Abstrat We prove that for any finite direted ayli network, there exists a orresponding multiple uniast

More information

On the Licensing of Innovations under Strategic Delegation

On the Licensing of Innovations under Strategic Delegation On the Liensing of Innovations under Strategi Delegation Judy Hsu Institute of Finanial Management Nanhua University Taiwan and X. Henry Wang Department of Eonomis University of Missouri USA Abstrat This

More information

Generalized resolution for orthogonal arrays

Generalized resolution for orthogonal arrays Submitted to he Annals of Statistis Generalized resolution for orthogonal arrays y Ulrike Grömping and Hongquan u 2 euth University of Applied Sienes erlin and University of alifornia Los Angeles he generalized

More information

Local quality functions for graph clustering

Local quality functions for graph clustering Loal quality funtions for graph lustering Twan van Laarhoven Institute for Computing and Information Sienes Radoud University Nijmegen, The Netherlands Lorentz workshop on Clustering, Games and Axioms

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

estimated pulse sequene we produe estimates of the delay time struture of ripple-red events. Formulation of the Problem We model the k th seismi trae

estimated pulse sequene we produe estimates of the delay time struture of ripple-red events. Formulation of the Problem We model the k th seismi trae Bayesian Deonvolution of Seismi Array Data Using the Gibbs Sampler Eri A. Suess Robert Shumway, University of California, Davis Rong Chen, Texas A&M University Contat: Eri A. Suess, Division of Statistis,

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

An I-Vector Backend for Speaker Verification

An I-Vector Backend for Speaker Verification An I-Vetor Bakend for Speaker Verifiation Patrik Kenny, 1 Themos Stafylakis, 1 Jahangir Alam, 1 and Marel Kokmann 2 1 CRIM, Canada, {patrik.kenny, themos.stafylakis, jahangir.alam}@rim.a 2 VoieTrust, Canada,

More information

Recursive integral time extrapolation methods for scalar waves Paul J. Fowler*, Xiang Du, and Robin P. Fletcher, WesternGeco

Recursive integral time extrapolation methods for scalar waves Paul J. Fowler*, Xiang Du, and Robin P. Fletcher, WesternGeco Reursive integral time extrapolation methods for salar waves Paul J. Fowler*, Xiang Du, and Robin P. Flether, WesternGeo Summary We derive and ompare a variety of algorithms for reursive time extrapolation

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outomes Students know that two equations in the form of ax + y = and a x + y = graph as the same line when a = = and at least one of a or is nonzero. a Students know that the graph of a linear

More information

On the Bit Error Probability of Noisy Channel Networks With Intermediate Node Encoding I. INTRODUCTION

On the Bit Error Probability of Noisy Channel Networks With Intermediate Node Encoding I. INTRODUCTION 5188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 11, NOVEMBER 2008 [8] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood estimation from inomplete data via the EM algorithm, J.

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

Math 220A - Fall 2002 Homework 8 Solutions

Math 220A - Fall 2002 Homework 8 Solutions Math A - Fall Homework 8 Solutions 1. Consider u tt u = x R 3, t > u(x, ) = φ(x) u t (x, ) = ψ(x). Suppose φ, ψ are supported in the annular region a < x < b. (a) Find the time T 1 > suh that u(x, t) is

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

Normative and descriptive approaches to multiattribute decision making

Normative and descriptive approaches to multiattribute decision making De. 009, Volume 8, No. (Serial No.78) China-USA Business Review, ISSN 57-54, USA Normative and desriptive approahes to multiattribute deision making Milan Terek (Department of Statistis, University of

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

CS 687 Jana Kosecka. Uncertainty, Bayesian Networks Chapter 13, Russell and Norvig Chapter 14,

CS 687 Jana Kosecka. Uncertainty, Bayesian Networks Chapter 13, Russell and Norvig Chapter 14, CS 687 Jana Koseka Unertainty Bayesian Networks Chapter 13 Russell and Norvig Chapter 14 14.1-14.3 Outline Unertainty robability Syntax and Semantis Inferene Independene and Bayes' Rule Syntax Basi element:

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

An Integrated Architecture of Adaptive Neural Network Control for Dynamic Systems

An Integrated Architecture of Adaptive Neural Network Control for Dynamic Systems An Integrated Arhiteture of Adaptive Neural Network Control for Dynami Systems Robert L. Tokar 2 Brian D.MVey2 'Center for Nonlinear Studies, 2Applied Theoretial Physis Division Los Alamos National Laboratory,

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

EE 321 Project Spring 2018

EE 321 Project Spring 2018 EE 21 Projet Spring 2018 This ourse projet is intended to be an individual effort projet. The student is required to omplete the work individually, without help from anyone else. (The student may, however,

More information

Geometry of Transformations of Random Variables

Geometry of Transformations of Random Variables Geometry of Transformations of Random Variables Univariate distributions We are interested in the problem of finding the distribution of Y = h(x) when the transformation h is one-to-one so that there is

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Neural population partitioning and a onurrent brain-mahine interfae for sequential motor funtion Maryam M. Shanehi, Rollin C. Hu, Marissa Powers, Gregory W. Wornell, Emery N. Brown

More information

Factorized Asymptotic Bayesian Inference for Mixture Modeling

Factorized Asymptotic Bayesian Inference for Mixture Modeling Fatorized Asymptoti Bayesian Inferene for Mixture Modeling Ryohei Fujimaki NEC Laboratories Ameria Department of Media Analytis rfujimaki@sv.ne-labs.om Satoshi Morinaga NEC Corporation Information and

More information

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM NETWORK SIMPLEX LGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM Cen Çalışan, Utah Valley University, 800 W. University Parway, Orem, UT 84058, 801-863-6487, en.alisan@uvu.edu BSTRCT The minimum

More information

A Combination of BIM and BEM for efficiently analyzing optical. elements

A Combination of BIM and BEM for efficiently analyzing optical. elements A Combination of BIM and BEM for effiiently analyzing optial elements SUN Fang, LIU Juan, ZHANG Guo-ting, HU Chuan-fei, SU Xiaoxing Institute of Lightwave Tehnology, hool of eletronis and information engineering,

More information

Analysis of discretization in the direct simulation Monte Carlo

Analysis of discretization in the direct simulation Monte Carlo PHYSICS OF FLUIDS VOLUME 1, UMBER 1 OCTOBER Analysis of disretization in the diret simulation Monte Carlo iolas G. Hadjionstantinou a) Department of Mehanial Engineering, Massahusetts Institute of Tehnology,

More information

Calibration of Piping Assessment Models in the Netherlands

Calibration of Piping Assessment Models in the Netherlands ISGSR 2011 - Vogt, Shuppener, Straub & Bräu (eds) - 2011 Bundesanstalt für Wasserbau ISBN 978-3-939230-01-4 Calibration of Piping Assessment Models in the Netherlands J. Lopez de la Cruz & E.O.F. Calle

More information

Mode II brittle fracture: recent developments

Mode II brittle fracture: recent developments A. Campagnolo et alii, Frattura ed Integrità Strutturale, 4 (017) 181-188; DOI: 10.31/IGF-ESIS.4.19 Mode II brittle frature: reent developments A. Campagnolo Department of Industrial Engineering, University

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Eon602: Maro Theory Eonomis, HKU Instrutor: Dr. Yulei Luo September 208 Solutions to Problem Set. [0 points] Consider the following lifetime optimal onsumption-saving problem: v (a 0 ) max f;a t+ g t t

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Supplementary Material

Supplementary Material Supplementary Material Joint Disriminative Bayesian Ditionary and Classifier Learning Joint probability distribution Aording to the proposed model, the joint probability distribution over the data of the

More information

A Functional Representation of Fuzzy Preferences

A Functional Representation of Fuzzy Preferences Theoretial Eonomis Letters, 017, 7, 13- http://wwwsirporg/journal/tel ISSN Online: 16-086 ISSN Print: 16-078 A Funtional Representation of Fuzzy Preferenes Susheng Wang Department of Eonomis, Hong Kong

More information

Neuro-Fuzzy Control of Chemical Reactor with Disturbances

Neuro-Fuzzy Control of Chemical Reactor with Disturbances Neuro-Fuzzy Control of Chemial Reator with Disturbanes LENK BLHOÁ, JÁN DORN Department of Information Engineering and Proess Control, Institute of Information Engineering, utomation and Mathematis Faulty

More information

The Influences of Smooth Approximation Functions for SPTSVM

The Influences of Smooth Approximation Functions for SPTSVM The Influenes of Smooth Approximation Funtions for SPTSVM Xinxin Zhang Liaoheng University Shool of Mathematis Sienes Liaoheng, 5059 P.R. China ldzhangxin008@6.om Liya Fan Liaoheng University Shool of

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 3 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 3 Aug 2006 arxiv:ond-mat/0608083v1 [ond-mat.str-el] 3 Aug 006 Raman sattering for triangular latties spin- 1 Heisenberg antiferromagnets 1. Introdution F. Vernay 1,, T. P. Devereaux 1, and M. J. P. Gingras 1,3 1

More information

THE METHOD OF SECTIONING WITH APPLICATION TO SIMULATION, by Danie 1 Brent ~~uffman'i

THE METHOD OF SECTIONING WITH APPLICATION TO SIMULATION, by Danie 1 Brent ~~uffman'i THE METHOD OF SECTIONING '\ WITH APPLICATION TO SIMULATION, I by Danie 1 Brent ~~uffman'i Thesis submitted to the Graduate Faulty of the Virginia Polytehni Institute and State University in partial fulfillment

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

Maximum Likelihood Multipath Estimation in Comparison with Conventional Delay Lock Loops

Maximum Likelihood Multipath Estimation in Comparison with Conventional Delay Lock Loops Maximum Likelihood Multipath Estimation in Comparison with Conventional Delay Lok Loops Mihael Lentmaier and Bernhard Krah, German Aerospae Center (DLR) BIOGRAPY Mihael Lentmaier reeived the Dipl.-Ing.

More information

One-edge Diffraction. Chapter 1. Direction of incidence. Reflected ray 4. Screen y

One-edge Diffraction. Chapter 1. Direction of incidence. Reflected ray 4. Screen y Chapter One-edge Diffration The time domain impulse response for edge diffration is derived from Eqn.. aording to Fig... ϕ < ϕ < π is the angle between y and r. ϕ < ϕ < π is the angle between y and the

More information

Solving Constrained Lasso and Elastic Net Using

Solving Constrained Lasso and Elastic Net Using Solving Constrained Lasso and Elasti Net Using ν s Carlos M. Alaı z, Alberto Torres and Jose R. Dorronsoro Universidad Auto noma de Madrid - Departamento de Ingenierı a Informa tia Toma s y Valiente 11,

More information

Variation Based Online Travel Time Prediction Using Clustered Neural Networks

Variation Based Online Travel Time Prediction Using Clustered Neural Networks Variation Based Online Travel Time Predition Using lustered Neural Networks Jie Yu, Gang-Len hang, H.W. Ho and Yue Liu Abstrat-This paper proposes a variation-based online travel time predition approah

More information

A Small Footprint i-vector Extractor

A Small Footprint i-vector Extractor A Small Footprint i-vetor Extrator Patrik Kenny Centre de reherhe informatique de Montréal (CRIM) Patrik.Kenny@rim.a Abstrat Both the memory and omputational requirements of algorithms traditionally used

More information

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

AC : A GRAPHICAL USER INTERFACE (GUI) FOR A UNIFIED APPROACH FOR CONTINUOUS-TIME COMPENSATOR DESIGN

AC : A GRAPHICAL USER INTERFACE (GUI) FOR A UNIFIED APPROACH FOR CONTINUOUS-TIME COMPENSATOR DESIGN AC 28-1986: A GRAPHICAL USER INTERFACE (GUI) FOR A UNIFIED APPROACH FOR CONTINUOUS-TIME COMPENSATOR DESIGN Minh Cao, Wihita State University Minh Cao ompleted his Bahelor s of Siene degree at Wihita State

More information