[This document is a formalization of personal notes and was created for internal use]

Size: px
Start display at page:

Download "[This document is a formalization of personal notes and was created for internal use]"

Transcription

1 Understanding Statistical and Entropy-Based Image Similarity Measures ISM Sarju Vaz Georgia Institute of Technology, [This document is a formalization of personal notes and was created for internal use] Excerpts from Elements of Information Theory [Cover & Thomas]: Entropy is originally defined in thermodynamics. = p x *log2 x p 1 x It arises as the answer to a number of natural questions such as, what is the average length of the shortest description of the random variable? The entropy of a random variable is a measure of the uncertainty of the random variable; it is a measure of the amount of information required on the average to describe the random variable. i.e. average self-information. Lemma 2.1.1: 0 Proof: 0 px 1, implies log1/px 0 Theorem The uniform distribution over a given range alphabet will yield the maximal entropy for that range alplabet. The entropy for a uniformly distributed random variable is log21/alphabet_size. The naturalness of the definition of joint entropy and conditional entropy is exhibited by the fact that the entropy of a pair of random variables is the entropy of one plus the conditional entropy of the other. Chain Rule:, = + C&T 2.45 = + 1

2 Figure 1. Entropies for green plane from Kodak PCD0992 standard test set Note the gray levels are 0~255 Number of levels = 256 = 2^8 For this example: 0 log igh entropy in sub-image 23 may be attributed to its evident high frequency content, but in sub-image 24 the high entropy is due to shading. Low entropy images here ex: 2, 17 are relatively bland Can t infer entropy from the frequency spectrum, although high coincidence 2

3 Mutual Information: Def: Mutual information is the relative Entropy between the joint distribution, px,y, and the product distribution pxpy [C&T 18] Theorem I; = I; I; = - I; = - I; = +, I; =, [C &T 20] I; [Figure 2.2 in C&T] Figure 2. Relationship between entropy and mutual information Mutual information is used as an ISM. Maximal image similarity maximizes this quality. Theorem 2.6.3: Information inequality Dp q 0, D is used to denote relative entropy. Proof in C&T 26. Corollary to this theorem: Non-negativity of mutual information I; 0 With equality iff and are independent 3

4 Proof: I; = Dpx,y px*py 0, with equality iff px,y = px*py, i.e., and are independent. Since relative entropy is not immediately intuitive to most of us, let s approach the lower bound via an educated deductive reasoning. Case 1: and are independent No mutual information lower bound Then as a result of independence,, = +. Note the logarithmic relationship with respect to joint probability when the variables are independent. Now, I; = +, = + [ + ] = 0 ** Refer the Venn diagram Case 2: REFER TEOREM If maximal mutual information all the uncertainty in one variable is resolved by observing the other ** Refer the Venn diagram upper bound:, when = ere, px,y = px,x = px Now, I; = I; = So, the upper bound is the entropy of the target image. According to theorem 2.6.4, this value is bounded by log21/alphabet_size. Note that this is not directly the upper bound, but the upper bound on the upper bound. Ex: For binary image: [0 1] For 0 ~ 255 gray scale image, the entropy bounds are [0 8] For 24 bit color image, the entropy bounds are [0 24] Again we can establish the upper entropy bound for the image, but the Mutual Information upper bound, while it will not exceed the entropy bound, is strictly dependent upon the image in question. We need to be mindful of this if we normalize this quantity. ** Normalizing this quantity in a mathematical sense DOES NOT yield what is commonly referred to as NMI below. 4

5 Normalized Mutual Information: A measure of 1-to-1 ness, ; NMI + = Entropy is NON-NEGATIVE Lemma No practical image has an entropy of 0. If entropy 0 px =1 monocrome image no imageness /structures in considered canvas Lower bound of NMI From theorem and corollary to theorem I; = +, 0 1,,,,, + + NMI Denominator of NMI Numerator of NMI Also both numerator and denominator are non-negative Equality occurs when, = +, are independent ** Refer the Venn diagram The reverse is an intuitive reasoning. and are independent lower bound Then as a result of independence,, = + 1, ; = + + = + = NMI 5

6 Upper bound of NMI From the chain rule:, = + C&T 2.45 = +, +, = this will be used in the proof below ** Also from the Venn diagram 2 *, = *, + = NMI,,, NMI, 2 + The deductive reasoning approach: If = all the uncertainty in one variable is resolved by observing the other maximal mutual information upper bound ere px,y = px,x = px This means that, =, = Now, NMI, = NMI, = [ + ] / [] = 2 CAUTION: This in not the whole picture!!! We have shown that if = NMI, = 2, but this is not necessarily true the other way around. As an ISM: NMI =2 1-to-1 relationship in the scatter plot of and only. This does not necessarily guarantee maximal image similarity depending on the definition of image similarity. Ex: apply random permutation to the graymap 6

7 Figure 3. Scatter plot of random permutation applied to the graymap of the parrots image next page Perfect 1-to-1 ness is maintained MATLAB code: [ignore, my_map] = sort rand1, 256; mapped_img = my_mapgray_im+1-1; 7

8 Figure 4. Random 1-to-1 mapping of gray levels Notice that maximal NMI is maintained, but that image similarity is questionable Structures may be recognizable based more on the extent of monochrome regions, rather than the entropy of the image 8

9 Normalized Cross Correlaton a.k.a. Correlation Coefficient, ρ: A measure of straight-lineness in the scatter plot of and Note: this is not the cross-correlation which is then normalized. NCC, = x x, x µ * y µ x µ 2 * y y µ As an ISM, maximal image similarity is achieved when the absolute value of this quantity is maximized Def: A correlation coefficient is a quantitative assessment of the strength of the linier relationship between x and y values in a set of x, y pairs [Devore & Furnam]. A lot can be understood by gazing at the equation. Note: the equations below pertain to random variables. While the relationships are indicative of the relationships when considering deterministic images, they need to be formally adapted for the deterministic case. NCC x µ = E σ y µ σ, * = cov, σ * σ where E is the expectation 2 cov, = E[ ] µ µ x wre E[] is the correlation between and If E[]=0, and is said to be uncorrelated Inferences between covariance, correlation and independence If and are either independent OR uncorrelated, E[] = E[]*E[] * The existence of this condition alone does NOT guarantee that and are either independent or that they are uncorrelated. * E[] = E[]*E[] cov, = 0 independent uncorrelated, but not necessarily the other way around If =, cov, = cov, = var 9

10 Standard proof of bounds [G.T. Zhou, ECE, Georgia Tech]: Note: this is a random variable proof and needs to be adapted for deterministic images x µ NCC, = E * σ ρ = E[ εη] Need bounds on this E E E 2 [ ε + η ] 2 2 [ ε ± 2εη + η ] [ ε ] ± 2E[ εη] + E[ η ] 1± 2ρ ± 2ρ ρ 1 y µ σ = 0 ρ 1 and ρ 1 ρ 1 E [ ] εη Properties of ρ [paraphrased from D&F]: 1. -1<= ρ <= 1, and ρ does not depend on the unit of measurement of either x or y or on which variable is labeled x and which variable is labeled y. 2. ρ = +1 or ρ = -1 iff all x,y pairs lie exactly on a straight line on the scatter plot, so ρ measures the extent to which there is a linier relationship in the two images. If ρ = +1: the scatter plot forms a straight line with a positive slope, while if ρ = -1: the scatter plot forms a straight line with a negative slope. So, the sign ρ suggests the direction of the slope, while the magnitude of ρ is indicative of the straight lineness of the scatter plot. Therefore ρ = correlation coefficient would suggest just a strong a linear relationship as would ρ = **A low magnitude of ρ does NOT rule out AN strong relationship between x and y: there still may me a non-linear strong relationship. Ex: when some gamma correction histogram equalization? is needed before image registration. NMI is robust to this!!! 10

11 Figure 5. Random 1-to-1 mapping of gray levels 11

12 Figure 6. 1-to-1 and 1-to-2 mapping of gray levels disallowing any spread in the scatter plot 12

13 Figure 7. Constant scaling and shifting gray levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively all 4 mappings are 1-to-1 13

14 Figure 8. Negative scaling of gray levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively all 4 mappings are 1-to-1 14

15 Figure 9. Quadratic scaling of gray levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively all 4 mappings are 1-to-1 15

16 Figure 10. Cubic of levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively all 4 mappings are 1-to-1 16

17 Figure to-2 linear mapping of gray levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively 17

18 Figure to-2 quadratic mapping of gray levels with increasing random spread the spread is limited to 16 & 64 in mapping 3 & 4 respectively 18

19 Figure to-2 mappings of gray levels with 0, 64 spread NMI appears to degrease as the spread increases if mapping is not 1-to-1 19

20 So, what does this mean for medical imaging non-rigid registration? Figure 14. Deformation pattern overlaid on undeformed image and relative performance of MSD, NCC and NMI as the degree of deformation λ is varied NMI is the ISM of choice if max deviation is within 5 voxel side-lengths NCC is more robust than MSD, and can be used for automatic registration for maximum deviation upto ~15 voxel side lengths 20

21 Figure 15. Image similarity is??? [image source: The definition of image similarity is still open Pros, cons & comparisons of ISMs: Both are good because they have inherent bounds gives us a sense of how close the images are without any normalization as is the case with MSE NMI is a measure of 1-to-1 ness, while NCC is a measure of straight-lineness of the scatter plot igh NCC igh NMI, but not necessarily the other way around Where NCC = -1 suggests the highest image similarity in its context, MSD is more likely yield a high value suggesting low similarity, compared to the MSD in a situation where NCC ~0 21

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 2: Entropy and Mutual Information Chapter 2 outline Definitions Entropy Joint entropy, conditional entropy Relative entropy, mutual information Chain rules Jensen s inequality Log-sum inequality

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2 COMPSCI 650 Applied Information Theory Jan 21, 2016 Lecture 2 Instructor: Arya Mazumdar Scribe: Gayane Vardoyan, Jong-Chyi Su 1 Entropy Definition: Entropy is a measure of uncertainty of a random variable.

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

How to Quantitate a Markov Chain? Stochostic project 1

How to Quantitate a Markov Chain? Stochostic project 1 How to Quantitate a Markov Chain? Stochostic project 1 Chi-Ning,Chou Wei-chang,Lee PROFESSOR RAOUL NORMAND April 18, 2015 Abstract In this project, we want to quantitatively evaluate a Markov chain. In

More information

02 Background Minimum background on probability. Random process

02 Background Minimum background on probability. Random process 0 Background 0.03 Minimum background on probability Random processes Probability Conditional probability Bayes theorem Random variables Sampling and estimation Variance, covariance and correlation Probability

More information

The binary entropy function

The binary entropy function ECE 7680 Lecture 2 Definitions and Basic Facts Objective: To learn a bunch of definitions about entropy and information measures that will be useful through the quarter, and to present some simple but

More information

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 26.10.2007 1 / 18 Overview 1 Summary

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Entropy and Ergodic Theory Lecture 4: Conditional entropy and mutual information

Entropy and Ergodic Theory Lecture 4: Conditional entropy and mutual information Entropy and Ergodic Theory Lecture 4: Conditional entropy and mutual information 1 Conditional entropy Let (Ω, F, P) be a probability space, let X be a RV taking values in some finite set A. In this lecture

More information

Lecture 17: Differential Entropy

Lecture 17: Differential Entropy Lecture 17: Differential Entropy Differential entropy AEP for differential entropy Quantization Maximum differential entropy Estimation counterpart of Fano s inequality Dr. Yao Xie, ECE587, Information

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/8 General Chain Rules Definition Conditional mutual information

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Correlation and Regression Theory 1) Multivariate Statistics

Correlation and Regression Theory 1) Multivariate Statistics Correlation and Regression Theory 1) Multivariate Statistics What is a multivariate data set? How to statistically analyze this data set? Is there any kind of relationship between different variables in

More information

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx

f X, Y (x, y)dx (x), where f(x,y) is the joint pdf of X and Y. (x) dx INDEPENDENCE, COVARIANCE AND CORRELATION Independence: Intuitive idea of "Y is independent of X": The distribution of Y doesn't depend on the value of X. In terms of the conditional pdf's: "f(y x doesn't

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Machine Learning. Lecture 02.2: Basics of Information Theory. Nevin L. Zhang

Machine Learning. Lecture 02.2: Basics of Information Theory. Nevin L. Zhang Machine Learning Lecture 02.2: Basics of Information Theory Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering The Hong Kong University of Science and Technology Nevin L. Zhang

More information

3F1 Information Theory, Lecture 1

3F1 Information Theory, Lecture 1 3F1 Information Theory, Lecture 1 Jossy Sayir Department of Engineering Michaelmas 2013, 22 November 2013 Organisation History Entropy Mutual Information 2 / 18 Course Organisation 4 lectures Course material:

More information

L2: Review of probability and statistics

L2: Review of probability and statistics Probability L2: Review of probability and statistics Definition of probability Axioms and properties Conditional probability Bayes theorem Random variables Definition of a random variable Cumulative distribution

More information

Machine Learning Srihari. Information Theory. Sargur N. Srihari

Machine Learning Srihari. Information Theory. Sargur N. Srihari Information Theory Sargur N. Srihari 1 Topics 1. Entropy as an Information Measure 1. Discrete variable definition Relationship to Code Length 2. Continuous Variable Differential Entropy 2. Maximum Entropy

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Statistical Learning Theory and the C-Loss cost function

Statistical Learning Theory and the C-Loss cost function Statistical Learning Theory and the C-Loss cost function Jose Principe, Ph.D. Distinguished Professor ECE, BME Computational NeuroEngineering Laboratory and principe@cnel.ufl.edu Statistical Learning Theory

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities.

6.1 Main properties of Shannon entropy. Let X be a random variable taking values x in some alphabet with probabilities. Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Noisy channel communication

Noisy channel communication Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/ Week 6 Communication channels and Information Some notes on the noisy channel setup: Iain Murray, 2012 School of Informatics, University

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Entropy Rate of Stochastic Processes

Entropy Rate of Stochastic Processes Entropy Rate of Stochastic Processes Timo Mulder tmamulder@gmail.com Jorn Peters jornpeters@gmail.com February 8, 205 The entropy rate of independent and identically distributed events can on average be

More information

Chapter 2 Review of Classical Information Theory

Chapter 2 Review of Classical Information Theory Chapter 2 Review of Classical Information Theory Abstract This chapter presents a review of the classical information theory which plays a crucial role in this thesis. We introduce the various types of

More information

Math 180B, Winter Notes on covariance and the bivariate normal distribution

Math 180B, Winter Notes on covariance and the bivariate normal distribution Math 180B Winter 015 Notes on covariance and the bivariate normal distribution 1 Covariance If and are random variables with finite variances then their covariance is the quantity 11 Cov := E[ µ ] where

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Chapter I: Fundamental Information Theory

Chapter I: Fundamental Information Theory ECE-S622/T62 Notes Chapter I: Fundamental Information Theory Ruifeng Zhang Dept. of Electrical & Computer Eng. Drexel University. Information Source Information is the outcome of some physical processes.

More information

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion

Today. Probability and Statistics. Linear Algebra. Calculus. Naïve Bayes Classification. Matrix Multiplication Matrix Inversion Today Probability and Statistics Naïve Bayes Classification Linear Algebra Matrix Multiplication Matrix Inversion Calculus Vector Calculus Optimization Lagrange Multipliers 1 Classical Artificial Intelligence

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information

Module 1. Introduction to Digital Communications and Information Theory. Version 2 ECE IIT, Kharagpur

Module 1. Introduction to Digital Communications and Information Theory. Version 2 ECE IIT, Kharagpur Module ntroduction to Digital Communications and nformation Theory Lesson 3 nformation Theoretic Approach to Digital Communications After reading this lesson, you will learn about Scope of nformation Theory

More information

ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 2017

ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 2017 ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 207 Author: Galen Reeves Last Modified: August 3, 207 Outline of lecture: 2. Quantifying Information..................................

More information

INTRODUCTION TO INFORMATION THEORY

INTRODUCTION TO INFORMATION THEORY INTRODUCTION TO INFORMATION THEORY KRISTOFFER P. NIMARK These notes introduce the machinery of information theory which is a eld within applied mathematics. The material can be found in most textbooks

More information

CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University

CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University CS 591, Lecture 2 Data Analytics: Theory and Applications Boston University Charalampos E. Tsourakakis January 25rd, 2017 Probability Theory The theory of probability is a system for making better guesses.

More information

Information Theory in Intelligent Decision Making

Information Theory in Intelligent Decision Making Information Theory in Intelligent Decision Making Adaptive Systems and Algorithms Research Groups School of Computer Science University of Hertfordshire, United Kingdom June 7, 2015 Information Theory

More information

Local Differential Privacy

Local Differential Privacy Local Differential Privacy Peter Kairouz Department of Electrical & Computer Engineering University of Illinois at Urbana-Champaign Joint work with Sewoong Oh (UIUC) and Pramod Viswanath (UIUC) / 33 Wireless

More information

Pattern Recognition 2

Pattern Recognition 2 Pattern Recognition 2 KNN,, Dr. Terence Sim School of Computing National University of Singapore Outline 1 2 3 4 5 Outline 1 2 3 4 5 The Bayes Classifier is theoretically optimum. That is, prob. of error

More information

Noisy-Channel Coding

Noisy-Channel Coding Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/05264298 Part II Noisy-Channel Coding Copyright Cambridge University Press 2003.

More information

Statistical Data Analysis

Statistical Data Analysis DS-GA 0 Lecture notes 8 Fall 016 1 Descriptive statistics Statistical Data Analysis In this section we consider the problem of analyzing a set of data. We describe several techniques for visualizing the

More information

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73 1/ 73 Information Theory M1 Informatique (parcours recherche et innovation) Aline Roumy INRIA Rennes January 2018 Outline 2/ 73 1 Non mathematical introduction 2 Mathematical introduction: definitions

More information

Information measures in simple coding problems

Information measures in simple coding problems Part I Information measures in simple coding problems in this web service in this web service Source coding and hypothesis testing; information measures A(discrete)source is a sequence {X i } i= of random

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

ELEMENT OF INFORMATION THEORY

ELEMENT OF INFORMATION THEORY History Table of Content ELEMENT OF INFORMATION THEORY O. Le Meur olemeur@irisa.fr Univ. of Rennes 1 http://www.irisa.fr/temics/staff/lemeur/ October 2010 1 History Table of Content VERSION: 2009-2010:

More information

Bivariate Distributions

Bivariate Distributions STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 17 Néhémy Lim Bivariate Distributions 1 Distributions of Two Random Variables Definition 1.1. Let X and Y be two rrvs on probability space (Ω, A, P).

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Regression Analysis. Ordinary Least Squares. The Linear Model

Regression Analysis. Ordinary Least Squares. The Linear Model Regression Analysis Linear regression is one of the most widely used tools in statistics. Suppose we were jobless college students interested in finding out how big (or small) our salaries would be 20

More information

Lab 07 Introduction to Econometrics

Lab 07 Introduction to Econometrics Lab 07 Introduction to Econometrics Learning outcomes for this lab: Introduce the different typologies of data and the econometric models that can be used Understand the rationale behind econometrics Understand

More information

Week 3: Simple Linear Regression

Week 3: Simple Linear Regression Week 3: Simple Linear Regression Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED 1 Outline

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression BSTT523: Kutner et al., Chapter 1 1 Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression Introduction: Functional relation between

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Information in Biology

Information in Biology Lecture 3: Information in Biology Tsvi Tlusty, tsvi@unist.ac.kr Living information is carried by molecular channels Living systems I. Self-replicating information processors Environment II. III. Evolve

More information

Panel Data. March 2, () Applied Economoetrics: Topic 6 March 2, / 43

Panel Data. March 2, () Applied Economoetrics: Topic 6 March 2, / 43 Panel Data March 2, 212 () Applied Economoetrics: Topic March 2, 212 1 / 43 Overview Many economic applications involve panel data. Panel data has both cross-sectional and time series aspects. Regression

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Part VII. Accounting for the Endogeneity of Schooling. Endogeneity of schooling Mean growth rate of earnings Mean growth rate Selection bias Summary

Part VII. Accounting for the Endogeneity of Schooling. Endogeneity of schooling Mean growth rate of earnings Mean growth rate Selection bias Summary Part VII Accounting for the Endogeneity of Schooling 327 / 785 Much of the CPS-Census literature on the returns to schooling ignores the choice of schooling and its consequences for estimating the rate

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1. What is the difference between a deterministic model and a probabilistic model? (Two or three sentences only). 2. What is the

More information

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 Permuted and IROM Department, McCombs School of Business The University of Texas at Austin 39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017 1 / 36 Joint work

More information

ARE ENTROPIC BELL INEQUALITIES IMPLIED BY THE SECOND LAW?

ARE ENTROPIC BELL INEQUALITIES IMPLIED BY THE SECOND LAW? ARE ENTROPIC BELL INEQUALITIES IMPLIED BY THE SECOND LAW? Ian T. Durham Department of Physics Saint Anselm College 100 Saint Anselm Drive, Box 1759 Manchester, NH 03102 idurham@anselm.edu (Updated: March

More information

Introduction to Matrix Algebra and the Multivariate Normal Distribution

Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Structural Equation Modeling Lecture #2 January 18, 2012 ERSH 8750: Lecture 2 Motivation for Learning the Multivariate

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

Quadratic and Other Inequalities in One Variable

Quadratic and Other Inequalities in One Variable Quadratic and Other Inequalities in One Variable If a quadratic equation is not in the standard form equaling zero, but rather uses an inequality sign ( , ), the equation is said to be a quadratic

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

Information Theory: Entropy, Markov Chains, and Huffman Coding

Information Theory: Entropy, Markov Chains, and Huffman Coding The University of Notre Dame A senior thesis submitted to the Department of Mathematics and the Glynn Family Honors Program Information Theory: Entropy, Markov Chains, and Huffman Coding Patrick LeBlanc

More information

MATH 118 FINAL EXAM STUDY GUIDE

MATH 118 FINAL EXAM STUDY GUIDE MATH 118 FINAL EXAM STUDY GUIDE Recommendations: 1. Take the Final Practice Exam and take note of questions 2. Use this study guide as you take the tests and cross off what you know well 3. Take the Practice

More information

Information in Biology

Information in Biology Information in Biology CRI - Centre de Recherches Interdisciplinaires, Paris May 2012 Information processing is an essential part of Life. Thinking about it in quantitative terms may is useful. 1 Living

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

Master s Written Examination - Solution

Master s Written Examination - Solution Master s Written Examination - Solution Spring 204 Problem Stat 40 Suppose X and X 2 have the joint pdf f X,X 2 (x, x 2 ) = 2e (x +x 2 ), 0 < x < x 2

More information

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013

AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 AQI: Advanced Quantum Information Lecture 6 (Module 2): Distinguishing Quantum States January 28, 2013 Lecturer: Dr. Mark Tame Introduction With the emergence of new types of information, in this case

More information

4.1 Least Squares Prediction 4.2 Measuring Goodness-of-Fit. 4.3 Modeling Issues. 4.4 Log-Linear Models

4.1 Least Squares Prediction 4.2 Measuring Goodness-of-Fit. 4.3 Modeling Issues. 4.4 Log-Linear Models 4.1 Least Squares Prediction 4. Measuring Goodness-of-Fit 4.3 Modeling Issues 4.4 Log-Linear Models y = β + β x + e 0 1 0 0 ( ) E y where e 0 is a random error. We assume that and E( e 0 ) = 0 var ( e

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

11. Regression and Least Squares

11. Regression and Least Squares 11. Regression and Least Squares Prof. Tesler Math 186 Winter 2016 Prof. Tesler Ch. 11: Linear Regression Math 186 / Winter 2016 1 / 23 Regression Given n points ( 1, 1 ), ( 2, 2 ),..., we want to determine

More information

The Informativeness of k-means for Learning Mixture Models

The Informativeness of k-means for Learning Mixture Models The Informativeness of k-means for Learning Mixture Models Vincent Y. F. Tan (Joint work with Zhaoqiang Liu) National University of Singapore June 18, 2018 1/35 Gaussian distribution For F dimensions,

More information