2015 Duke-Industry Statistics Symposium. Sample Size Determination for a Three-arm Equivalence Trial of Poisson and Negative Binomial Data

Size: px
Start display at page:

Download "2015 Duke-Industry Statistics Symposium. Sample Size Determination for a Three-arm Equivalence Trial of Poisson and Negative Binomial Data"

Transcription

1 2015 Duke-Industry Statistics Symposium Sample Size Determination for a Three-arm Equivalence Trial of Poisson and Negative Binomial Data Victoria Chang Senior Statistician Biometrics and Data Management October 23 rd, 2015

2 Outline Equivalence Assessment: The Gold Standard Design Hypotheses based on Regression Model Numerical Results Summary

3 Equivalence Assessment: The Gold Standard Design In a three-arm clinical trial, an equivalence assessment may be carried out by demonstrating the following two superiority tests and one equivalence test Superiority Test H H 01 a1 (at α = 2.5%) : T 0 H P 02 : m R - m P 0 and : 0 H a2 : m R - m P > 0 T P Equivalence Test H H 03 a3 : : T * 1 R * 1 T R or * 2 (at α = 5%) T R * 2 or T m H03 : T 1 or ³ d 2 R m R : T H a R 3

4 Equivalence Test for Discrete Data Poisson and Negative Binomial Distributed Data Example: Frequency of adverse events, asthma, migraines Assume lower incidence rate is more favorable Poisson : Mean=Variance Negative Binomial: overdispersion parameter 4

5 Regression Model Let Y ij ~Pois μ j t ij and Z ij ~NB μ j t ij, k, where i = 1,2 n j, j = 0,1,2 Link Function: log(μ j t ij ) = log t ij + β 0 + β 1 x i1 + β 2 x i2 x i1 and x i2 are indicator functions Then μ 0 = e β 0 μ 1 = e β 0+β 1 μ 2 = e β 0+β 2 5

6 Hypotheses Superiority Test Equivalence Test H 01 : μ 2 1 H μ 02 : μ 2 δ 0 μ 1 or μ 2 δ 1 μ 2 1 α = 2.5% α = 5% H a1 : μ 2 μ 0 < 1 H a2 : δ 1 < μ 2 μ 1 < δ 2 H 01 : β 2 0 H 02 : β 2 β 1 δ 1 H 03 : β 2 β 1 δ 2 H a1 : β 2 < 0 H a2 : β 2 β 1 > δ 1 H a3 : β 2 β 1 < δ 2 where δ i = logδ i i = 1,2 Assume smaller incidence rate is more favorable 6

7 Test Statistics and Decision Rule Test Statistics: T 1 = β 2 V 01, T 2 = β 2 β 1 δ 1 V 02, T 3 = β 2 β 1 δ 2 V 03 where V 0i is the variance under H 0i, i = 1,2,3 Decision Rule: Claim equivalence of the test and the reference treatments by rejecting all null hypotheses if T 1 < Z 0.025, T 2 < Z 0.05 and T 3 > Z

8 Power Function Power (μ 0, μ 1, μ 2, δ 1, δ 2 ) P T 1 < Z 0.025, T 2 < Z 0.05, T 3 > Z 0.05 μ 0, μ 1, μ 2, δ 1, δ 2 P μ0,μ 1,μ 2,δ 1,δ 2 Z 1 < Z V 01 β 2 V a1, Z 0.05 V 02 β 2 β 1 + δ 1 V a2 < Z 2 < Z 0.05 V 03 β 2 β 1 + δ 2 V a2 Z 1 = β 2 β 2 V a1, Z 2 = β 2 β 1 (β 2 β 1 ) V a2 (Z 1, Z 2 )~N 0 0, 1 ρ with ρ = Var β 2 Cov(β 1,β 2 ) ρ 1 Var β 2 Var(β 2 β 1 ) V 01, V 02, V 03 are the variances of β 2 and β 2 β 1 under null V a1, V a2 are the variances of β 2 and β 2 β 1 under alternative space 8

9 Variance Derivation for Poisson Model 2 j=0 n j l θ; Y = μ j t ij + y ij log μ j t ij logy ij! i=1 Assume the exposure time of the subjects in each arm are the same and denoted as t 0, t 1 and t 2 I 1 = 1 p p+q 1 q 1 1 p+r Var β 1 = p 1 + q 1 = n 0 t 0 μ 0 n 1 t 1 μ 1 Var β 2 = p 1 + r 1 = n 0 t 0 μ 0 n 2 t 2 μ 2 Var β 2 β 1 = q 1 + r 1 = n 1 t 1 μ 1 n 2 t 2 μ 2 r where p = n 0 t 0 e β 0, q = n 1 t 1 e β 0+β 1 and r = n 2 t 2 e β 0+β 2 9

10 Variances under Null Derive V 01 under H 01 : β 2 = 0 μ 0 = μ 2 RMLE: μ 0 = μ 2 = μ 0n 0 t 0 +μ 2 n 2 t 2 n 0 t 0 +n 2 t 2, μ 1 = μ 1 V 01 = Var(β 2 ) H 01 = 1 n 0 t 0 μ n 2 t 2 μ 2 Derive V 02, V 03 under H 02, H 03 : β 2 β 1 = δ i μ 2 = e δ iμ 1 Apply Lagrange multiplier RMLE: μ 1 = μ 1n 1 t 1 +μ 2 n 2 t 2 e δ in 2 t 2 +n 1 t 1, μ 2 = e δ iμ 1 V 0i = Var(β 2 β 1 ) H 0i = 1 n 1 t 1 μ n 2 t 2 μ 2 where i = 1,2 10

11 Sample Size Example for Poisson Data Power = 80% δ 1, δ 2 = 0.8,1.25 n 1 = a n 0 and n 2 = b n 0 μ t μ 0 μ 1 μ 2 /μ 1 (a, b) n 0 Total (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) /0.9 (1,1) (1,2) (2,2)

12 Sample Size Example for Poisson Data Power = 80% δ 1, δ 2 = 0.8,1.25 n 1 = a n 0 and n 2 = b n 0 μ t μ 0 μ 1 μ 2 /μ 1 (a, b) n 0 Total (1,1) (test better) (1,2) (2,2) (1,1) (1,2) (2,2) /0.9 (1,1) (reference better) (1,2) (2,2)

13 power power Power vs. sample size for the placebo arm of Poisson and negative binomial data for T = 3, μ 1 = 1. 8, μ 2 = 2, a = b = 2, and dispersion parameter k =1. Poisson mut=3_mu1=1.8_mu2=2_a=2_b=2 mut=3_mu1=1.8_mu2=2_a=2_b=2 Negative Binomial Mu0=3 μ 0 = 3 μmu0=2.2 0 = μmu0=2.1 0 = Mu0=3 μ 0 = 3 μmu0=2.2 0 = μmu0=2.1 0 = n0 n n0n 0 13

14 power power Power vs. placebo incidence rate of Poisson and negative binomial data for T = 1, μ 1 = μ 2 = 2, a = b = 2 and dispersion parameter k =1. Poisson Poisson_mut=1_Mu1=2_Mu2=2_a=2_b=2 Negative Binomial NB_Mut=1_Mu1=2_Mu2=2_a=2_b=2_k=1 nn.0=100 0 = nn.0=200 0 = nn.0=100 0 = nn.0=200 0 = mu0 μ μmu0 0 14

15 power power Power vs. incidence rate of test treatment of both Poisson and negative binomial data for T = 1, μ 0 = 3, μ 1 = 2, n 0 = 200 and k =1. Poisson Poisson_Mut=1,Mu0=3,Mu1=2,n0=200 Negative Binomial NB_mut=1_Mu0=3_Mu1=2_N0=200 (a,b)=(3,3) (a,b)=(1,5) (a,b)=(5,1) (a,b)=(3,3) (a,b)=(1,5) (a,b)=(5,1) μ μ μ 2 /μ 1 mu μ 2 /μ 1 Mu

16 power power Misuse of a Poisson Model Power vs. k for different assigned parameter values with required sample size calculated based on the Poisson Model. Power vs. k for different assigned parameter values. Each power curve is generated under the condition of total sample size = 500. k 0 Poisson T = mut=3_mu1=2.4 3, μ 1 = 2.4 T = 3, μ 1 = mut=3_mu1=2.4_n0= , n 0 = 100, a, b = 2,2 μmu1/mu2=1, 2 /μ 1 = 1, (a,b)=(2,2) (a,b)=(2,2) μmu1/mu2=1, 2 /μ 1 = 1, (a,b)=(1,2) (a,b)=(1,2) μmu1/mu2=0.9, 2 /μ 1 = (a,b)=(2,2) (a,b)=(2,2) μmu1/mu2=0.9, 2 /μ 1 = (a,b)=(1,2) (a,b)=(1,2) μmu1/mu2=1/0.9, 2 /μ 1 = 1/0.9, (a,b)=(2,2) (a,b)=(2,2) μmu1/mu2=1/0.9, 2 /μ 1 = 1/0.9, (a,b)=(1,2) μ 2 Mu1/Mu2=1 /μ 1 = 1 μ 2 Mu1/Mu2=0.9 /μ 1 = μ 2 Mu1/Mu2=1/0.9 /μ 1 = 1/ k k 16

17 Summary Poisson and Negative Binomial Data Power is affected by μ 0 when it is very close to μ 2, otherwise the power is dominated by the equivalence test. When sample size for the test arm and the reference arm are equal, it gives the highest power. Assign more subjects to the better treatment gives a higher power for Poisson Model. A wrong model may cause a very low power and incorrect interpretation. 17

18 Reference Pigeot, I., Schafer, J., Rohmel, J., & Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Stat Med, 22(6), Rohmel, J., & Pigeot, I. (2010). A comparison of multiple testing procedures for the gold standard non-inferiority trial. J Biopharm Stat, 20(5), Esinhart, J. D., & Chinchilli, V. M. (1994). Extension to the use of tolerance intervals for the assessment of individual bioequivalence. J Biopharm Stat, 4(1), EMEA (2001). Note for Guidance on the Investigation of Bioavailability and Bioequivalence, The European Medicines Agency Evaluation of Medicines for Human Use. EMEA/EWP/QWP/1401/98, London, United Kingdom. FDA (2001). Guidance on Statistical Approaches to Establishing Bioequivalence, Center for Drug Evaluation and Research, the US Food and Drug Administration, Rockville, Maryland, USA. FDA (2003a). Guidance on Bioavailability and Bioequivalence Studies for Orally Administrated Drug Products General Considerations, Center for Drug Evaluation and Research, the US Food and Drug Administration, Rockville, Maryland, USA. FDA (2003b). Guidance on Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, Center for Drug Evaluation and Research, the US Food and Drug Administration, Rockville, Maryland, USA. Friede, T., Mitchell, C., & Müller Velten, G. (2007). Blinded Sample Size Reestimation in Non Inferiority Trials with Binary Endpoints. Biometrical Journal, 49(6), Generic drug (2013). from Hsieh, T-C., Chow, S.-C., Liu, J-P., Hsiao, C-F., Chi, E. (2010). Statistical test for evaluation of biosimilarity in variability of follow-on biologics. J. Biopharm. Stat. 20(1): Hauschke, D., Kieser, M., Diletti, E., and Burke, M. (1999). Sample Size Determination for Proving Equivalence Based on the Ratio of Two Means for Normally Distributed Data. Stat Med,18: Hilton, J. F. (2006). Designs of superiority and noninferiority trials for binary responses are noninterchangeable. Biometrical journal, 48(6),

19 Thank you! Comments and Questions

Blinded sample size reestimation with count data

Blinded sample size reestimation with count data Blinded sample size reestimation with count data Tim Friede 1 and Heinz Schmidli 2 1 Universtiy Medical Center Göttingen, Germany 2 Novartis Pharma AG, Basel, Switzerland BBS Early Spring Conference 2010

More information

6 Sample Size Calculations

6 Sample Size Calculations 6 Sample Size Calculations A major responsibility of a statistician: sample size calculation. Hypothesis Testing: compare treatment 1 (new treatment) to treatment 2 (standard treatment); Assume continuous

More information

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials

Testing a secondary endpoint after a group sequential test. Chris Jennison. 9th Annual Adaptive Designs in Clinical Trials Testing a secondary endpoint after a group sequential test Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 9th Annual Adaptive Designs in

More information

STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS

STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS & STUDY OF THE APPLICABILTY OF CONTENT UNIFORMITY AND DISSOLUTION VARIATION TEST ON ROPINIROLE HYDROCHLORIDE TABLETS Edina Vranić¹*, Alija Uzunović² ¹ Department of Pharmaceutical Technology, Faculty of

More information

Adaptive designs beyond p-value combination methods. Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013

Adaptive designs beyond p-value combination methods. Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013 Adaptive designs beyond p-value combination methods Ekkehard Glimm, Novartis Pharma EAST user group meeting Basel, 31 May 2013 Outline Introduction Combination-p-value method and conditional error function

More information

Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error

Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error Comparison of Different Methods of Sample Size Re-estimation for Therapeutic Equivalence (TE) Studies Protecting the Overall Type 1 Error by Diane Potvin Outline 1. Therapeutic Equivalence Designs 2. Objectives

More information

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN Journal of Biopharmaceutical Statistics, 15: 889 901, 2005 Copyright Taylor & Francis, Inc. ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500265561 TESTS FOR EQUIVALENCE BASED ON ODDS RATIO

More information

Superchain Procedures in Clinical Trials. George Kordzakhia FDA, CDER, Office of Biostatistics Alex Dmitrienko Quintiles Innovation

Superchain Procedures in Clinical Trials. George Kordzakhia FDA, CDER, Office of Biostatistics Alex Dmitrienko Quintiles Innovation August 01, 2012 Disclaimer: This presentation reflects the views of the author and should not be construed to represent the views or policies of the U.S. Food and Drug Administration Introduction We describe

More information

- 1 - By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus)

- 1 - By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus) - 1 - BIOAVAILABILIY AND BIOEQUIVALENCE By H. S Steyn, Statistical Consultation Services, North-West University (Potchefstroom Campus) 1. Bioavailability (see Westlake, 1988) 1.1 Absorption: he aim is

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Individual bioequivalence testing under 2 3 designs

Individual bioequivalence testing under 2 3 designs STATISTICS IN MEDICINE Statist. Med. 00; 1:69 648 (DOI: 10.100/sim.1056) Individual bioequivalence testing under 3 designs Shein-Chung Chow 1, Jun Shao ; and Hansheng Wang 1 Statplus Inc.; Heston Hall;

More information

Adaptive Treatment Selection with Survival Endpoints

Adaptive Treatment Selection with Survival Endpoints Adaptive Treatment Selection with Survival Endpoints Gernot Wassmer Institut für Medizinische Statisti, Informati und Epidemiologie Universität zu Köln Joint wor with Marus Roters, Omnicare Clinical Research,

More information

The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints

The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints M. Mielke Department of Mathematical Stochastics, University Göttingen e-mail: mmielke@math.uni-goettingen.de

More information

Power calculation for non-inferiority trials comparing two Poisson distributions

Power calculation for non-inferiority trials comparing two Poisson distributions Paper PK01 Power calculation for non-inferiority trials comparing two Poisson distributions Corinna Miede, Accovion GmbH, Marburg, Germany Jochen Mueller-Cohrs, Accovion GmbH, Marburg, Germany Abstract

More information

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics

A Brief Introduction to Intersection-Union Tests. Jimmy Akira Doi. North Carolina State University Department of Statistics Introduction A Brief Introduction to Intersection-Union Tests Often, the quality of a product is determined by several parameters. The product is determined to be acceptable if each of the parameters meets

More information

Division of Pharmacoepidemiology And Pharmacoeconomics Technical Report Series

Division of Pharmacoepidemiology And Pharmacoeconomics Technical Report Series Division of Pharmacoepidemiology And Pharmacoeconomics Technical Report Series Year: 2013 #006 The Expected Value of Information in Prospective Drug Safety Monitoring Jessica M. Franklin a, Amanda R. Patrick

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design

Determination of sample size for two stage sequential designs in bioequivalence studies under 2x2 crossover design Science Journal of Clinical Medicine 2014; 3(5): 82-90 Published online September 30, 2014 (http://www.sciencepublishinggroup.com/j/sjcm) doi: 10.11648/j.sjcm.20140305.12 ISSN: 2327-2724 (Print); ISSN:

More information

Statistics and Probability Letters. Using randomization tests to preserve type I error with response adaptive and covariate adaptive randomization

Statistics and Probability Letters. Using randomization tests to preserve type I error with response adaptive and covariate adaptive randomization Statistics and Probability Letters ( ) Contents lists available at ScienceDirect Statistics and Probability Letters journal homepage: wwwelseviercom/locate/stapro Using randomization tests to preserve

More information

Adaptive Designs: Why, How and When?

Adaptive Designs: Why, How and When? Adaptive Designs: Why, How and When? Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj ISBS Conference Shanghai, July 2008 1 Adaptive designs:

More information

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018 Sample Size Re-estimation in Clinical Trials: Dealing with those unknowns Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj University of Kyoto,

More information

Performance of Bayesian methods in non-inferiority tests based on relative risk and odds ratio for dichotomous data

Performance of Bayesian methods in non-inferiority tests based on relative risk and odds ratio for dichotomous data Performance of Bayesian methods in non-inferiority tests based on relative risk and odds ratio for dichotomous data Muhtarjan Osman and Sujit K. Ghosh Department of Statistics, NC State University, Raleigh,

More information

Memorial Sloan-Kettering Cancer Center

Memorial Sloan-Kettering Cancer Center Memorial Sloan-Kettering Cancer Center Memorial Sloan-Kettering Cancer Center, Dept. of Epidemiology & Biostatistics Working Paper Series Year 2010 Paper 19 Assessing noninferiority in a three-arm trial

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & Informatics Colorado School of Public Health University of Colorado Denver

More information

The likelihood ratio test for non-standard hypotheses near the boundary of the null with application to the assessment of non-inferiority

The likelihood ratio test for non-standard hypotheses near the boundary of the null with application to the assessment of non-inferiority Statistics & Decisions 7, 75 9 (009) / DOI 0.54/stnd.009.0 c Oldenbourg Wissenschaftsverlag, München 009 The likelihood ratio test for non-standard hypotheses near the boundary of the null with application

More information

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS

SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE SEQUENTIAL DESIGN IN CLINICAL TRIALS Journal of Biopharmaceutical Statistics, 18: 1184 1196, 2008 Copyright Taylor & Francis Group, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400802369053 SAMPLE SIZE RE-ESTIMATION FOR ADAPTIVE

More information

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd.

Paper Equivalence Tests. Fei Wang and John Amrhein, McDougall Scientific Ltd. Paper 11683-2016 Equivalence Tests Fei Wang and John Amrhein, McDougall Scientific Ltd. ABSTRACT Motivated by the frequent need for equivalence tests in clinical trials, this paper provides insights into

More information

Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances. Acknowledgements:

Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances. Acknowledgements: Tutorial 3: Power and Sample Size for the Two-sample t-test with Equal Variances Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements: The project was supported in

More information

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 8--006 Assessing the Effect of Prior Distribution Assumption on the Variance

More information

The assessment and planning of non-inferiority trials for retention of effect hypotheses - towards a general approach

The assessment and planning of non-inferiority trials for retention of effect hypotheses - towards a general approach The assessment and planning of non-inferiority trials for retention of effect hypotheses - towards a general approach M. Miele and A. Mun arxiv:0912.4169v1 [stat.me] 21 Dec 2009 1. Introduction Institute

More information

On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons

On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons On Assessing Bioequivalence and Interchangeability between Generics Based on Indirect Comparisons Jiayin Zheng 1, Shein-Chung Chow 1 and Mengdie Yuan 2 1 Department of Biostatistics & Bioinformatics, Duke

More information

Overrunning in Clinical Trials: a Methodological Review

Overrunning in Clinical Trials: a Methodological Review Overrunning in Clinical Trials: a Methodological Review Dario Gregori Unit of Biostatistics, Epidemiology and Public Health Department of Cardiac, Thoracic and Vascular Sciences dario.gregori@unipd.it

More information

Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups. Acknowledgements:

Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups. Acknowledgements: Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck Acknowledgements:

More information

Sample Size Determination

Sample Size Determination Sample Size Determination 018 The number of subjects in a clinical study should always be large enough to provide a reliable answer to the question(s addressed. The sample size is usually determined by

More information

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function

More information

Two-Stage Sequential Designs Regulatory Perspective

Two-Stage Sequential Designs Regulatory Perspective Wikimedia Commons 2007 Sokoljan Creative Commons SA 3.0 Unported Two-Stage Sequential Designs Regulatory Perspective Helmut Schütz BA/BE Workshop Prague, 22 September 2016 1 Disclaimer I am not a regulator.

More information

Technical Manual. 1 Introduction. 1.1 Version. 1.2 Developer

Technical Manual. 1 Introduction. 1.1 Version. 1.2 Developer Technical Manual 1 Introduction 1 2 TraditionalSampleSize module: Analytical calculations in fixed-sample trials 3 3 TraditionalSimulations module: Simulation-based calculations in fixed-sample trials

More information

Dose-response modeling with bivariate binary data under model uncertainty

Dose-response modeling with bivariate binary data under model uncertainty Dose-response modeling with bivariate binary data under model uncertainty Bernhard Klingenberg 1 1 Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267 and Institute of Statistics,

More information

Group Sequential Designs: Theory, Computation and Optimisation

Group Sequential Designs: Theory, Computation and Optimisation Group Sequential Designs: Theory, Computation and Optimisation Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj 8th International Conference

More information

Finding Critical Values with Prefixed Early. Stopping Boundaries and Controlled Type I. Error for A Two-Stage Adaptive Design

Finding Critical Values with Prefixed Early. Stopping Boundaries and Controlled Type I. Error for A Two-Stage Adaptive Design Finding Critical Values with Prefixed Early Stopping Boundaries and Controlled Type I Error for A Two-Stage Adaptive Design Jingjing Chen 1, Sanat K. Sarkar 2, and Frank Bretz 3 September 27, 2009 1 ClinForce-GSK

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design

Comparing Adaptive Designs and the. Classical Group Sequential Approach. to Clinical Trial Design Comparing Adaptive Designs and the Classical Group Sequential Approach to Clinical Trial Design Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Package BayesNI. February 19, 2015

Package BayesNI. February 19, 2015 Package BayesNI February 19, 2015 Type Package Title BayesNI: Bayesian Testing Procedure for Noninferiority with Binary Endpoints Version 0.1 Date 2011-11-11 Author Sujit K Ghosh, Muhtarjan Osman Maintainer

More information

Estimation in Flexible Adaptive Designs

Estimation in Flexible Adaptive Designs Estimation in Flexible Adaptive Designs Werner Brannath Section of Medical Statistics Core Unit for Medical Statistics and Informatics Medical University of Vienna BBS and EFSPI Scientific Seminar on Adaptive

More information

A Type of Sample Size Planning for Mean Comparison in Clinical Trials

A Type of Sample Size Planning for Mean Comparison in Clinical Trials Journal of Data Science 13(2015), 115-126 A Type of Sample Size Planning for Mean Comparison in Clinical Trials Junfeng Liu 1 and Dipak K. Dey 2 1 GCE Solutions, Inc. 2 Department of Statistics, University

More information

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints

The Design of Group Sequential Clinical Trials that Test Multiple Endpoints The Design of Group Sequential Clinical Trials that Test Multiple Endpoints Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Bruce Turnbull

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

Adaptive Dunnett Tests for Treatment Selection

Adaptive Dunnett Tests for Treatment Selection s for Treatment Selection Franz König 1 Werner Brannath 1 Frank Bretz 2 Martin Posch 1 1 Section of Medical Statistics Medical University of Vienna 2 Novartis Pharma AG Basel Workshop Adaptive Designs

More information

Evidence synthesis for a single randomized controlled trial and observational data in small populations

Evidence synthesis for a single randomized controlled trial and observational data in small populations Evidence synthesis for a single randomized controlled trial and observational data in small populations Steffen Unkel, Christian Röver and Tim Friede Department of Medical Statistics University Medical

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Statistical Approaches to Establishing Bioequivalence U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) January

More information

Sleep data, two drugs Ch13.xls

Sleep data, two drugs Ch13.xls Model Based Statistics in Biology. Part IV. The General Linear Mixed Model.. Chapter 13.3 Fixed*Random Effects (Paired t-test) ReCap. Part I (Chapters 1,2,3,4), Part II (Ch 5, 6, 7) ReCap Part III (Ch

More information

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers

Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Approximate analysis of covariance in trials in rare diseases, in particular rare cancers Stephen Senn (c) Stephen Senn 1 Acknowledgements This work is partly supported by the European Union s 7th Framework

More information

SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE

SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE A HYPOTHESIS TEST APPROACH Ismaïl Ahmed 1,2, Françoise Haramburu 3,4, Annie Fourrier-Réglat 3,4,5, Frantz Thiessard 4,5,6,

More information

Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim

Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim Type I error rate control in adaptive designs for confirmatory clinical trials with treatment selection at interim Frank Bretz Statistical Methodology, Novartis Joint work with Martin Posch (Medical University

More information

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES Journal of Biopharmaceutical Statistics, 16: 1 14, 2006 Copyright Taylor & Francis, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500406421 AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY

More information

Reports of the Institute of Biostatistics

Reports of the Institute of Biostatistics Reports of the Institute of Biostatistics No 02 / 2008 Leibniz University of Hannover Natural Sciences Faculty Title: Properties of confidence intervals for the comparison of small binomial proportions

More information

Group Sequential Tests for Delayed Responses

Group Sequential Tests for Delayed Responses Group Sequential Tests for Delayed Responses Lisa Hampson Department of Mathematics and Statistics, Lancaster University, UK Chris Jennison Department of Mathematical Sciences, University of Bath, UK Read

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

Mathematical statistics

Mathematical statistics October 20 th, 2018 Lecture 17: Tests of Hypotheses Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Testing noninferiority in three-armed clinical trials based on the likelihood ratio statistics

Testing noninferiority in three-armed clinical trials based on the likelihood ratio statistics Testing noninferiority in three-armed clinical trials based on the likelihood ratio statistics A. Munk Department of Mathematical Stochastics, University Göttingen e-mail: munk@math.uni-goettingen.de M.

More information

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping

Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming. and Optimal Stopping Interim Monitoring of Clinical Trials: Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj

More information

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Valen E. Johnson Texas A&M University February 27, 2014 Valen E. Johnson Texas A&M University Uniformly most powerful Bayes

More information

Study Design: Sample Size Calculation & Power Analysis

Study Design: Sample Size Calculation & Power Analysis Study Design: Sample Size Calculation & Power Analysis RCMAR/CHIME/EXPORT April 21, 2008 Honghu Liu, Ph.D. Contents Background Common Designs Examples Computer Software Summary & Discussion Background

More information

Test Volume 11, Number 1. June 2002

Test Volume 11, Number 1. June 2002 Sociedad Española de Estadística e Investigación Operativa Test Volume 11, Number 1. June 2002 Optimal confidence sets for testing average bioequivalence Yu-Ling Tseng Department of Applied Math Dong Hwa

More information

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION FOR SAMPLE OF RAW DATA (E.G. 4, 1, 7, 5, 11, 6, 9, 7, 11, 5, 4, 7) BE ABLE TO COMPUTE MEAN G / STANDARD DEVIATION MEDIAN AND QUARTILES Σ ( Σ) / 1 GROUPED DATA E.G. AGE FREQ. 0-9 53 10-19 4...... 80-89

More information

Group sequential designs with negative binomial data

Group sequential designs with negative binomial data Group sequential designs with negative binomial data Ekkehard Glimm 1 Tobias Mütze 2,3 1 Statistical Methodology, Novartis, Basel, Switzerland 2 Department of Medical Statistics, University Medical Center

More information

Bayesian Average Error Based Approach to. Sample Size Calculations for Hypothesis Testing

Bayesian Average Error Based Approach to. Sample Size Calculations for Hypothesis Testing Bayesian Average Error Based Approach to Sample Size Calculations for Hypothesis Testing Eric M Reyes and Sujit K Ghosh Department of Statistics, North Carolina State University, NC 27695, USA Last Updated:

More information

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping

Optimising Group Sequential Designs. Decision Theory, Dynamic Programming. and Optimal Stopping : Decision Theory, Dynamic Programming and Optimal Stopping Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj InSPiRe Conference on Methodology

More information

Adaptive clinical trials with subgroup selection

Adaptive clinical trials with subgroup selection Adaptive clinical trials with subgroup selection Nigel Stallard 1, Tim Friede 2, Nick Parsons 1 1 Warwick Medical School, University of Warwick, Coventry, UK 2 University Medical Center Göttingen, Göttingen,

More information

Session 9 Power and sample size

Session 9 Power and sample size Session 9 Power and sample size 9.1 Measure of the treatment difference 9.2 The power requirement 9.3 Application to a proportional odds analysis 9.4 Limitations and alternative approaches 9.5 Sample size

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 18 Outline 1 Logistic regression for Binary data 2 Poisson regression for Count data 2 / 18 GLM Let Y denote a binary response variable. Each observation

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

Mohammed. Research in Pharmacoepidemiology National School of Pharmacy, University of Otago

Mohammed. Research in Pharmacoepidemiology National School of Pharmacy, University of Otago Mohammed Research in Pharmacoepidemiology (RIPE) @ National School of Pharmacy, University of Otago What is zero inflation? Suppose you want to study hippos and the effect of habitat variables on their

More information

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Materials Needed: Bags of popcorn, watch with second hand or microwave with digital timer. Instructions: Follow the instructions on the

More information

Two-Stage Sequential Designs Industry Perspective

Two-Stage Sequential Designs Industry Perspective Wikimedia Commons 2007 Sokoljan Creative Commons SA 3.0 Unported Two-Stage Sequential Designs Industry Perspective Helmut Schütz BA/BE Workshop Prague, 22 September 2016 1 To bear in Remembrance... Whenever

More information

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Lecture 9 Two-Sample Test Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Computer exam 1 18 Histogram 14 Frequency 9 5 0 75 83.33333333

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

Tutorial 2: Power and Sample Size for the Paired Sample t-test

Tutorial 2: Power and Sample Size for the Paired Sample t-test Tutorial 2: Power and Sample Size for the Paired Sample t-test Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function of sample size, variability,

More information

BIOS 312: Precision of Statistical Inference

BIOS 312: Precision of Statistical Inference and Power/Sample Size and Standard Errors BIOS 312: of Statistical Inference Chris Slaughter Department of Biostatistics, Vanderbilt University School of Medicine January 3, 2013 Outline Overview and Power/Sample

More information

Robust covariance estimator for small-sample adjustment in the generalized estimating equations: A simulation study

Robust covariance estimator for small-sample adjustment in the generalized estimating equations: A simulation study Science Journal of Applied Mathematics and Statistics 2014; 2(1): 20-25 Published online February 20, 2014 (http://www.sciencepublishinggroup.com/j/sjams) doi: 10.11648/j.sjams.20140201.13 Robust covariance

More information

SAMPLE SIZE AND OPTIMAL DESIGNS IN STRATIFIED COMPARATIVE TRIALS TO ESTABLISH THE EQUIVALENCE OF TREATMENT EFFECTS AMONG TWO ETHNIC GROUPS

SAMPLE SIZE AND OPTIMAL DESIGNS IN STRATIFIED COMPARATIVE TRIALS TO ESTABLISH THE EQUIVALENCE OF TREATMENT EFFECTS AMONG TWO ETHNIC GROUPS MARCEL DEKKER, INC. 70 MADISON AVENUE NEW YORK, NY 006 JOURNAL OF BIOPHARMACEUTICAL STATISTICS Vol., No. 4, pp. 553 566, 00 SAMPLE SIZE AND OPTIMAL DESIGNS IN STRATIFIED COMPARATIVE TRIALS TO ESTABLISH

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

Tests about a population mean

Tests about a population mean October 2 nd, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Research Article Efficient Noninferiority Testing Procedures for Simultaneously Assessing Sensitivity and Specificity of Two Diagnostic Tests

Research Article Efficient Noninferiority Testing Procedures for Simultaneously Assessing Sensitivity and Specificity of Two Diagnostic Tests Computational and Mathematical Methods in Medicine Volume 2015, Article ID 128930, 7 pages http://dx.doi.org/10.1155/2015/128930 Research Article Efficient Noninferiority Testing Procedures for Simultaneously

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

PSI Journal Club March 10 th, 2016

PSI Journal Club March 10 th, 2016 PSI Journal Club March 1 th, 1 The analysis of incontinence episodes and other count data in patients with Overactive Bladder (OAB) by Poisson and negative binomial regression Martina R, Kay R, van Maanen

More information

BLINDED EVALUATIONS OF EFFECT SIZES IN CLINICAL TRIALS: COMPARISONS BETWEEN BAYESIAN AND EM ANALYSES

BLINDED EVALUATIONS OF EFFECT SIZES IN CLINICAL TRIALS: COMPARISONS BETWEEN BAYESIAN AND EM ANALYSES BLINDED EVALUATIONS OF EFFECT SIZES IN CLINICAL TRIALS: COMPARISONS BETWEEN BAYESIAN AND EM ANALYSES IBRAHIM TURKOZ, PhD Janssen Research & Development LLC, NJ BASS XX Nov, 013 BASS XX 1 Outline Introduction

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

Bioequivalence Trials, Intersection-Union Tests, and. Equivalence Condence Sets. Columbus, OH October 9, 1996 { Final version.

Bioequivalence Trials, Intersection-Union Tests, and. Equivalence Condence Sets. Columbus, OH October 9, 1996 { Final version. Bioequivalence Trials, Intersection-Union Tests, and Equivalence Condence Sets Roger L. Berger Department of Statistics North Carolina State University Raleigh, NC 27595-8203 Jason C. Hsu Department of

More information

Poisson Regression. Ryan Godwin. ECON University of Manitoba

Poisson Regression. Ryan Godwin. ECON University of Manitoba Poisson Regression Ryan Godwin ECON 7010 - University of Manitoba Abstract. These lecture notes introduce Maximum Likelihood Estimation (MLE) of a Poisson regression model. 1 Motivating the Poisson Regression

More information

Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average and Product of Means

Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average and Product of Means Modified Large Sample Confidence Intervals for Poisson Distributions: Ratio, Weighted Average and Product of Means K. KRISHNAMOORTHY a, JIE PENG b AND DAN ZHANG a a Department of Mathematics, University

More information

Directly testing the linearity assumption for assay validation. Steven Novick / Harry Yang May, 2013

Directly testing the linearity assumption for assay validation. Steven Novick / Harry Yang May, 2013 Directly testing the linearity assumption or assay validation Steven Novick / Harry Yang May, 2013 Manuscript accepted March 2013 or publication in Journal o Chemometrics 1 Steven Novick Associate Director

More information

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure).

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). STAT 515 -- Chapter 13: Categorical Data Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). Many studies allow for more than 2 categories. Example

More information

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered)

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered) Test 3 Practice Test A NOTE: Ignore Q10 (not covered) MA 180/418 Midterm Test 3, Version A Fall 2010 Student Name (PRINT):............................................. Student Signature:...................................................

More information

Robust Bayesian Methods for Non-Inferiority Tests Based on Dichotomous Data

Robust Bayesian Methods for Non-Inferiority Tests Based on Dichotomous Data Robust Bayesian Methods for Non-Inferiority Tests Based on Dichotomous Data Sujit K. Ghosh and http://www.stat.ncsu.edu/people/ghosh/ sujit.ghosh@ncsu.edu Presented at: Duke Industry Statistics Symposium

More information