Pulse-Code Modulation (PCM) :

Size: px
Start display at page:

Download "Pulse-Code Modulation (PCM) :"

Transcription

1 PCM & DPCM & DM 1

2 Pulse-Code Modulation (PCM) : In PCM each sample of the signal is quantized to one of the amplitude levels, where B is the number of bits used to represent each sample. The rate from the source is BF s bps. The quantized waveform is modeled as : q(n) represent the quantization error, Which we treat as an additive noise. B ~ s ( n) s( n) q( n )

3 Pulse-Code Modulation (PCM) : The quantization noise is characterized as a realization of a stationary random process q in which each of the random variables q(n) has uniform pdf. Where the step size of the quantizer is q B 1/ 3

4 Pulse-Code Modulation (PCM) : If A max :maximum amplitude of signal, A max B The mean square value of the quantization Δ/ 1 error is : q (n) q (n)dq 1 3Δ Δ/ q (n) Amax B 1 Measure in db, The mean square value of the noise is : B Δ 3 Δ/ Δ/ Δ 1 10log10 10log10 6B 10.8 db

5 Pulse-Code Modulation (PCM) : The quantization noise decreases by 6 db/bit. If the headroom factor is h, then The signal to noise (S/N) ratio is given by (A max =1) In db, this is X rms SNR SNR db S N A h max 10log X 10 rms /1 B h 1 h 1 h B B 6B log 10 h 5

6 Pulse-Code Modulation (PCM) : Example : We require an S/N ratio of 60 db and that a headroom factor of 4 is acceptable. Then the required word length is : 60= B 0 log 10 4 B bit If we sample at 8 KHZ, then PCM require 8k bit/s. 6

7 Pulse-Code Modulation (PCM) : A nonuniform quantizer characteristic is usually obtained by passing the signal through a nonlinear device that compress the signal amplitude, follow by a uniform quantizer. Compressor A/D D/A Expander Compander (Compressor-Expander) 7

8 Companding: Compression and Expanding Original Signal After Compressing, Before Expanding 8

9 Companding A logarithmic compressor employed in North American telecommunications systems has input-output magnitude characteristic of the form log(1 s ) y log(1 ) is a parameter that is selected to give the desired compression characteristic. 9

10 Companding 10

11 Companding The logarithmic compressor used in European telecommunications system is called A-law and is defined as y log(1 A s 1 log A ) 11

12 Companding 1

13 DPCM : A Sampled sequence u(m), m=0 to m=n-1. u ~ ( n 1), u~ ( n ),... Let be the value of the reproduced (decoded) sequence. 13

14 DPCM: At m=n, when u(n) arrives, a quantify, an estimate of u(n), is predicted from the previously decoded samples u ~ ( n 1), u~ ( n i.e., ),... u ~ ( n) ( u ~ ( n 1), u~ ( n (.) : Prediction error: prediction rule ),...); e( n) u( n) u~ ( n) 14

15 DPCM : e ~ ( n ) If is the quantized value of e(n), then the reproduced value of u(n) is: Note: u ~ ( n) u~ ( n) e~ ( n ) u( n) u~ ( n) e( n) u( n) u~ ( n) ( u ~ ( n) e( n)) ( u ~ ( n) e~ ( n)) e( n) e~ ( n) q( n) :The Quantization error in e( n) 15

16 DPCM CODEC: u (n) ) Σ e (n ) Quantizer ~ e ( n Communication Channel ~ e ( n ) Σ Predictor Σ Predictor Coder Decoder 16

17 DPCM: Remarks: The pointwise coding error in the input sequence is exactly equal to q(n), the quantization error in e(n). With a reasonable predictor the mean sequare value of the differential signal e(n) is much smaller than that of u(n). 17

18 DPCM: Conclusion: For the same mean square quantization error, e(n) requires fewer quantization bits than u(n). The number of bits required for transmission has been reduced while the quantization error is kept the same. 18

19 DPCM modified by the addition of linearly filtered error sequence u (n) e(n) Σ Quantizer ~ e ( n ) Communication Channel ~ e ( n ) Σ Σ Linear filter {bˆ (i)} Linear filter {â (i)} Σ Linear filter {bˆ (i)} Σ Linear filter {â (i)} Coder Decoder 19

20 Adaptive PCM and Adaptive DPCM Speech signals are quasi-stationary in nature The variance and the autocorrelation function of the source output vary slowly with time. PCM and DPCM assume that the source output is stationary. The efficiency and performance of these encoders can be improved by adaptation to the slowly time-variant statistics of the speech signal. Adaptive quantizer feedforward feedbackward 0

21 Example of quantizer with an adaptive step size 7 / 5 / 110 M (3) 111 Previous Output M (4) Multiplier 3 / 101 M () / 011 M (1) M (1) - / M () -3 / 001 M (3) -5 / 000 M (4) -7 / 1

22 ADPCM with adaptation of the predictor Step-size adaptation u(n) Σ e(n) Quantizer ~ e ( n ) Σ Encoder Communication Channel Decoder ~ e ( n ) Σ Predictor Predictor Predictor adaptation Coder Decoder

23 Delta Modulation : (DM) Predictor : one-step delay function Quantizer : 1-bit quantizer u~ ( n) u~ ( n 1) e( n) u( n) u~ ( n 1) 3

24 Delta Modulation : (DM) Primary Limitation of DM Slope overload : large jump region Max. slope = (step size)x(sampling freq.) Granularity Noise : almost constant region Instability to channel noise 4

25 DM: u(n) e(n) ~ e ( n ) Unit Delay Integrator ~ e ( n ) Coder Unit Delay Decoder 5

26 DM: Step size effect : Step Size (sampling frequency (i) slope overload ) (ii) granular Noise 6

27 Adaptive DM: s k 1 Adaptive Function E k 1 k, E, k Stored min Unit Delay X k 1 k X 1 k E X k 1 k 1 k 1 sgn[ S X k k min K 1 [ E E k 1 k 1 k 1 X k ] E k ] if if k k This adaptive approach simultaneously minimizes the effects of both slope overload and granular noise min min 7

28 Vector Quantization (VQ) 8

29 Vector Quantization : Quantization is the process of approximating continuous amplitude signals by discrete symbols. Partitioning of two-dimensional Space into 16 cells. 9

30 Vector Quantization : The LBG algorithm first computes a 1- vector codebook, then uses a splitting algorithm on the codeword to obtain the initial -vector codebook, and continue the splitting process until the desired M-vector codebook is obtained. This algorithm is known as the LBG algorithm proposed by Linde, Buzo and Gray. 30

31 Vector Quantization : The LBG Algorithm : Step 1: Set M (number of partitions or cells)=1.find the centroid of all the training data. Step : Split M into M partitions by splitting each current codeword by finding two points that are far apart in each partition using a heuristic method, and use these two points as the new centroids for the new M codebook. Now set M=M. Step 3: Now use a iterative algorithm to reach the best set of centroids for the new codebook. Step 4: if M equals the VQ codebook size require, STOP; otherwise go to Step. 31

Chapter 10 Applications in Communications

Chapter 10 Applications in Communications Chapter 10 Applications in Communications School of Information Science and Engineering, SDU. 1/ 47 Introduction Some methods for digitizing analog waveforms: Pulse-code modulation (PCM) Differential PCM

More information

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014 Scalar and Vector Quantization National Chiao Tung University Chun-Jen Tsai 11/06/014 Basic Concept of Quantization Quantization is the process of representing a large, possibly infinite, set of values

More information

E303: Communication Systems

E303: Communication Systems E303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Principles of PCM Prof. A. Manikas (Imperial College) E303: Principles of PCM v.17

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

CS578- Speech Signal Processing

CS578- Speech Signal Processing CS578- Speech Signal Processing Lecture 7: Speech Coding Yannis Stylianou University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr Univ. of Crete Outline 1 Introduction

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

EE368B Image and Video Compression

EE368B Image and Video Compression EE368B Image and Video Compression Homework Set #2 due Friday, October 20, 2000, 9 a.m. Introduction The Lloyd-Max quantizer is a scalar quantizer which can be seen as a special case of a vector quantizer

More information

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition Review of Quantization UMCP ENEE631 Slides (created by M.Wu 004) Quantization UMCP ENEE631 Slides (created by M.Wu 001/004) L-level Quantization Minimize errors for this lossy process What L values to

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

Multimedia Communications. Differential Coding

Multimedia Communications. Differential Coding Multimedia Communications Differential Coding Differential Coding In many sources, the source output does not change a great deal from one sample to the next. This means that both the dynamic range and

More information

1. Probability density function for speech samples. Gamma. Laplacian. 2. Coding paradigms. =(2X max /2 B ) for a B-bit quantizer Δ Δ Δ Δ Δ

1. Probability density function for speech samples. Gamma. Laplacian. 2. Coding paradigms. =(2X max /2 B ) for a B-bit quantizer Δ Δ Δ Δ Δ Digital Speech Processing Lecture 16 Speech Coding Methods Based on Speech Waveform Representations and Speech Models Adaptive and Differential Coding 1 Speech Waveform Coding-Summary of Part 1 1. Probability

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #3 Wednesday, September 10, 2003 1.4 Quantization Digital systems can only represent sample amplitudes with a finite set of prescribed values,

More information

Audio Coding. Fundamentals Quantization Waveform Coding Subband Coding P NCTU/CSIE DSPLAB C.M..LIU

Audio Coding. Fundamentals Quantization Waveform Coding Subband Coding P NCTU/CSIE DSPLAB C.M..LIU Audio Coding P.1 Fundamentals Quantization Waveform Coding Subband Coding 1. Fundamentals P.2 Introduction Data Redundancy Coding Redundancy Spatial/Temporal Redundancy Perceptual Redundancy Compression

More information

The Secrets of Quantization. Nimrod Peleg Update: Sept. 2009

The Secrets of Quantization. Nimrod Peleg Update: Sept. 2009 The Secrets of Quantization Nimrod Peleg Update: Sept. 2009 What is Quantization Representation of a large set of elements with a much smaller set is called quantization. The number of elements in the

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Lesson 7 Delta Modulation and DPCM Instructional Objectives At the end of this lesson, the students should be able to: 1. Describe a lossy predictive coding scheme.

More information

PCM Reference Chapter 12.1, Communication Systems, Carlson. PCM.1

PCM Reference Chapter 12.1, Communication Systems, Carlson. PCM.1 PCM Reference Chapter 1.1, Communication Systems, Carlson. PCM.1 Pulse-code modulation (PCM) Pulse modulations use discrete time samples of analog signals the transmission is composed of analog information

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

Vector Quantization and Subband Coding

Vector Quantization and Subband Coding Vector Quantization and Subband Coding 18-796 ultimedia Communications: Coding, Systems, and Networking Prof. Tsuhan Chen tsuhan@ece.cmu.edu Vector Quantization 1 Vector Quantization (VQ) Each image block

More information

Lloyd-Max Quantization of Correlated Processes: How to Obtain Gains by Receiver-Sided Time-Variant Codebooks

Lloyd-Max Quantization of Correlated Processes: How to Obtain Gains by Receiver-Sided Time-Variant Codebooks Lloyd-Max Quantization of Correlated Processes: How to Obtain Gains by Receiver-Sided Time-Variant Codebooks Sai Han and Tim Fingscheidt Institute for Communications Technology, Technische Universität

More information

Multimedia Systems Giorgio Leonardi A.A Lecture 4 -> 6 : Quantization

Multimedia Systems Giorgio Leonardi A.A Lecture 4 -> 6 : Quantization Multimedia Systems Giorgio Leonardi A.A.2014-2015 Lecture 4 -> 6 : Quantization Overview Course page (D.I.R.): https://disit.dir.unipmn.it/course/view.php?id=639 Consulting: Office hours by appointment:

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

Time-domain representations

Time-domain representations Time-domain representations Speech Processing Tom Bäckström Aalto University Fall 2016 Basics of Signal Processing in the Time-domain Time-domain signals Before we can describe speech signals or modelling

More information

Design of a CELP coder and analysis of various quantization techniques

Design of a CELP coder and analysis of various quantization techniques EECS 65 Project Report Design of a CELP coder and analysis of various quantization techniques Prof. David L. Neuhoff By: Awais M. Kamboh Krispian C. Lawrence Aditya M. Thomas Philip I. Tsai Winter 005

More information

Lecture 7 Predictive Coding & Quantization

Lecture 7 Predictive Coding & Quantization Shujun LI (李树钧): INF-10845-20091 Multimedia Coding Lecture 7 Predictive Coding & Quantization June 3, 2009 Outline Predictive Coding Motion Estimation and Compensation Context-Based Coding Quantization

More information

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256 General Models for Compression / Decompression -they apply to symbols data, text, and to image but not video 1. Simplest model (Lossless ( encoding without prediction) (server) Signal Encode Transmit (client)

More information

Quantization 2.1 QUANTIZATION AND THE SOURCE ENCODER

Quantization 2.1 QUANTIZATION AND THE SOURCE ENCODER 2 Quantization After the introduction to image and video compression presented in Chapter 1, we now address several fundamental aspects of image and video compression in the remaining chapters of Section

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Module 3. Quantization and Coding. Version 2, ECE IIT, Kharagpur

Module 3. Quantization and Coding. Version 2, ECE IIT, Kharagpur Module Quantization and Coding ersion, ECE IIT, Kharagpur Lesson Logarithmic Pulse Code Modulation (Log PCM) and Companding ersion, ECE IIT, Kharagpur After reading this lesson, you will learn about: Reason

More information

HARMONIC VECTOR QUANTIZATION

HARMONIC VECTOR QUANTIZATION HARMONIC VECTOR QUANTIZATION Volodya Grancharov, Sigurdur Sverrisson, Erik Norvell, Tomas Toftgård, Jonas Svedberg, and Harald Pobloth SMN, Ericsson Research, Ericsson AB 64 8, Stockholm, Sweden ABSTRACT

More information

SCELP: LOW DELAY AUDIO CODING WITH NOISE SHAPING BASED ON SPHERICAL VECTOR QUANTIZATION

SCELP: LOW DELAY AUDIO CODING WITH NOISE SHAPING BASED ON SPHERICAL VECTOR QUANTIZATION SCELP: LOW DELAY AUDIO CODING WITH NOISE SHAPING BASED ON SPHERICAL VECTOR QUANTIZATION Hauke Krüger and Peter Vary Institute of Communication Systems and Data Processing RWTH Aachen University, Templergraben

More information

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression

Vector Quantization. Institut Mines-Telecom. Marco Cagnazzo, MN910 Advanced Compression Institut Mines-Telecom Vector Quantization Marco Cagnazzo, cagnazzo@telecom-paristech.fr MN910 Advanced Compression 2/66 19.01.18 Institut Mines-Telecom Vector Quantization Outline Gain-shape VQ 3/66 19.01.18

More information

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Quantization C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

Vector Quantization Encoder Decoder Original Form image Minimize distortion Table Channel Image Vectors Look-up (X, X i ) X may be a block of l

Vector Quantization Encoder Decoder Original Form image Minimize distortion Table Channel Image Vectors Look-up (X, X i ) X may be a block of l Vector Quantization Encoder Decoder Original Image Form image Vectors X Minimize distortion k k Table X^ k Channel d(x, X^ Look-up i ) X may be a block of l m image or X=( r, g, b ), or a block of DCT

More information

Analysis of methods for speech signals quantization

Analysis of methods for speech signals quantization INFOTEH-JAHORINA Vol. 14, March 2015. Analysis of methods for speech signals quantization Stefan Stojkov Mihajlo Pupin Institute, University of Belgrade Belgrade, Serbia e-mail: stefan.stojkov@pupin.rs

More information

EE5356 Digital Image Processing. Final Exam. 5/11/06 Thursday 1 1 :00 AM-1 :00 PM

EE5356 Digital Image Processing. Final Exam. 5/11/06 Thursday 1 1 :00 AM-1 :00 PM EE5356 Digital Image Processing Final Exam 5/11/06 Thursday 1 1 :00 AM-1 :00 PM I), Closed books and closed notes. 2), Problems carry weights as indicated. 3), Please print your name and last four digits

More information

Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y)

Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y) Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y) E{(X-Y) 2 } D

More information

Predictive Coding. Prediction Prediction in Images

Predictive Coding. Prediction Prediction in Images Prediction Prediction in Images Predictive Coding Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

Predictive Coding. Prediction

Predictive Coding. Prediction Predictive Coding Prediction Prediction in Images Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

AN IMPROVED ADPCM DECODER BY ADAPTIVELY CONTROLLED QUANTIZATION INTERVAL CENTROIDS. Sai Han and Tim Fingscheidt

AN IMPROVED ADPCM DECODER BY ADAPTIVELY CONTROLLED QUANTIZATION INTERVAL CENTROIDS. Sai Han and Tim Fingscheidt AN IMPROVED ADPCM DECODER BY ADAPTIVELY CONTROLLED QUANTIZATION INTERVAL CENTROIDS Sai Han and Tim Fingscheidt Institute for Communications Technology, Technische Universität Braunschweig Schleinitzstr.

More information

VID3: Sampling and Quantization

VID3: Sampling and Quantization Video Transmission VID3: Sampling and Quantization By Prof. Gregory D. Durgin copyright 2009 all rights reserved Claude E. Shannon (1916-2001) Mathematician and Electrical Engineer Worked for Bell Labs

More information

Random Signal Transformations and Quantization

Random Signal Transformations and Quantization York University Department of Electrical Engineering and Computer Science EECS 4214 Lab #3 Random Signal Transformations and Quantization 1 Purpose In this lab, you will be introduced to transformations

More information

EE5585 Data Compression April 18, Lecture 23

EE5585 Data Compression April 18, Lecture 23 EE5585 Data Compression April 18, 013 Lecture 3 Instructor: Arya Mazumdar Scribe: Trevor Webster Differential Encoding Suppose we have a signal that is slowly varying For instance, if we were looking at

More information

Digital Image Processing Lectures 25 & 26

Digital Image Processing Lectures 25 & 26 Lectures 25 & 26, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2015 Area 4: Image Encoding and Compression Goal: To exploit the redundancies in the image

More information

Source Coding. Scalar Quantization

Source Coding. Scalar Quantization Source Coding Source Coding The Communications Toolbox includes some basic functions for source coding. Source coding, also known as quantization or signal formatting, includes the concepts of analog-to-digital

More information

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau

Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 3, SNR, non-linear Quantisation Gerald Schuller, TU Ilmenau What is our SNR if we have a sinusoidal signal? What is its pdf? Basically

More information

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING 5 0 DPCM (Differential Pulse Code Modulation) Making scalar quantization work for a correlated source -- a sequential approach. Consider quantizing a slowly varying source (AR, Gauss, ρ =.95, σ 2 = 3.2).

More information

7.1 Sampling and Reconstruction

7.1 Sampling and Reconstruction Haberlesme Sistemlerine Giris (ELE 361) 6 Agustos 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 7 Analog to Digital Conversion

More information

Class of waveform coders can be represented in this manner

Class of waveform coders can be represented in this manner Digital Speech Processing Lecture 15 Speech Coding Methods Based on Speech Waveform Representations ti and Speech Models Uniform and Non- Uniform Coding Methods 1 Analog-to-Digital Conversion (Sampling

More information

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely EE 11: Introduction to Digital Communication Systems Midterm Solutions 1. Consider the following discrete-time communication system. There are two equallly likely messages to be transmitted, and they are

More information

Soft-Output Trellis Waveform Coding

Soft-Output Trellis Waveform Coding Soft-Output Trellis Waveform Coding Tariq Haddad and Abbas Yongaçoḡlu School of Information Technology and Engineering, University of Ottawa Ottawa, Ontario, K1N 6N5, Canada Fax: +1 (613) 562 5175 thaddad@site.uottawa.ca

More information

The Equivalence of ADPCM and CELP Coding

The Equivalence of ADPCM and CELP Coding The Equivalence of ADPCM and CELP Coding Peter Kabal Department of Electrical & Computer Engineering McGill University Montreal, Canada Version.2 March 20 c 20 Peter Kabal 20/03/ You are free: to Share

More information

STATISTICS FOR EFFICIENT LINEAR AND NON-LINEAR PICTURE ENCODING

STATISTICS FOR EFFICIENT LINEAR AND NON-LINEAR PICTURE ENCODING STATISTICS FOR EFFICIENT LINEAR AND NON-LINEAR PICTURE ENCODING Item Type text; Proceedings Authors Kummerow, Thomas Publisher International Foundation for Telemetering Journal International Telemetering

More information

On Optimal Coding of Hidden Markov Sources

On Optimal Coding of Hidden Markov Sources 2014 Data Compression Conference On Optimal Coding of Hidden Markov Sources Mehdi Salehifar, Emrah Akyol, Kumar Viswanatha, and Kenneth Rose Department of Electrical and Computer Engineering University

More information

Objectives of Image Coding

Objectives of Image Coding Objectives of Image Coding Representation of an image with acceptable quality, using as small a number of bits as possible Applications: Reduction of channel bandwidth for image transmission Reduction

More information

BASICS OF COMPRESSION THEORY

BASICS OF COMPRESSION THEORY BASICS OF COMPRESSION THEORY Why Compression? Task: storage and transport of multimedia information. E.g.: non-interlaced HDTV: 0x0x0x = Mb/s!! Solutions: Develop technologies for higher bandwidth Find

More information

Sample Problems for the 9th Quiz

Sample Problems for the 9th Quiz Sample Problems for the 9th Quiz. Draw the line coded signal waveform of the below line code for 0000. (a Unipolar nonreturn-to-zero (NRZ signaling (b Polar nonreturn-to-zero (NRZ signaling (c Unipolar

More information

CHAPTER 3. Transformed Vector Quantization with Orthogonal Polynomials Introduction Vector quantization

CHAPTER 3. Transformed Vector Quantization with Orthogonal Polynomials Introduction Vector quantization 3.1. Introduction CHAPTER 3 Transformed Vector Quantization with Orthogonal Polynomials In the previous chapter, a new integer image coding technique based on orthogonal polynomials for monochrome images

More information

Overview. Analog capturing device (camera, microphone) PCM encoded or raw signal ( wav, bmp, ) A/D CONVERTER. Compressed bit stream (mp3, jpg, )

Overview. Analog capturing device (camera, microphone) PCM encoded or raw signal ( wav, bmp, ) A/D CONVERTER. Compressed bit stream (mp3, jpg, ) Overview Analog capturing device (camera, microphone) Sampling Fine Quantization A/D CONVERTER PCM encoded or raw signal ( wav, bmp, ) Transform Quantizer VLC encoding Compressed bit stream (mp3, jpg,

More information

Problem Set III Quantization

Problem Set III Quantization Problem Set III Quantization Christopher Tsai Problem #2.1 Lloyd-Max Quantizer To train both the Lloyd-Max Quantizer and our Entropy-Constrained Quantizer, we employ the following training set of images,

More information

Ch. 10 Vector Quantization. Advantages & Design

Ch. 10 Vector Quantization. Advantages & Design Ch. 10 Vector Quantization Advantages & Design 1 Advantages of VQ There are (at least) 3 main characteristics of VQ that help it outperform SQ: 1. Exploit Correlation within vectors 2. Exploit Shape Flexibility

More information

Image Compression using DPCM with LMS Algorithm

Image Compression using DPCM with LMS Algorithm Image Compression using DPCM with LMS Algorithm Reenu Sharma, Abhay Khedkar SRCEM, Banmore -----------------------------------------------------------------****---------------------------------------------------------------

More information

SPEECH ANALYSIS AND SYNTHESIS

SPEECH ANALYSIS AND SYNTHESIS 16 Chapter 2 SPEECH ANALYSIS AND SYNTHESIS 2.1 INTRODUCTION: Speech signal analysis is used to characterize the spectral information of an input speech signal. Speech signal analysis [52-53] techniques

More information

VECTOR QUANTIZATION AND SCALAR LINEAR PREDICTION FOR WAVEFORM CODING OF SPEECH AT 16 kbls

VECTOR QUANTIZATION AND SCALAR LINEAR PREDICTION FOR WAVEFORM CODING OF SPEECH AT 16 kbls VECTOR QUANTZATON AND SCALAR LNEAR PREDCTON FOR WAVEFORM CODNG OF SPEECH AT 16 kbls Lloyd Watts B.Sc. (Eng. Phys.), Queen's University, 1984 A THESS SUBM'lXD N PARTAL FULmLLMENT OF THE REQUREMENTS FOR

More information

Quantization of LSF Parameters Using A Trellis Modeling

Quantization of LSF Parameters Using A Trellis Modeling 1 Quantization of LSF Parameters Using A Trellis Modeling Farshad Lahouti, Amir K. Khandani Coding and Signal Transmission Lab. Dept. of E&CE, University of Waterloo, Waterloo, ON, N2L 3G1, Canada (farshad,

More information

Source modeling (block processing)

Source modeling (block processing) Digital Speech Processing Lecture 17 Speech Coding Methods Based on Speech Models 1 Waveform Coding versus Block Waveform coding Processing sample-by-sample matching of waveforms coding gquality measured

More information

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p.

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. Preface p. xvii Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. 6 Summary p. 10 Projects and Problems

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on lectures from B. Lee, B. Girod, and A. Mukherjee 1 Outline Digital Signal Representation

More information

ON SCALABLE CODING OF HIDDEN MARKOV SOURCES. Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose

ON SCALABLE CODING OF HIDDEN MARKOV SOURCES. Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose ON SCALABLE CODING OF HIDDEN MARKOV SOURCES Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, 93106

More information

Speech Coding. Speech Processing. Tom Bäckström. October Aalto University

Speech Coding. Speech Processing. Tom Bäckström. October Aalto University Speech Coding Speech Processing Tom Bäckström Aalto University October 2015 Introduction Speech coding refers to the digital compression of speech signals for telecommunication (and storage) applications.

More information

LOW COMPLEX FORWARD ADAPTIVE LOSS COMPRESSION ALGORITHM AND ITS APPLICATION IN SPEECH CODING

LOW COMPLEX FORWARD ADAPTIVE LOSS COMPRESSION ALGORITHM AND ITS APPLICATION IN SPEECH CODING Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 1, 2011, 19 24 LOW COMPLEX FORWARD ADAPTIVE LOSS COMPRESSION ALGORITHM AND ITS APPLICATION IN SPEECH CODING Jelena Nikolić Zoran Perić Dragan Antić Aleksandra

More information

EE-597 Notes Quantization

EE-597 Notes Quantization EE-597 Notes Quantization Phil Schniter June, 4 Quantization Given a continuous-time and continuous-amplitude signal (t, processing and storage by modern digital hardware requires discretization in both

More information

THE dictionary (Random House) definition of quantization

THE dictionary (Random House) definition of quantization IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998 2325 Quantization Robert M. Gray, Fellow, IEEE, and David L. Neuhoff, Fellow, IEEE (Invited Paper) Abstract The history of the theory

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

The information loss in quantization

The information loss in quantization The information loss in quantization The rough meaning of quantization in the frame of coding is representing numerical quantities with a finite set of symbols. The mapping between numbers, which are normally

More information

BASIC COMPRESSION TECHNIQUES

BASIC COMPRESSION TECHNIQUES BASIC COMPRESSION TECHNIQUES N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lectures # 05 Questions / Problems / Announcements? 2 Matlab demo of DFT Low-pass windowed-sinc

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Example: for source

Example: for source Nonuniform scalar quantizer References: Sayood Chap. 9, Gersho and Gray, Chap.'s 5 and 6. The basic idea: For a nonuniform source density, put smaller cells and levels where the density is larger, thereby

More information

ITU-T G khz audio-coding within 64 kbit/s

ITU-T G khz audio-coding within 64 kbit/s International Telecommunication Union ITU-T G.722 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (9/212) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital terminal equipments

More information

Quantisation. Uniform Quantisation. Tcom 370: Principles of Data Communications University of Pennsylvania. Handout 5 c Santosh S.

Quantisation. Uniform Quantisation. Tcom 370: Principles of Data Communications University of Pennsylvania. Handout 5 c Santosh S. Tcom 370: Principles of Data Communications Quantisation Handout 5 Quantisation involves a map of the real line into a discrete set of quantisation levels. Given a set of M quantisation levels {S 0, S

More information

A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder Design

A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder Design Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-2016 A Practical Application of Wave-Pipelining Theory on a Adaptive Differential Pulse Code Modulation Coder-Decoder

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

Design of Optimal Quantizers for Distributed Source Coding

Design of Optimal Quantizers for Distributed Source Coding Design of Optimal Quantizers for Distributed Source Coding David Rebollo-Monedero, Rui Zhang and Bernd Girod Information Systems Laboratory, Electrical Eng. Dept. Stanford University, Stanford, CA 94305

More information

Rate-Constrained Multihypothesis Prediction for Motion-Compensated Video Compression

Rate-Constrained Multihypothesis Prediction for Motion-Compensated Video Compression IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL 12, NO 11, NOVEMBER 2002 957 Rate-Constrained Multihypothesis Prediction for Motion-Compensated Video Compression Markus Flierl, Student

More information

A Systematic Description of Source Significance Information

A Systematic Description of Source Significance Information A Systematic Description of Source Significance Information Norbert Goertz Institute for Digital Communications School of Engineering and Electronics The University of Edinburgh Mayfield Rd., Edinburgh

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Predictive Coding. Lossy or lossless. Feedforward or feedback. Intraframe or interframe. Fixed or Adaptive

Predictive Coding. Lossy or lossless. Feedforward or feedback. Intraframe or interframe. Fixed or Adaptive Predictie Coding Predictie coding is a compression tecnique based on te difference between te original and predicted alues. It is also called DPCM Differential Pulse Code Modulation Lossy or lossless Feedforward

More information

An Effective Method for Initialization of Lloyd Max s Algorithm of Optimal Scalar Quantization for Laplacian Source

An Effective Method for Initialization of Lloyd Max s Algorithm of Optimal Scalar Quantization for Laplacian Source INFORMATICA, 007, Vol. 18, No., 79 88 79 007 Institute of Mathematics and Informatics, Vilnius An Effective Method for Initialization of Lloyd Max s Algorithm of Optimal Scalar Quantization for Laplacian

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

EXAMPLE OF SCALAR AND VECTOR QUANTIZATION

EXAMPLE OF SCALAR AND VECTOR QUANTIZATION EXAMPLE OF SCALAR AD VECTOR QUATIZATIO Source sequence : This could be the output of a highly correlated source. A scalar quantizer: =1, M=4 C 1 = {w 1,w 2,w 3,w 4 } = {-4, -1, 1, 4} = codeboo of quantization

More information

Proc. of NCC 2010, Chennai, India

Proc. of NCC 2010, Chennai, India Proc. of NCC 2010, Chennai, India Trajectory and surface modeling of LSF for low rate speech coding M. Deepak and Preeti Rao Department of Electrical Engineering Indian Institute of Technology, Bombay

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory INA TARALOVA-ROUX AND ORLA FEELY Department of Electronic and Electrical Engineering University

More information

Roundoff Noise in Digital Feedback Control Systems

Roundoff Noise in Digital Feedback Control Systems Chapter 7 Roundoff Noise in Digital Feedback Control Systems Digital control systems are generally feedback systems. Within their feedback loops are parts that are analog and parts that are digital. At

More information

Image Coding. Chapter 10. Contents. (Related to Ch. 10 of Lim.) 10.1

Image Coding. Chapter 10. Contents. (Related to Ch. 10 of Lim.) 10.1 Chapter 1 Image Coding Contents Introduction..................................................... 1. Quantization..................................................... 1.3 Scalar quantization...............................................

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source

Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source Yuval Kochman, Jan Østergaard, and Ram Zamir Abstract It was recently shown that the symmetric multiple-description

More information

Low Bit-Rate Speech Codec Based on a Long-Term Harmonic Plus Noise Model

Low Bit-Rate Speech Codec Based on a Long-Term Harmonic Plus Noise Model PAPERS Journal of the Audio Engineering Society Vol. 64, No. 11, November 216 ( C 216) DOI: https://doi.org/1.17743/jaes.216.28 Low Bit-Rate Speech Codec Based on a Long-Term Harmonic Plus Noise Model

More information