Physics 111 Final Exam, Fall 2013, Version A

Size: px
Start display at page:

Download "Physics 111 Final Exam, Fall 2013, Version A"

Transcription

1 Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor Code. You must answer the exam questons entrely by yourself. Turn off all cell phones, pagers, or other communcaton devces. Use only your own calculator. A Instructons: Frst, wrte your name and secton number on both the Scantron card and ths exam sheet. Use the formula sheet (last exam booklet page) and no other materals. Budget your tme. There are 9 multple choce problems. Answer each queston on the Scantron card usng # pencl. Also crcle your answers on queston papers. Do not hestate to ask for clarfcaton of any exam queston, f needed, from your proctor or Professor. 1. A 1.-kg object movng wth a speed of 8.0 m/s colldes perpendcularly wth a wall and emerges wth a speed of 6.0 m/s n the opposte drecton. If the object s n contact wth the wall for.0 ms, what s the magntude of the average force on the object by the wall? A) 9.8 kn B) 8.4 kn C) 7.7 kn D) 9.1 kn E) 1. kn. A 5.0-kg mass wth an ntal velocty of 4.0 m/s, east colldes wth a 4.0-kg mass wth an ntal velocty of 3.0 m/s, west. After the collson the 5.0-kg mass has a velocty of 1. m/s, south. What s the magntude of the velocty of the 4.0-kg mass after the collson? A).0 m/s B) 1.5 m/s C) 1.0 m/s D).5 m/s E) 3.0 m/s 3. A body oscllates wth smple harmonc moton along the x axs. Its dsplacement vares wth tme accordng to the equaton x(t) = (5.0 m) sn [( s -1 ) t + /3]. The velocty (n m/s) of the body at t = 1.0 s s A) +7.9 B) -7.9 C) -14 D) +14 E) -5.0 Page 1 of 9

2 4. The ampltude of a system movng wth smple harmonc moton s doubled. The total energy wll then be A) 4 tmes as large B) 3 tmes as large C) tmes as large D) the same as t was E) half as much 5. The mass n the fgure sldes on a frctonless surface. If m = kg, k = 800 N/m, the frequency of oscllaton (n Hz) s approxmately A) 6.3 B) 4.8 C) 3. D) 17.1 E) The system n the fgure s n equlbrum. A concrete block of mass 5 kg hangs from the end of the unform strut whose mass s 46.0 kg. What s the magntude of the tenson T n the cable? A).43 kn B) 3.44 kn C) 4.86 kn D) 6.64 kn E) 7.6 kn 7. In the Problem 6, what s the magntude of the force on the strut from the hnge? A).43 kn B) 5.75 kn C) 8.9 kn D) 8.83 kn E) kn 8. An asterod, headed drectly toward Earth, has a speed of 1 km/s relatve to the planet when t s at a dstance of 10 Earth rad from Earth's center. Neglectng the effect of Earth's atmosphere on the asterod, fnd the asterod's speed when t reaches Earth's surface. The earth's radus and mass are R E = m and m E = kg. A) 16 km/s B) 1 km/s C) 6 km/s D) 10 km/s E) 0 km/s Page of 9

3 9. Three unform spheres of masses m 1 =.00 kg, m = 4.00 kg, and m 3 = 6.00 kg are placed at the corners of a rght trangle as shown n the fgure. Calculate the resultant gravtatonal force on the object of mass m, assumng the spheres are solated from the rest of the Unverse. A) N B) N C) N D) N E) N 10. A planet moves n an ellptcal orbt wth the Sun at one focus. At what pont does the planet move the fastest? 11. Three forces are actng on a mass of kg as shown n the fgure. The magntudes of the forces are F 1 =10 N, F =5 N, and F 3 =7 N. What s the magntude of the net acceleraton of the mass? y A) none of the other answers B) 4.5 m/s C) 1.5 m/s D) 3.7 m/s E) 3.0 m/s F 75 0 F x F 3 1. Two blocks ( m 1 =kg, m =3kg) are pushed along a frctonless horzontal surface by an external force of magntude F=10N. Calculate the magntude of the force of m 1 on m. A) 10 N B) 5 N C) N D) 4 N E) none of the above (6 N) F m 1 m Page 3 of 9

4 13. The mass n the fgure s fallng at CONSTANT speed. What s the coeffcent of frcton f m 1 = kg, m =1.8 kg, and the angle of the nclne s 40 degrees? The pulley s frctonless and massless. A) 0. B) 0.54 C).3 D) 0.61 E) none of the other answers 14. An object of mass 0.kg s ted to a strng 0.5 m long and swung n a vertcal crcle at constant velocty. If the speed of the mass s 3.0 m/s, what s the tenson n the strng when the mass s at the HIGHEST poston n the vertcal crcle? A) 1.6 N B).0 N C) 5.6 N D) 3.6 N E) None of the other answers 15. At t = 0, a wheel rotatng about a fxed axs at a constant angular acceleraton has an angular velocty of.0 rad/s. Two seconds later t has turned through 5.0 complete revolutons. What s the angular acceleraton of ths wheel? A) 17 rad/s B) 14 rad/s C) 0 rad/s D) 3 rad/s E) 13 rad/s 16. In the fgure below, a dsk (radus R = 1.0 m, mass =.0 kg) s suspended from a pvot a dstance d = 0.5 m above ts center of mass. The moment of nerta (n kgm ) s approxmately A) 0.15 B) 0.50 C) 0.45 D) E) A frctonless pulley free to rotate about a frctonless axle has a radus R = 0.1 m and a moment of nerta I = kg m. A 1.5-kg object s attached to a very lght wre that s wrapped around the rm of the pulley. The system s released from rest and mass m moves downward a dstance of 63.7 cm. Fnd the angular velocty of the pulley at ths nstant. A) 8.4 rad/s B) 5.75 rad/s C) 16. rad/s D) 0.5 rad/s E) 3. rad/s Page 4 of 9

5 18. A thn rod of mass M = 1. kg and length d = m s struck at one end by a ball of clay of mass m = kg, movng wth speed v 0 =7.5 m/s as shown n the fgure. The ball stcks to the rod. After the collson, the angular velocty of the clay-rod system about O, the mdpont of the rod, s A) 0.5 rad/s B) 1.1 rad/s C) 0.83 rad/s D).8 rad/s E) 4.0 rad/s 19. If and, what s the magntude of the vector? A) 4 B) 0 C) 448 D) 903 E) A proton movng along the x axs has an ntal speed n the postve x drecton of m/s and a constant acceleraton n the postve x drecton of m/s. What s the velocty of the proton after t has traveled a dstance of 80 cm? A) m/s B) m/s C) m/s D) m/s E) m/s 1. At t = 0, a partcle leaves the orgn wth a velocty of 9.0 m/s n the postve y drecton and moves n the xy plane wth a constant acceleraton of ( j) m/s. At the nstant the x coordnate of the partcle s 15 m, what s the speed of the partcle? A) 16 m/s B) 5.7 m/s C) 1 m/s D) 14 m/s E) 6 m/s. A car travels counterclockwse around a flat crcle of radus 0.5 km at a constant speed of 0 m/s. When the car s at pont A as shown n the fgure, what s the car's acceleraton? A) 1.6 m/s, south Page 5 of 9

6 B) Zero C) 1.6 m/s, east D) 1.6 m/s, north E) 1.6 m/s, west 3. In the fgure, a 700-kg crate s on a rough surface nclned at 30. A constant external force P = 5600 N s appled horzontally to the crate. As the force pushes the crate a dstance of 3.00 m up the nclne, the speed changes from 1.40 m/s to.50 m/s. How much work does gravty do on the crate durng ths process? A) -10,300 J B) -3,400 J C) 10,300 J D) 3,400 J E) Zero 4. A chld pulls on a wagon wth a horzontal force of 75 N. If the wagon moves horzontally a total of 4 m n 3.0 mn. what s the average power generated by the chld? A) 18 W B) W C) 4 W D) 7 W E) Zero 5. A 0-N crate startng at rest sldes down a rough 5.0-m long ramp, nclned at 5 wth the horzontal. 0 J of energy s lost to frcton. What wll be the speed of the crate at the bottom of the nclne? A) 0.98 m/s B) 1.9 m/s C) 3. m/s D) 4.7 m/s E) 0.7 m/s 6. A smple pendulum, 1.00 m n length, s released from rest when the support strng s at an angle of 35.0 from the vertcal. What s the speed of the suspended mass at the bottom of the swng? (g = 9.80 m/s and gnore ar resstance) A) 0.67 m/s B) 0.94 m/s C) 1.33 m/s D) 1.88 m/s E) 1.55 m/s Page 6 of 9

7 7. A hypodermc syrnge contans water. The barrel of the syrnge has a cross-sectonal area A=.5 x 10-5 m, and the needle has a cross-sectonal area a=1.00 x 10-8 m. In the absence of a force on the plunger, the pressure everywhere s 1.00 atm. When a force of magntude.00 N acts on the plunger, what s the speed of water as t leaves the needle. A) 5.7 m/s B) 1.65 m/s C) 1.53 m/s D) 15.5 m/s E).5 m/s 8. A sold rock, suspended n ar by a sprng scale, has a measured mass of 9.00 kg. When the rock s submerged n water, the scale reads 3.30 kg. What s the densty of the rock? (water densty = 1,000 kg/m 3 ). A) kg/m 3 B) kg/m 3 C) kg/m 3 D) kg/m 3 E) kg/m 3 9. An deal flud flows through a ppe made of two sectons wth dameters of 1.0 and 3.0 nches, respectvely. The speed of the flud flow through the 3.0-nch secton wll be what factor tmes that through the 1.0-nch secton? A) 6.0 B) 9.0 C) 1/3 D) 1/9 E) 1/ Page 7 of 9

8 FORMULAS Fnal Exam Converson Factors: 1 nch =.54 cm; 1 m = m; 1 cm=10 - ; 1 mm= 10-3 m; 1 g=10-3 kg; Physcal constants: g 9.8 m/s 11 ; G N m /kg 4 6 ; M Earth kg ; REarth m 3 Math: 360 = radans = 1 revoluton. Arc length s r ; Vsphere 4 R /3 ; Asphere 4 R ; Acrcle R b b 4ac quadratc formula to solve ax bx c 0 : x a Vectors: A Aˆ ˆ x Ay j ; Ax A cos( ) ; Ay A A y sn( ) ; A Ax A ; tan y Ax C AB mples Cx Ax Bx ; Cy Ay By ; ; AB A B sn ; ABˆ( A ) ˆ( ) ˆ ybz AzBy j AzBx AxBz k( AxBy AyBx) ˆˆ ˆj ˆj kˆkˆ 0 ; ˆ ˆj kˆ ; ˆj kˆ ˆ; k ˆ ˆ ˆ j 1D and D moton: r v dx dv d r vavg ; aavg ; v ; a t t dt dt dt 1 1 x x vt at ; vv at ; v v a( x x) ; r r vt at ; v v at Crcular moton: T R/ v ; T / ; a c v / R Newtons Laws: F ma ; F1 F1 Frcton: ; Energes: ; ; ; W F dr F r Etotal K Ug US E ; mech KUg Us fsd P dw / dt F v K W ; ; Momentum and Impulse: p mv ; I Fdt p Center of mass: rcm mr / m ; vcm mv / m Collsons: p = const and E const (nelastc) or p = const and E= const (elastc) Rotatonal moton: /T ; d / dt ; d / dt ; vt r ; at r ac ar vt / r r atot ar at ; v cm r (rollng, no slppng) ; acm r o t ; t t f o / ; f ( f ) I pont MR ; Ihoop MR ; I dsk MR / ; Isphere MR /5 ; Ishell MR /3 ; Irod ( center ) ML /1 I ML ; I mr ; I I Mh ; r F ; I ; L I rod ( end ) /3 Energy: Krot cm ; L r p I / ; K Krot Kcm ; K U 0 ; W ; Pnst Flud: ; ; ; Gm1m Gravtaton: F ˆ g r 1 ; gr () GM/ r ; 1 r U Gmm / r; 4 T a GM 3 Page 8 of 9

9 Oscllatory moton: ; ; ; Page 9 of 9

Name (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well:

Name (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well: Name (prnt neatly): Secton #: Physcs 111 Exam Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/0 questons=4 mn

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Name (print neatly): Section #: Physics 111 Exam 1. First, write your name on this sheet and on the Scantron Card.

Name (print neatly): Section #: Physics 111 Exam 1. First, write your name on this sheet and on the Scantron Card. Name (prnt neatly): Secton #: Physcs 111 Exam 1 Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/14 questons=4.4

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Name (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well:

Name (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well: Name (prnt neatly): Secton #: Physcs 111 Exam 3 Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/0 questons=4

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng

More information

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation! Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test Make-Up Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Physics 207 Lecture 13. Lecture 13

Physics 207 Lecture 13. Lecture 13 Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Physics 207: Lecture 27. Announcements

Physics 207: Lecture 27. Announcements Physcs 07: ecture 7 Announcements ake-up labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What

More information

PHYSICS 231 Review problems for midterm 2

PHYSICS 231 Review problems for midterm 2 PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

More information

10/9/2003 PHY Lecture 11 1

10/9/2003 PHY Lecture 11 1 Announcements 1. Physc Colloquum today --The Physcs and Analyss of Non-nvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

PHYSICS 231 Lecture 18: equilibrium & revision

PHYSICS 231 Lecture 18: equilibrium & revision PHYSICS 231 Lecture 18: equlbrum & revson Remco Zegers Walk-n hour: Thursday 11:30-13:30 am Helproom 1 gravtaton Only f an object s near the surface of earth one can use: F gravty =mg wth g=9.81 m/s 2

More information

Chapter 10 Rotational motion

Chapter 10 Rotational motion Prof. Dr. I. Nasser Chapter0_I November 6, 07 Important Terms Chapter 0 Rotatonal moton Angular Dsplacement s, r n radans where s s the length of arc and r s the radus. Angular Velocty The rate at whch

More information

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4 Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed

More information

Section 8.1 Exercises

Section 8.1 Exercises Secton 8.1 Non-rght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 ) Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information

RETURN ONLY THE SCANTRON SHEET!

RETURN ONLY THE SCANTRON SHEET! Andrzej Czajkowsk PHY/ exam Page out o Prncples o Physcs I PHY PHY Instructor: Dr. Andrzej Czajkowsk Fnal Exam December Closed book exam pages questons o equal value 5 correct answers pass the test! Duraton:

More information

2014 Academic Challenge

2014 Academic Challenge 2014 Academc Challenge PHYSICS TEST - REGIONAL Ths Test Conssts of 35 Questons Physcs Test Producton Team Len Storm, Eastern Illnos Unversty Author/Team Leader Doug Brandt, Eastern Illnos Unversty Author

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

More information

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Non-constant forces Imulse-momentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs

More information

Mechanics Cycle 3 Chapter 9++ Chapter 9++

Mechanics Cycle 3 Chapter 9++ Chapter 9++ Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015 PHYS 1441 Secton 001 Lecture #15 Wednesday, July 8, 2015 Concept of the Center of Mass Center of Mass & Center of Gravty Fundamentals of the Rotatonal Moton Rotatonal Knematcs Equatons of Rotatonal Knematcs

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y,

Dynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y, Dynamcs 46:23 Homework 8 Due: March 28, 28 Name: Please denote your answers clearly,.e., box n, star, etc., and wrte neatly. There are no ponts for small, messy, unreadable work... please use lots of paper.

More information

PHYS 1443 Section 003 Lecture #17

PHYS 1443 Section 003 Lecture #17 PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcro-robot (see a descrpton

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8) Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017 COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

More information

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 20.1 Introducton... 1 20.2 Constraned Moton: Translaton and Rotaton... 1 20.2.1 Rollng wthout slppng... 5 Example 20.1

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS

More information

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement. Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

More information

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =

More information

1 Hz = one cycle per second

1 Hz = one cycle per second Rotatonal Moton Mchael Fowler, UVa Physcs, 14E Sprng 009 Mar 5 Prelmnares: Unts for Angular Velocty The tachometer on your car dashboard tells you your car engne s angular speed n rpm, revolutons per mnute,

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Physics 207 Lecture 6

Physics 207 Lecture 6 Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and non-contact) Frcton (a external force that opposes moton) Free

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Supplemental Material: Causal Entropic Forces

Supplemental Material: Causal Entropic Forces Supplemental Materal: Causal Entropc Forces A. D. Wssner-Gross 1, 2, and C. E. Freer 3 1 Insttute for Appled Computatonal Scence, Harvard Unversty, Cambrdge, Massachusetts 02138, USA 2 The Meda Laboratory,

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO. Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

PHYS 1443 Section 002

PHYS 1443 Section 002 PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

I have not received unauthorized aid in the completion of this exam.

I have not received unauthorized aid in the completion of this exam. ME 270 Sprng 2013 Fnal Examnaton Please read and respond to the followng statement, I have not receved unauthorzed ad n the completon of ths exam. Agree Dsagree Sgnature INSTRUCTIONS Begn each problem

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Chapter 12 Equilibrium & Elasticity

Chapter 12 Equilibrium & Elasticity Chapter 12 Equlbrum & Elastcty If there s a net force, an object wll experence a lnear acceleraton. (perod, end of story!) If there s a net torque, an object wll experence an angular acceleraton. (perod,

More information