The Mathematics and Numerical Principles for Turbulent Mixing

Size: px
Start display at page:

Download "The Mathematics and Numerical Principles for Turbulent Mixing"

Transcription

1 The Mathematics and Numerical Principles for Turbulent Mixing James Glimm1,3 With thanks to: Wurigen Bo1, Baolian Cheng2, Jian Du7, Bryan Fix1, Erwin George4, John Grove2, Xicheng Jia1, Hyeonseong Jin5, T. Kaman1, Dongyung Kim1, Hyun-Kyung Lim1, Xaolin Li1, Yuanhua Li1, Xinfeng Liu6, Xingtao Liu1, Thomas Masser1,2, Roman Samulyak3, David H. Sharp2, Justin Iwerks1,Yan Yu1 1. SUNY at Stony Brook 2. Los Alamos National Laboratory 3. Brookhaven National Laboratory 4. Warwick University, UK 5. Cheju University, Korea 6. University of Southern California 7. University of South Carolina 1

2 Hyperbolic Conservation Laws U t F (U ) 0 Status of existence theory: 1D and small data: Perturbation expansion in wave interactions existence, uniqueness, smooth dependence on data (G., Liu, Brezan, others) 1D and 2x2 system: Existence (Diperna, Ding, Chen, others) Measure valued solutions, then shown to be classical weak solutions 2D: special solutions only 2

3 Nature of Solutions (1D) Solutions are typically discontinuous Shock waves form Solution space is functions of bounded variation and L_infty Solutions are interpreted in the weak sense, as distributions 3

4 Compensated Compactness Proofs (for 1D, large data, 2x2 systems) First establish existence of solutions in a very weak space of measure valued distributions Then (more difficult) show that such a weak solution is a classical weak solution, as a distribution: tu F (U ) 0 all test functions Theorem (Gangbo and Westdickenberg): For 2D, 3D: only first step (measured valued solution) Isentropic equations Comm. PDEs (In press) Limit may not proved to satisfy the original equation 4

5 Obstacles to extensions Some 3x3 and larger systems are unstable in BV norm (but perhaps these are not physically motivated) In 2D, even for gas dynamics, special solutions can be unbounded. Also BV is unstable. Nonuniqueness, 2D: Scheffer (1989), Snirelman DeLellis and Szelkelyhidi (Archives) Volker Elling (numerical) Lopez, Lopez, Lowengrub and Zheng (numerical) 5

6 Numerical implications: Standard view Typically numerical solutions appear to be convergent Problems with existence seems to be a strictly mathematical concern This point of view is incorrect as mathematics and as physics This lecture: to identify and cure problems as mathematics and as physics 6

7 Implications, continued For many problems, physical regularization (viscosity, mass diffusion, etc.) is very small. Even if included in the simulation, the effects are under resolved. Thus effects of physical regularization are dominated by numerical effects such as numerical mass diffusion. Large effort in V&V = Verification and Validation Verification is proof that the numerical solutions are bona fida solutions of the mathematical equations. This step fails if mathematical solutions are nonunique or discontinuous in dependence on initial conditions (loss of well posedness) or fail to exist or if the nonuniqueness etc. is resolved numerically by artifacts of algorithm Validation is agreement with physical experiments In practice, validation fails dramatically for turbulent mixing (Rayleigh-Taylor instability). 7

8 Chaotic Mixing: A challenge to the standard view Solutions are unstable on all length scales Under mesh refinement, new structures emerge In this sense there is no convergence Optimistically, we hope that the large scale structures converge and the new small scale ones that emerge under mesh refinement will not influence the large scale ones This hope is partially correct and partially8

9 Failure of the standard view Turbulent mixing and turbulent combustion Atomic or molecular level mixing requires a new length scale (the atoms or molecules) And a change in the laws of physics at these length scales or above. New terms in the conservation laws, to express mass diffusion, viscosity, heat conduction: U F (U ) D U t 9

10 Parabolic Conservation Laws U t F (U ) D U D Even in 1D, and in the limit distinct solutions occur (Smoller, Conley) Ratios of diffusion terms at the root of issue 0 For combustion, dimensionless ratios in D influence mixing properties and combustion rates, thus the global dynamics (Schmidt and Prandtl numbers). In this sense the small scales can easily affect the large ones. For turbulent mixing, parabolic transport terms can affect solution, especially the ratios of transport terms Density differences drive instabilities, and so mass diffusion diminishes the instability. Viscosity limits the complexity of the flow and hence the amount of the interfacial mass diffusion. In the limit D 0, the Schmidt number (viscosity/mass diffusion) determines the net amount of mass diffusion and hence the RT instability growth rate. 10

11 Requirements for simulation of turbulent combustion Averaged flow velocities and pressures as a function of x,y,z,t Joint probability distributions of the concentrations of species (fuel, oxidizer) and temperature, as a function of x,y,z,t This depends on the diffusion matrix D and if the calculation is under resolved, it depends on the numerical code and the numerical D, not the physical one 11

12 Mathematical implications for hyperbolic conservation laws The ultra weak solutions as measure valued distributions (PDFs) depending on x,y,z,t is exactly the framework of compensated compactness Existence proofs in this framework should be easier than for classical (weak) solutions Uniqueness, which typically fails for such weak solution methods, should fail, and is not correct (in the hyperbolic setting), neither as mathematics nor as physics. On numerical grounds, appears to correctly express the physics of unregularized solutions. 12

13 Numerical example: RichtmyerMeshkov (shock accelerated) turbulent mixing Circular shock starts at outer edge of (1/2) circle. Moves inward, crosses a perturbed circular density difference Reaches origin, reflects, recrosses the density difference Highly unstable flow Illustrates all previous points 13

14 Numerical example: Primary breakup of jet (diesel fuel); Jet in cross flow (jet engine) Liquid leaves narrow nozzle at speed near Mach 1. Breaks up rapidly into small droplets. Breakup is essential feature of flow to predict combustion rates. Burning is mainly film burning, and so is rate limited by surface area of droplets. For scram jet, fuel leaves combustion chamber in 1 millisec, and must complete combustion before that. Flows are only stabilized by transport (viscosity, mass diffusion or surface tension and heat conduction. Illustrates main points for chaotic mixing. 14

15 Numerical example: Chemical fuel separation in a mixer/contactor High shear rate in rotating device (Couette flow) produces high levels of Kelvin-Helmholtz instability Interface between immiscible fluids (oil and water based) produces fine scale droplets. Chemical reactions occur on the interface and are thus interface area limited. Prediction of total droplet area and distribution of droplet sizes and shapes is needed to predict the chemical reaction rates. Flow is stabilized by surface tension (Weber number). Illustrates main points for chaotic flow. 15

16 Numerical Example: Rayleigh-Taylor Turbulent Mixing Steady acceleration of a density difference Unstable if acceleration points from heavy to light Water over air Penetration distance h of light fluid into heavy (bubbles) is a simple measure of 2 mixing rate. h / Agt 16

17 2D Chaotic Solutions: Shock implosion of perturbed interface 4 grid levels 17

18 Circular RM instability Initial (left) and after reshock (right) density plots. Upper and lower inserts show enlarged details of flow. 18

19 Definitions for Turbulent Mixing An observable of the flow is SENSITIVE if it shows dependence on numerical algorithms and/or on physical modeling (transport). MACRO observables: edges of mixing zones, trajectories of leading shock waves, mean densities, velocities of each fluid species MICRO observables: probability density functions for temperature and for species concentration; properties dependent on 19

20 Explanation Macro observables describe the average mixing properties of the large scale flow Micro observables describe the atomic level mixing properties 20

21 Sensitive and Insensitive Observables Macro Micro Rayleigh-Taylor Sensitive Sensitive RichtmyerInsensitive Sensitive Meshkov RM has a highly unstable interface, in the absence of regularization, diverging as 1/delta x. This divergent interface length or area causes sensit to atomic scale observables. 21

22 Simplistic Error Analysis for Micro Observables in Chaotic Flow ERROR C1 x Interface length (area) Interface length (area) = C2 x 1 ERROR C1 x C2 x C1C2 O 1 1 Error as results from numerical or physical modeling, e.g. numerical mass diffusion or ideal vs. physical transport coefficients 22

23 Chaotic dependence of interface length on mesh: Unregularized simulation Surface Length/Area vs. time Surface Length x Area 23

24 Verification (Macro Observables) A mesh convergence study Analyze heavy fluid density Errors are of two types Position errors due to errors in locations of shock waves Density errors in the smooth regions between the shock waves Large reduction in error variance results from separating these types of errors Some statistical averages performed to achieve convergence Convergence achieved in the sense of mean quantities 24

25 Convergence of mean density of heavy fl Heavy fluid relative density errors, at t = 60 25

26 Convergence of wave trajectories Kolmogorov length = = size of smallest eddy Kmesh Kolmogorov length / x Kmesh 1: DNS <- change in physics -> 26

27 Validation: Agreement between simulation and experiment Rayleigh-Taylor instability Classical hydro instability, acceleration driven Three simulation studies based on Front Tracking show agreement with experiment Immiscible fluids (surface tension is regularizer) Miscible fluids high Schmidt number (viscosity and initially mass diffused layer are regularizers) Miscible fluids (helium-air) (mass diffusion is regularizer) All three cases give essentially perfect agreement to experiment on overall mixing rate. 27

28 Rayleigh-Taylor mixing with small levels of mass diffusion (large Schmidt number). Plot of h = penetratio distance of light fluid into heavy. Physical values of viscosity and initial mass diffusion are us The two simulations a quarter and half of 28 physical problem.

29 Comparison of simulations and experiment (Validation): For Rayleigh-Taylor unstable mixing Immiscible fluids (surface tension) growth rate for mixing zone dimensionless surface tension 29

30 Other RT Simulation Studies 50 year old problem Most simulations disagree with experiment by factor of 2 on overall mixing rate h / Agt 2 A few agree with experiment Front Tracking (control numerical mass diffusion) Particle methods (control numerical mass diffusion) Mueschke-Andrews-Schilling (control numerical mass diffusion and use experimental initial conditions) 30

31 Comparison of FronTier and RAGE for 2D RM instability T. Masser: Macro variables not sensitive Micro: Temperature is sensitive Stony Brook: Macro variables: not sensitive Interface length divergent Micro: Mixture concentrations sensitive 31

32 Major Temperature Differences at Reshock At reshock the fingers of tin are heated to a much higher temperature in the FronTier simulation than the corresponding fingers in the RAGE simulation. There are at least three possible mechanisms that might be responsible. Velocity shear in FronTier missing in RAGE Thermal and Mass diffusion at the interface in RAGE Differences in the hyperbolic solver After reshock FronTier continues to have a significantly higher maximum temperature. 32

33 DNS (regularized simulation) convergence of interface lambda_c = avg. distance to exit a phase lambda_cmesh = lambda_c/mesh size lambda_k = Kolmogorov length (smallest eddies) LHS of left frame shows uniform behavior in mesh units, independent of mesh and physics, for LES regime. RHS of right frame shows uniform behavior relative to mesh for fixed physics, ie mesh convergence for DNS regime. 33

34 Atomic Scale Mixing Properties Atomic scale mixing properties are sensitive to physical modeling and to numerical methods unless fully resolved (direct numerical simulation = DNS) Correct simulation for both micro and macro variables: use sub grid models (large eddy simulation = LES) LES modify equations to compensate for physics occurring on small scales (below the grid size) but not present in the computation. 34

35 Combine strengths from two numerical traditions Capturing likes steep gradients, rapid time scales Turbulence models often use smooth solutions, slow time scales with significant levels of physical mass diffusion Tracking is an extreme version of this idea Often, no subgrid model and so not physically accurate for under resolved (LES) simulations Often, too many zones to transit through a concentration gradient Best part of two ideas combined in present 35 study

36 Subgrid models for turbulence, etc. Typical equations have the form Averaged equations: U t F (U ) U U t F (U ) U F (U ) F (U ) F (U ) F (U ) FSGS (U ) FSGS is the subgrid scale model and corrects for grid e 36

37 Subgrid models for turbulent flow FSGS U F U F U U t F U U FSGS U FSGS U ; turbulent U (key modeling step) U t F U turbulent U 37

38 Subgrid Scale Models (Moin et al.) No free (adjustable) parameters in the SGS terms Parameters are found dynamically from the simulation itself After computing at level Delta x, average solution onto coarser mesh. On coarse mesh, the SGS terms are computed two ways: Directly as on the fine mesh with a formula Indirectly, by averaging the closure terms onto the coarse grid. Identity of two determinations for SGS terms becomes an equation for the coefficient, otherwise missing. Assume: coefficient has a known relation to Delta x and otherwise is determined by an asymptotic coefficient. Thus on a fine LES grid the coefficient is known by above 38

39 Typical atomic level observable Mean chemical reaction rate (no subgrid model needed for computation of w) w f1 f 2eT / TAC TAC Activation Temperature f i mass fraction of species i T f1 f 2 ; L defined at fixed T f1 f 2 d (T ) probability distribution for T f1 f 2 T et / TAC d (T ) mean reaction rate w TAC 39

40 Re = 300. Theta(T) vs. T (left); Pdf for T (right) f f 1 2 f1 f 2 40

41 Re = Theta(T) vs. T (left); Pdf for T (right) 41

42 Re = 300k. Theta(T) vs. T (left); Pdf for T (right) 42

43 Kolmogorov-Smirnov Metric for comparison of PDFs Sup norm of integral of PDF differences PDF data is noisy and the smoothing in the K-S metric is needed to obtain coherent results x p1 p2 K S p1 ( y ) p2 ( y )dy 43

44 Convergence properties for w pdf const.for f1 f 2 exp(t / TAC ) reaction rate Errors for pdf for reaction rate w, compare coarse to fine, medium to fine and relative fluctuations in coarse grid Re c to f m to fluct. c f K K Conclusion: numerical convergence of chemical reaction rates, using LES SGS models for high Schmidt number flows 44

45 Convergence of w pdf Not just mean converges Moments to all order, and full distribution converges 45

46 Microphysics to study combustion: Primary breakup of fuel jet injection to engine Parameters from diesel engine Above: no cavitation bubbles. Below: with cavitation 46

47 Comparison to experiment: simulation with and without cavitation bubbles Reynolds numbe observation window as vs. time Velocity of jet tip Mass flux through a measure of jet spreading 47 Base case: specification of numerical parameters for insertion of cavitation

48 3D Simulation 48

49 Comparison of simulation and experiment (Argon National Laboratory) 49

50 Simplified engine geometry 50

51 Jet in Cross Flow Mach 1 cross flow with a 2D (planar) jet of diesel fuel. 51

52 Conclusions Chaotic flow simulations are sensitive to numerical and physical modeling Several examples of natural physical problems RM mixing: Temperature, concentration and chemical reaction rate PDFs are sensitive to transport, to numerical algorithms (under resolved) and are convergent with use of SGS model (no adjustable parameters). RM mixing: mesh convergence including microphysical variables (verification) RT mixing: agreement of simulation with experiment (validation) Solutions as measure valued distributions from the compensated compactness theory provides a useful framework for interpretation of simulations. Simulations suggest that this framework might be a basis for 2D/3D existence proofs. 52

53 Thank You Smiling Face: FronTier art simulation Courtesy of Y. H. Zhao 53

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu

Target Simulations. Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu Muon Collider/Neutrino Factory Collaboration Meeting May 26 28, CERN, Geneva U.S. Department of Energy Target Simulations Roman Samulyak in collaboration with Y. Prykarpatskyy, T. Lu Center for Data Intensive

More information

Shock wave interactions in spherical and perturbed spherical geometries

Shock wave interactions in spherical and perturbed spherical geometries Nonlinear Analysis 63 (2005) 644 652 www.elsevier.com/locate/na Shock wave interactions in spherical and perturbed spherical geometries S. Dutta a, E. George a, J. Glimm a,b,, J.W. Grove c,h.jin a, T.

More information

Turbulent mixing with physical mass diffusion

Turbulent mixing with physical mass diffusion Turbulent mixing with physical mass diffusion Xinfeng Liu, 1 Erwin George, 1 Wurigen Bo, 1 and J. Glimm 1,2 1 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New

More information

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 23 Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and

More information

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR Rayleigh-Taylor instability is generated when a heavy fluid sits above a lighter fluid in a gravitational field. The flow behavior is described in terms of bubbles of light fluid rising into the heavier

More information

Simulation of mixing of heterogeneous HE components

Simulation of mixing of heterogeneous HE components Chapter Simulation of mixing of heterogeneous HE components The majority on high explosives (HEs) used are blend ones. Properties of components differ that produces interaction on the grain scale (mesoprocesses).

More information

Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008

Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008 Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008 MIXING DUE TO RAYLEIGH-TAYLOR INSTABILITY David Youngs AWE Aldermaston

More information

Numerical simulation of wave breaking in turbulent two-phase Couette flow

Numerical simulation of wave breaking in turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2012 171 Numerical simulation of wave breaking in turbulent two-phase Couette flow By D. Kim, A. Mani AND P. Moin 1. Motivation and objectives When

More information

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films

Topics in Other Lectures Droplet Groups and Array Instability of Injected Liquid Liquid Fuel-Films Lecture Topics Transient Droplet Vaporization Convective Vaporization Liquid Circulation Transcritical Thermodynamics Droplet Drag and Motion Spray Computations Turbulence Effects Topics in Other Lectures

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

Validating the FLASH Code: Vortex Dominated Flows

Validating the FLASH Code: Vortex Dominated Flows Validating the FLASH Code: Vortex Dominated Flows Greg Weirs, Vikram Dwarkadas, Tomek Plewa ASCI FLASH Center, University of Chicago vikram@flash.uchicago.edu, tomek@flash.uchicago.edu, weirs@flash.uchicago.edu

More information

2 In this paper, we give a brief summary of the front tracking algorithm for axisymmetric ow. We report simulations of spherical shock refraction by a

2 In this paper, we give a brief summary of the front tracking algorithm for axisymmetric ow. We report simulations of spherical shock refraction by a A Fast Algorithm for Moving Interface Problems S. Dutta 1,J.Glimm 1 2,J.W.Grove 3,D.H.Sharp 4, and Y. Zhang 1 1 Department of Applied Mathematics and Statistics, University at Stony Brook, Stony Brook,

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

The Johns Hopkins Turbulence Databases (JHTDB)

The Johns Hopkins Turbulence Databases (JHTDB) The Johns Hopkins Turbulence Databases (JHTDB) HOMOGENEOUS BUOYANCY DRIVEN TURBULENCE DATA SET Data provenance: D. Livescu 1 Database Ingest and Web Services: C. Canada 1, K. Kalin 2, R. Burns 2 & IDIES

More information

Simulation of atomization : from DNS to industrial applications

Simulation of atomization : from DNS to industrial applications Simulation of atomization : from DNS to industrial applications MUSAF III - 29/09/2016 D. Zuzio, J.-L. Estivalèzes, O. Rouzaud, P. Gajan, P. Villedieu PhD/postdoc : G. Blanchard, I. Marter, A. Orazzo,

More information

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc.

ANSYS Advanced Solutions for Gas Turbine Combustion. Gilles Eggenspieler 2011 ANSYS, Inc. ANSYS Advanced Solutions for Gas Turbine Combustion Gilles Eggenspieler ANSYS, Inc. 1 Agenda Steady State: New and Existing Capabilities Reduced Order Combustion Models Finite-Rate Chemistry Models Chemistry

More information

Mixing and Combustion in Dense Mixtures by William A. Sirignano and Derek Dunn-Rankin

Mixing and Combustion in Dense Mixtures by William A. Sirignano and Derek Dunn-Rankin Mixing and Combustion in Dense Mixtures by William A. Sirignano and Derek Dunn-Rankin At very high pressures and densities, what is different and what is similar about the processes of Injection and Atomization,

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

On the physical inadmissibility of ILES for simulations of Euler equation turbulence

On the physical inadmissibility of ILES for simulations of Euler equation turbulence On the physical inadmissibility of ILES for simulations of Euler equation turbulence J. Glimm Stony Brook University, Stony Brook NY 11794 Baolian Cheng and David H. Sharp Los Alamos National Laboratory,

More information

The deposition efficiency and spatial thickness distribution of films created by Directed

The deposition efficiency and spatial thickness distribution of films created by Directed Chapter 8 Vapor Transport Model Development The deposition efficiency and spatial thickness distribution of films created by Directed Vapor Deposition synthesis have been shown to be sensitive functions

More information

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows

TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows TURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High Acceleration Flows Presented by William A. Sirignano Mechanical and Aerospace Engineering University of California

More information

Spherical Richtmyer-Meshkov instability for axisymmetric flow

Spherical Richtmyer-Meshkov instability for axisymmetric flow Mathematics and Computers in Simulation 65 (2004) 417 430 Spherical Richtmyer-Meshkov instability for axisymmetric flow Srabasti Dutta a, James Glimm a,b, John W. Grove c, David H. Sharp d, Yongmin Zhang

More information

arxiv:astro-ph/ v1 4 Mar 2004

arxiv:astro-ph/ v1 4 Mar 2004 Simulation of Vortex Dominated Flows Using the FLASH Code arxiv:astro-ph/0403109v1 4 Mar 2004 Vikram Dwarkadas, 1 Tomek Plewa, 1 Greg Weirs, 1 Chris Tomkins, 2 and Mark Marr-Lyon 2 1 ASCI FLASH Center,

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Report Title Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows ABSTRACT A numerical algorithm and

Report Title Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows ABSTRACT A numerical algorithm and Report Title Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows ABSTRACT A numerical algorithm and the corresponding paralleled implementation for the

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet , pp. 704 709 The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet Piljong LEE, Haewon CHOI 1) and Sunghong LEE 2) Technical Research Center, POSCO, Pohang

More information

Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion

Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion Insights into Model Assumptions and Road to Model Validation for Turbulent Combustion Venke Sankaran AFRL/RQR 2015 AFRL/RQR Basic Research Review UCLA Jan 20, 2015 AFTC PA Release# 15011, 16 Jan 2015 Goals

More information

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing.

Lecture 14. Turbulent Combustion. We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. Lecture 14 Turbulent Combustion 1 We know what a turbulent flow is, when we see it! it is characterized by disorder, vorticity and mixing. In a fluid flow, turbulence is characterized by fluctuations of

More information

Exercises in Combustion Technology

Exercises in Combustion Technology Exercises in Combustion Technology Exercise 4: Turbulent Premixed Flames Turbulent Flow: Task 1: Estimation of Turbulence Quantities Borghi-Peters diagram for premixed combustion Task 2: Derivation of

More information

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon

Lecture 12. Droplet Combustion Spray Modeling. Moshe Matalon Lecture 12 Droplet Combustion Spray Modeling Spray combustion: Many practical applications liquid fuel is injected into the combustion chamber resulting in fuel spray. Spray combustion involves many physical

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column

Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column Dan Igra and Kazuyoshi Takayama Shock Wave Research Center, Institute of

More information

ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS

ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS 9 th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability PMC2004-001 ERROR ANALYSIS OF COMPOSITE SHOCK INTERACTION PROBLEMS Y. Yu, T. Lee, M. Zhao, J. Glimm, X. Li and K. Ke

More information

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach TFM Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF)

More information

Liquid Jet Breakup at Low Weber Number: A Survey

Liquid Jet Breakup at Low Weber Number: A Survey International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 727-732 International Research Publication House http://www.irphouse.com Liquid Jet Breakup at

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser.

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser. Journal of Physics: Conference Series PAPER OPEN ACCESS Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows by Ali Afshar A thesis submitted in conformity with the requirements for the degree of Masters

More information

Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas

Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas Center for Turbulence Research Annual Research Briefs 2006 185 Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas By D. Kim, O. Desjardins, M. Herrmann AND

More information

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS ELECTRIC POWER 2003 March 4-6, 2003 George R Brown Convention Center, Houston, TX EP 03 Session 07C: Fuels, Combustion and Advanced Cycles - Part II ASME - FACT Division CHARACTERISTICS OF ELLIPTIC CO-AXIAL

More information

Direct Numerical Simulations of Gas-Liquid Flows

Direct Numerical Simulations of Gas-Liquid Flows Direct Numerical Simulations of Gas-Liquid Flows 1 Gretar Tryggvason*; 1 Jiacai Lu; 2 Ming Ma 1 Johns Hopkins University, Baltimore, MD, USA; 2 University of Notre Dame, Notre Dame, IN, USA Introduction

More information

A Multiscale Front Tracking Method for Compressible Free Surface Flows

A Multiscale Front Tracking Method for Compressible Free Surface Flows A Multiscale Front Tracking Method for Compressible Free Surface Flows Zhiliang Xu, James Glimm, Yongmin Zhang, and Xinfeng Liu June 29, 2006 Abstract We present an overview of multiscale computations

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment

Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment Abstract Andrew George Weir Lawrie and Stuart Dalziel Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

Computational Physics & Validation

Computational Physics & Validation The Center for Astrophysical Thermonuclear Flashes Computational Physics & Validation Tomek Plewa Hua Pan, Timur Linde, Greg Weirs, Dahai Yu Todd Dupont Advanced Simulation and Computing (ASC) Academic

More information

Atwood number effects in buoyancy driven flows

Atwood number effects in buoyancy driven flows Advanced Computational Methods in Heat Transfer IX 259 Atwood number effects in buoyancy driven flows M. J. Andrews & F. F. Jebrail Los Alamos National Laboratory, USA Abstract Consideration is given to

More information

Eulerian Two-Phase Flow CFD Simulation Using a Compressible and Equilibrium Eight- Equation Model. Y. Wang 1 and R. D. Reitz

Eulerian Two-Phase Flow CFD Simulation Using a Compressible and Equilibrium Eight- Equation Model. Y. Wang 1 and R. D. Reitz ILASS Americas 27th Annual Conference on Liquid Atomization and Spray Systems, Raleigh, NC, May 2015 Eulerian Two-Phase Flow CFD Simulation Using a Compressible and Equilibrium Eight- Equation Model Y.

More information

Mass Transfer Fundamentals. Chapter#3

Mass Transfer Fundamentals. Chapter#3 Mass Transfer Fundamentals Chapter#3 Mass Transfer Co-efficient Types of Mass Transfer Co-efficient Convective mass transfer can occur in a gas or liquid medium. Different types of mass transfer coefficients

More information

CST Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique

CST Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique The 23 rd Conference of the Mechanical Engineering Network of Thailand November 4 7, 2009, Chiang Mai Investigation on High Speed Liquid Jet using Computational Fluid Dynamics Technique Wirapan Seehanam*,

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS

DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS Atomization and Sprays 2(4), 311 336 (21) DETAILED NUMERICAL INVESTIGATION OF TURBULENT ATOMIZATION OF LIQUID JETS O. Desjardins 1, & H. Pitsch 2 1 Department of Mechanical Engineering, University of Colorado

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue 11 Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue Yang GUO*, Chisachi KATO** and Yoshinobu YAMADE*** 1 FrontFlow/Blue 1) is a general-purpose finite element program that calculates

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Dynamics of Transient Liquid Injection:

Dynamics of Transient Liquid Injection: Dynamics of Transient Liquid Injection: K-H instability, vorticity dynamics, R-T instability, capillary action, and cavitation William A. Sirignano University of California, Irvine -- Round liquid columns

More information

Rayleigh-Taylor Unstable Flames

Rayleigh-Taylor Unstable Flames Rayleigh-Taylor Unstable Flames Elizabeth P. Hicks 1,2 and Robert Rosner 2 CIERA, Northwestern University 1 University of Chicago 2 CIERA Conference: September 2, 2011 1 Type Ia Supernovae Image: NASA

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS

RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS Theo Theofanous (PI) University of California, Santa Barbara Rich Couch, Program Manager Lawrence Livermore National Laboratory S&T CBIS October 25-28,

More information

On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability

On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability On The Collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer-Meshkov Instability Victoria Suponitsky, Sandra Barsky, and Aaron Froese General Fusion Inc., 8-368 Bonneville Place, Burnaby,

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Dr.-Ing. Frank Beyrau Content of Lecture

Dr.-Ing. Frank Beyrau Content of Lecture Content of Lecture 1. Phenomenology of Combustion 2. Thermodynamic Fundamentals 3. Chemical Reaction Kinetics 4. Ignition and Ignition Limits 5. Laminar Flame Theory 6. Turbulent Combustion 7. Pollutants

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

LES of the Sandia Flame D Using an FPV Combustion Model

LES of the Sandia Flame D Using an FPV Combustion Model Available online at www.sciencedirect.com ScienceDirect Energy Procedia 82 (2015 ) 402 409 ATI 2015-70th Conference of the ATI Engineering Association LES of the Sandia Flame D Using an FPV Combustion

More information

Complexity of Two-Phase Flow in Porous Media

Complexity of Two-Phase Flow in Porous Media 1 Complexity of Two-Phase Flow in Porous Media Rennes September 16, 2009 Eyvind Aker Morten Grøva Henning Arendt Knudsen Thomas Ramstad Bo-Sture Skagerstam Glenn Tørå Alex Hansen 2 Declining oil production,

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Direct numerical simulation of a turbulent reacting jet

Direct numerical simulation of a turbulent reacting jet Center for Turbulence Research Annual Research Briefs 999 59 Direct numerical simulation of a turbulent reacting jet By B. J. Boersma. Motivation and objectives Turbulent reacting jets are important in

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION Cheng Z, Agranat V.M. and Tchouvelev A.V. A.V.Tchouvelev & Associates, Inc., 659 Spinnaker Circle, Mississauga, Ontario, Canada L5W R Hydrogenics

More information

Prediction of unsteady heat transfer from a cylinder in crossflow

Prediction of unsteady heat transfer from a cylinder in crossflow Center for Turbulence Research Proceedings of the Summer Program 202 07 Prediction of unsteady heat transfer from a cylinder in crossflow By S. T. Bose, B. C. Wang AND M. Saeedi The accuracy of a tensorial

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Proceedings of International Symposium on Visualization and Image in Transport Phenomena, Turkey, -9 Oct. SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Hui HU a, Tetsuo

More information

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,

More information

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6

Simulation numérique de l atomisation. Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 Simulation numérique de l atomisation Stéphane Zaleski & Yue Ling Institut Jean Le Rond d Alembert, CNRS & Université Pierre et Marie Curie -- UPMC Paris 6 web site http://www.ida.upmc.fr/~zaleski 1/79

More information

Advanced Transport Phenomena Module 6 - Lecture 28

Advanced Transport Phenomena Module 6 - Lecture 28 Mass Transport: Non-Ideal Flow Reactors Advanced Transport Phenomena Module 6 - Lecture 28 Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras 1 Simplest approach: apply overall material/

More information

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION Conventional Centrifugal Methods Centrifugal sedimentation of particles suspended in a fluid is a well known method (1, 2)

More information

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system Center for Turbulence Research Annual Research Briefs 2007 231 Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system By L. Wang AND H. Pitsch 1. Motivation and objectives

More information

Turbulence Models for Flows with Free Surfaces and Interfaces

Turbulence Models for Flows with Free Surfaces and Interfaces AIAA JOURNAL Vol. 44, No. 7, July 2006 Turbulence Models for Flows with Free Surfaces and Interfaces Ebrahim Shirani, Ali Jafari, and Nasser Ashgriz University of Toronto, Toronto, Ontario M5S 3G8, Canada

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Mixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds

Mixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds Mixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds F. Moukalled* and M. Darwish American University of Beirut Faculty of Engineering & Architecture Mechanical Engineering

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

Numerical investigation of cavitation-regimes in a converging-diverging nozzle

Numerical investigation of cavitation-regimes in a converging-diverging nozzle Numerical investigation of cavitation-regimes in a converging-diverging nozzle 1 Polina Gorkh, 1 Steffen J. Schmidt, and 1 Nikolaus A. Adams 1 Institute of Aerodynamics and Fluid Mechanics, Department

More information

MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES

MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 MULTIDIMENSIONAL TURBULENCE SPECTRA - STATISTICAL ANALYSIS OF TURBULENT VORTICES

More information

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION ABSTRACT NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION D. Métrailler, S. Reboux and D. Lakehal ASCOMP GmbH Zurich, Technoparkstr. 1, Switzerland Metrailler@ascomp.ch;

More information