REVIEW PROBLEMS FOR QUIZ 2

Size: px
Start display at page:

Download "REVIEW PROBLEMS FOR QUIZ 2"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe March 11, 000 Prof. Alan Guth EVIEW POBLEMS FO QUIZ QUIZ DATE: Thursday, March 16, 000 COVEAGE: Lecture Notes 4; Lecture Notes 5; Problem Set ; Michael owan- obinson, Cosmology (Third Edition), Chapters 1-3. One of the problems on the quiz will be taken verbatim (or at least almost verbatim) from either the homework assignment, or from this set of eview Problems. PUPOSE: These review problems are not to be handed in, but are being made available to help you study. Two of the four problems are from quizzes in previous years, and the other two are new. They are all problems that I would consider fair for the coming quiz. Since owan-obinson s book has not previously been used as a text in 8.86, there are no review problems based on this reading. You should expect, however, that the quiz will include a set of questions based on this reading assignment. In addition to this set of problems, you will find on the study materials section the actual quizzes that were given in 1996 and The relevant problems from those quizzes have been incorporated into Problem Set or these review problems, but you still may be interested in looking at the quizzes, just to see how much material has been included in each quiz. However, due to changes in the pacing of the quizzes, the quizzes from 1996 and 1998 do not match well with the coverage of the coming quiz. From the quizzes of 1998, only Problem of Quiz would be appropriate for the coming quiz, and you have already worked this problem in Problem Set. From 1996, only Problem of Quiz 1 would be appropriate, but it was also included in this year s Problem Set. INFOMATION TO BE GIVEN ON QUIZ: The following material will be included on the quiz, so you need not memorize it. You should, however, make sure that you understand what these formulas mean, and how they can be applied. DOPPLE SHIFT: z = v/u (nonrelativistic, source moving) v/u z = 1 v/u (nonrelativistic, observer moving) z = 1+ β 1 1 β (special relativity, with β = v/c)

2 8.86 QUIZ EVIEW POBLEMS, SPING 000 p. COSMOLOGICAL EDSHIFT: β observed (t observed ) 1+ z = β emitted (t emitted ) EVOLUTION OF A MATTE-DOMINATED UNIVESE: ( ) Ṙ 8π kc = Gθ 3 4π = Gθ 3 3 (t i ) θ(t) = 3 (t) θ(t i ) Flat (Ω θ/θ c =1): (t) t /3 Closed (Ω > 1): ct = α(α sin α), = α(1 cos α), k 4π Gθ 3 where α 3 k 3/ c Open (Ω < 1): ct = α (sinh α α) = α (cosh α 1), π 4π Gθ 3 where α 3 π, 3/ c π k. POBLEM 1: THE DECELEATION PAAMETE The following problem was Problem, Quiz, 199, where it counted 10 points out of 100. Many standard references in cosmology define a quantity called the deceleration parameter q, which is a direct measure of the slowing down of the cosmic expansion. The parameter is defined by (t) q (t) Ṙ (t).

3 8.86 QUIZ EVIEW POBLEMS, SPING 000 p. 3 Find the relationship between q and Ω for a matter-dominated universe. [In case you have forgotten, Ω is defined by Ω= θ/θ c, where θ is the mass density and θ c is the critical mass density (i.e., that mass density which corresponds to k = 0).] POBLEM : A ADIATION-DOMINATED FLAT UNIVESE We have learned that a matter-dominated homogeneous and isotropic universe can be described by a scale factor (t) obeying the equation ( 8π kc = Gθ. 3 This equation in fact applies to any form of mass density, so we can apply it to a universe in which the mass density is dominated by the energy of photons. ecall that the mass density of nonrelativistic matter falls off as 1/ 3 (t) as the universe expands; the mass of each particle remains constant, and the density of particles falls off as 1/ 3 (t) because the volume increases as 3 (t). For the photon-dominated universe, the density of photons falls of as 1/ 3 (t), but in addition the frequency (and hence the energy) of each photon redshifts in proportion to 1/(t). Since mass and energy are equivalent, the mass density of the gas of photons falls off as 1/ 4 (t). For a flat (i.e., k = 0) matter-dominated universe we learned that the scale factor (t) is proportional to t /3.How does (t) behave for a photon-dominated universe? POBLEM 3: EVOLUTION OF AN OPEN UNIVESE The following problem was taken from Quiz, 1990, where it counted 10 points out of 100. Consider an open, matter-dominated universe, as described by the evolution equations on the front of the quiz. Find the time t at which / π = α. POBLEM 4: ANTICIPATING A BIG CUNCH Suppose that we lived in a closed, matter-dominated universe, as described by the equations on the front of the quiz. Suppose further that we measured the mass density parameter Ω to be Ω 0 =, and we measured the Hubble constant to have some value H 0. How much time would we have before our universe ended in a big crunch, at which time the scale factor (t) would collapse to 0?

4 8.86 QUIZ EVIEW POBLEM SOLUTIONS, SPING 000 p. 4 SOLUTIONS POBLEM 1: THE DECELEATION PAAMETE From the front of the exam, we are reminded that 4π = Gθ 3 and ( 8π kc = Gθ, 3 where a dot denotes a derivative with respect to time t. The critical mass density θ c is defined to be the mass density that corresponds to a flat (k = 0) universe, so from the equation above it follows that ( 8π = Gθ c. 3 Substituting into the definition of q, we find ( (t) ) q = (t) Ṙ (t) = Ṙ ( )( ) 4π 3 1 θ 1 = Gθ = = Ω. 3 8πGθ c θ c POBLEM : A ADIATION-DOMINATED FLAT UNIVESE The flatness of the model universe means that k = 0, so ( 8π = Gθ. 3 Since 1 θ(t) 4 (t), it follows that d dt const =.

5 8.86 QUIZ EVIEW POBLEM SOLUTIONS, SPING 000 p. 5 ewriting this as d = const dt, the indefinite integral becomes 1 = (const)t + c, where c is a constant of integration. Different choices for c correspond to different choices for the definition of t = 0. We will follow the standard convention of choosing c = 0, which sets t = 0 to be the time when = 0. Thus the above equation implies that t, and therefore 1/ (t) t for a photon-dominated flat universe. POBLEM 3: EVOLUTION OF AN OPEN UNIVESE The evolution of an open, matter-dominated universe is described by the following parametric equations: ct = α(sinh α α) = α(cosh α 1). π Evaluating the second of these equations at / π = α yields a solution for α: α = α(cosh α 1) = cosh α = 3 = α = cosh 1 (3). We can use these results in the first equation to solve for t. Noting that sinh α = cosh α 1 = 8=, we have α [ ] t = cosh 1 (3). c Numerically, t α/c.

6 8.86 QUIZ EVIEW POBLEM SOLUTIONS, SPING 000 p. 6 POBLEM 4: ANTICIPATING A BIG CUNCH The critical density is given by so the mass density is given by Substituting this relation into 3H 0 θ c = 8πG, 3H 0 θ = Ω 0 θ c =θ c = 4πG. (1) we find from which it follows that 8π kc H0 = Gθ, 3 kc H =H 0, 0 c =. () k H 0 Now use 4π Gθ 3 α = 3 k 3/ c. Substituting the values we have from Eqs. (1) and () for θ and / k, we have To determine the value of the parameter α, use c α =. (3) H 0 = α(1 cos α), k which when combined with Eqs. () and (3) implies that cos α = 0. The equation cos α = 0 has multiple solutions, but we know that the α-parameter for a closed matter-dominated universe varies between 0 and π during the expansion phase of the universe. Within this range, cos α = 0 implies that α = π/. Thus, the age of the universe at the time these measurements are made is given by α t = (α sin α) c 1 ( π ) = 1. H 0

7 8.86 QUIZ EVIEW POBLEM SOLUTIONS, SPING 000 p. 7 The total lifetime of the closed universe corresponds to α = π, or πα π t final = =, c H 0 so the time remaining before the big crunch is given by ( ) 1 [ ( π )] 3π 1 t final t = π 1 = +1. H 0 H 0

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 5, 2013 Prof. Alan Guth PROBLEM SET 4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 5, 2013 Prof. Alan Guth PROBLEM SET 4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 5, 2013 Prof. Alan Guth PROBLEM SET 4 DUE DATE: Friday, October 11, 2013 READING ASSIGNMENT: Steven Weinberg,

More information

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET

PROBLEM SET 6 EXTRA CREDIT PROBLEM SET MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe May 3, 2004 Prof. Alan Guth PROBLEM SET 6 EXTRA CREDIT PROBLEM SET CAN BE HANDED IN THROUGH: Thursday, May 13,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe October 7, 013 Prof. Alan Guth PROBLEM SET 6 DUE DATE: Monday, November 4, 013 READING ASSIGNMENT: Steven Weinberg,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe February 29, 2000 Prof.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe February 29, 2000 Prof. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe February 29, 2000 Prof. Alan Guth QUIZ 1 USEFUL INFORMATION: DOPPLER SHIFT: z = v/u (nonrelativistic, source moving)

More information

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is

1. De Sitter Space. (b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum energy (P = ) is 1. De Sitter Space (a) Show in the context of expanding FRW models that if the combination +3P is always positive, then there was a Big Bang singularity in the past. [A sketch of a(t) vs.t may be helpful.]

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 8, 2016 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Wednesday, December 14, 2016, at 4:00 pm.

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 5, 2013 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Tuesday, December 10, 2013, at 5:00 pm.

More information

QUIZ 3. Quiz Date: December 7, 2016

QUIZ 3. Quiz Date: December 7, 2016 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2016 Prof. Alan Guth QUIZ 3 Quiz Date: December 7, 2016 Reformatted to Remove Blank Pages Please

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field Cosmology ASTR 2120 Sarazin Hubble Ultra-Deep Field Cosmology - Da Facts! 1) Big Universe of Galaxies 2) Sky is Dark at Night 3) Isotropy of Universe Cosmological Principle = Universe Homogeneous 4) Hubble

More information

3.1 Cosmological Parameters

3.1 Cosmological Parameters 3.1 Cosmological Parameters 1 Cosmological Parameters Cosmological models are typically defined through several handy key parameters: Hubble Constant Defines the Scale of the Universe R 0 H 0 = slope at

More information

A Bit of History. Hubble s original redshiftdistance

A Bit of History. Hubble s original redshiftdistance XKCD: April 7, 2014 Cosmology Galaxies are lighthouses that trace the evolution of the universe with time We will concentrate primarily on observational cosmology (how do we measure important cosmological

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 23-24: Cosmology: models of the universe 1 The FRW-metric Cosmology is the study of the universe as a whole. In the lectures on cosmology we will look at current theories of how the

More information

REVIEW PROBLEMS FOR QUIZ 2

REVIEW PROBLEMS FOR QUIZ 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe April 6, 004 Prof. Alan Guth REVIEW PROBLEMS FOR QUIZ QUIZ DATE: Tuesday, April 13, 004 COVERAGE: Lecture Notes

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 23-24: Cosmology: models of the universe 1 The FRW-metric Cosmology is the study of the universe as a whole. In the lectures on cosmology we will look at current theories of how the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 24, 2013 Prof. Alan Guth PROBLEM SET 9

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 24, 2013 Prof. Alan Guth PROBLEM SET 9 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 24, 2013 Prof. Alan Guth PROBLEM SET 9 DUE DATE: Monday, December 2, 2013, at 5:00 pm. This is the last

More information

REVIEW PROBLEMS FOR QUIZ 2

REVIEW PROBLEMS FOR QUIZ 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe November, 013 Prof. Alan Guth REVIEW PROBLEMS FOR QUIZ QUIZ DATE: Thursday, November 7, 013, during the normal

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Unication models of dark matter and dark energy

Unication models of dark matter and dark energy Unication models of dark matter and dark energy Neven ƒaplar March 14, 2012 Neven ƒaplar () Unication models March 14, 2012 1 / 25 Index of topics Some basic cosmology Unication models Chaplygin gas Generalized

More information

ASTR 610: Solutions to Problem Set 1

ASTR 610: Solutions to Problem Set 1 ASTR 610: Solutions to Problem Set 1 Problem 1: The Einstein-de Sitter (EdS) cosmology is defined as a flat, matter dominated cosmology without cosmological constant. In an EdS cosmology the universe is

More information

First order Friedmann equation = t f. and α. Substitute ã α = α cos θ = t f = α(θ f sin θ f ) ã f = α(1 cos θ f ) = α(1 cos θ)

First order Friedmann equation = t f. and α. Substitute ã α = α cos θ = t f = α(θ f sin θ f ) ã f = α(1 cos θ f ) = α(1 cos θ) Alan Guth, Introduction to Non-Euclidean Spaces (After finishing dynamics of homogeneous expansion), Lecture 10, October 10, 2013, p. 1. Summary of Lecture 9 First order Friedmann equation = t f ãf ãdã

More information

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant The Friedmann Equation R = GM R R R = GM R R R(t) d dt 1 R = d dt GM R M 1 R = GM R + K Kinetic + potential energy per unit mass = constant The Friedmann Equation 1 R = GM R + K M = ρ 4 3 π R3 1 R = 4πGρR

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final is Comprehensive! Covers content of the entire course Please be sure to look at the Study Guides for the first three in-class exams All of that material will be on the final

More information

Lecture 11. The standard Model

Lecture 11. The standard Model Lecture 11 The standard Model Standard Model The standard model assumes that the universe is filled with matter and other forms of energy (photons) but that matter is dominant today. The standard model

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

The Friedmann Models

The Friedmann Models 2 The Friedmann Models 2.1 Perfect Fluid Models In this chapter we shall consider a set of homogeneous and isotropic model universes that contain a relatively simple form of matter. In Section 1.13 we

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 7 Oct. 30, 2015 Today Relativistic Cosmology Dark Side of the Universe I: Dark Matter Assignments This week: read Hawley and

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 3 June, 2004 9 to 12 PAPER 67 PHYSICAL COSMOLOGY Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 12, 2013 Prof. Alan Guth PROBLEM SET 7

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 12, 2013 Prof. Alan Guth PROBLEM SET 7 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 12, 2013 Prof. Alan Guth PROBLEM SET 7 DUE DATE: Friday, November 15, 2013 READING ASSIGNMENT: Steven

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 4; January 15 2014 Previously The dominant force on the scale of the Universe is gravity Gravity is accurately described by the theory of general

More information

The Expanding Universe

The Expanding Universe Announcements (this page posted as part of lecture notes on Angel) Homework 7 due late at night Monday April 23 (6:30AM Apr 24) Homework 8 now available on Angel Due late at night Friday April 27 (6:30AM

More information

Lecture 2: Cosmological Background

Lecture 2: Cosmological Background Lecture 2: Cosmological Background Houjun Mo January 27, 2004 Goal: To establish the space-time frame within which cosmic events are to be described. The development of spacetime concept Absolute flat

More information

.26 QUIZ 3 SOLUTIONS, FALL 21 p. 3 (5 points) Which of following describes Sachs-Wolfe effect? Photons from fluid which had a velocity toward us along

.26 QUIZ 3 SOLUTIONS, FALL 21 p. 3 (5 points) Which of following describes Sachs-Wolfe effect? Photons from fluid which had a velocity toward us along INSTITUTE OF TECHNOLOGY MASSACHUSETTS Department Physics.26 The Early Universe December 19, 21 Physics Alan Guth Prof. QUIZ 3 SOLUTIONS Quiz Date December 5, 21 to Remove Blank Pages Reformatted answer

More information

Problem Set 8 (Cosmology)

Problem Set 8 (Cosmology) Massachusetts Institute of Technology Department of Physics Physics 8.033 Out: Friday 3 November 2006 Due: Friday 17 November 2006 Problem Set 8 (Cosmology) Due: Friday 17 November 2006 at 4:00PM. Please

More information

Third Year: General Relativity and Cosmology. 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle

Third Year: General Relativity and Cosmology. 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle Third Year: General Relativity and Cosmology 2011/2012 Problem Sheets (Version 2) Prof. Pedro Ferreira: p.ferreira1@physics.ox.ac.uk 1 Problem Sheet 1 - Newtonian Gravity and the Equivalence Principle

More information

REVIEW PROBLEMS FOR QUIZ 3

REVIEW PROBLEMS FOR QUIZ 3 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe November 29, 2013 Prof. Alan Guth REVIEW PROBLEMS FOR QUIZ 3 QUIZ DATE: Thursday, December 5, 2013, during the

More information

PHY 475/375. Lecture 5. (April 9, 2012)

PHY 475/375. Lecture 5. (April 9, 2012) PHY 475/375 Lecture 5 (April 9, 2012) Describing Curvature (contd.) So far, we have studied homogenous and isotropic surfaces in 2-dimensions. The results can be extended easily to three dimensions. As

More information

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1)

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1) M. Pettini: Introduction to Cosmology Lecture 2 NEWTONIAN COSMOLOGY The equations that describe the time evolution of an expanding universe which is homogeneous and isotropic can be deduced from Newtonian

More information

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity Bulg. J. Phys. 37 (2010) 144 151 A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity S.D. Katore PG Department of Mathematics, SGB Amravati University, Amravati, India Received 10

More information

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Cosmology Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Assumptions in Cosmology Copernican principle: We do not

More information

The Metric and The Dynamics

The Metric and The Dynamics The Metric and The Dynamics r τ c t a () t + r + Sin φ ( kr ) The RW metric tell us where in a 3 dimension space is an event and at which proper time. The coordinates of the event do not change as a function

More information

The Big Bang Theory PRESS Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice

The Big Bang Theory PRESS Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice The Big Bang Theory PRESS-2002 Chung Wai Man Camus, Wong Lai Yin Rita, Kum Kit Ying Cathy, Yeung Shuet Wah Sarah, Yu Wai Sze Alice Supervised by: Dr KY Szeto, HKUST Abstract: We did a survey at our current

More information

Outline. Covers chapter 2 + half of chapter 3 in Ryden

Outline. Covers chapter 2 + half of chapter 3 in Ryden Outline Covers chapter + half of chapter 3 in Ryden The Cosmological Principle I The cosmological principle The Cosmological Principle II Voids typically 70 Mpc across The Perfect Cosmological Principle

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI March 15, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

Tutorial II Newtonian Cosmology; Hubble Expansion

Tutorial II Newtonian Cosmology; Hubble Expansion Tutorial II Newtonian Cosmology; Hubble Expansion Exercise I: Newtonian Cosmology In 1934 i.e. way after Friedman derived his equations- Milne and Mc- Crea showed that relations of the Friedman form can

More information

Massachusetts Institute of Technology Department of Physics. Physics November Quiz 2

Massachusetts Institute of Technology Department of Physics. Physics November Quiz 2 Massachusetts Institute of Technology Department of Physics Physics 8.033 1 November 006 Quiz Name: (Last, First) (please print). Recitation number (circle one): 1 3 Record all answers and show all work

More information

Lecture 16 : Cosmological Models I

Lecture 16 : Cosmological Models I Lecture 16 : Cosmological Models I Hubble s law and redshift in the new picture Standard cosmological models - 3 cases Hubble time and other terminology The Friedmann equation The Critical Density and

More information

Cosmology & White Holes

Cosmology & White Holes Semina 1 Mach 013, Vitoia,, Bazil Cosmology & White Holes V. N. Lukash co: E. V. Mikheeva,, V. N. Stokov Asto Space Cente of Lebedev Physics Institute LMS, Phys. Uspechi (#,8) 01; LS, IJMPA 013 Extapolating

More information

Physics 133: Extragalactic Astronomy and Cosmology

Physics 133: Extragalactic Astronomy and Cosmology Physics 133: Extragalactic Astronomy and Cosmology Week 2 Spring 2018 Previously: Empirical foundations of the Big Bang theory. II: Hubble s Law ==> Expanding Universe CMB Radiation ==> Universe was hot

More information

1 Cosmological Principle

1 Cosmological Principle Notes on Cosmology April 2014 1 Cosmological Principle Now we leave behind galaxies and beginning cosmology. Cosmology is the study of the Universe as a whole. It concerns topics such as the basic content

More information

Modern Cosmology Solutions 4: LCDM Universe

Modern Cosmology Solutions 4: LCDM Universe Modern Cosmology Solutions 4: LCDM Universe Max Camenzind October 29, 200. LCDM Models The ansatz solves the Friedmann equation, since ȧ = C cosh() Ωm sinh /3 H 0 () () ȧ 2 = C 2 cosh2 () sinh 2/3 () (

More information

PAPER 73 PHYSICAL COSMOLOGY

PAPER 73 PHYSICAL COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday 4 June 2008 1.30 to 4.30 PAPER 73 PHYSICAL COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 8; May 7 2013 Previously on astro-2 Wherever we look in the sky there is a background of microwaves, the CMB. The CMB is very close to isotropic better than 0.001%

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Modern Physics notes Spring 2005 Paul Fendley Lecture 38 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 38 Dark matter and energy Cosmic Microwave Background Weinberg, chapters II and III cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012

Lecture 12. Inflation. What causes inflation. Horizon problem Flatness problem Monopole problem. Physical Cosmology 2011/2012 Lecture 1 Inflation Horizon problem Flatness problem Monopole problem What causes inflation Physical Cosmology 11/1 Inflation What is inflation good for? Inflation solves 1. horizon problem. flatness problem

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

Lecture notes 20: Inflation

Lecture notes 20: Inflation Lecture notes 20: Inflation The observed galaxies, quasars and supernovae, as well as observations of intergalactic absorption lines, tell us about the state of the universe during the period where z

More information

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology Ay1 Lecture 17 The Expanding Universe Introduction to Cosmology 17.1 The Expanding Universe General Relativity (1915) A fundamental change in viewing the physical space and time, and matter/energy Postulates

More information

[09] Light and Matter (9/26/17)

[09] Light and Matter (9/26/17) 1 [09] Light and Matter (9/26/17) Upcoming Items 1. Homework #4 due now. 2. Midterm #1 on Tuesday, October 10. Ch. 1 6. 3. Read Ch. 5.4 by next class and do the selfstudy quizzes Galileo spacecraft images

More information

Visit for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 2 (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 2 (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Astrophysics 2 (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. The Doppler

More information

Midterm Exam. Math 460, Fall October 2015

Midterm Exam. Math 460, Fall October 2015 Midterm Exam Math 460, Fall 2015 14 October 2015 1. This exam has 4 questions and 6 pages for a total of 110 points. Make sure you have all pages before you begin. 2. As a form of extra credit, the grade

More information

Week 2 Part 2. The Friedmann Models: What are the constituents of the Universe?

Week 2 Part 2. The Friedmann Models: What are the constituents of the Universe? Week Part The Friedmann Models: What are the constituents of the Universe? We now need to look at the expansion of the Universe described by R(τ) and its derivatives, and their relation to curvature. For

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 37

Modern Physics notes Spring 2005 Paul Fendley Lecture 37 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 37 The red shift The Hubble constant Critical density Weinberg, chapters I and II cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Astronomy 233 Winter 2009 Physical Cosmology Week 3 Distances and Horizons Joel Primack University of California, Santa Cruz

Astronomy 233 Winter 2009 Physical Cosmology Week 3 Distances and Horizons Joel Primack University of California, Santa Cruz Astronomy 233 Winter 2009 Physical Cosmology Week 3 Distances and Horizons Joel Primack University of California, Santa Cruz Astronomy 233 Physical Cosmology Winter 2009 Class meets MW 2-3:45PM, ISB 231

More information

Origin of Structure Formation of Structure. Projected slice of 200,000 galaxies, with thickness of a few degrees.

Origin of Structure Formation of Structure. Projected slice of 200,000 galaxies, with thickness of a few degrees. Origin of Structure Formation of Structure Projected slice of 200,000 galaxies, with thickness of a few degrees. Redshift Surveys Modern survey: Sloan Digital Sky Survey, probes out to nearly 1000 Mpc.

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0937 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) SEMESTER 2, 2014 TIME ALLOWED: 2 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS:

More information

Computational Physics and Astrophysics

Computational Physics and Astrophysics Cosmological Inflation Kostas Kokkotas University of Tübingen, Germany and Pablo Laguna Georgia Institute of Technology, USA Spring 2012 Our Universe Cosmic Expansion Co-moving coordinates expand at exactly

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

Cosmology (Cont.) Lecture 19

Cosmology (Cont.) Lecture 19 Cosmology (Cont.) Lecture 19 1 General relativity General relativity is the classical theory of gravitation, and as the gravitational interaction is due to the structure of space-time, the mathematical

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 XIII. The Very Early Universe and Inflation ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 Problems with the Big Bang The Flatness Problem The Horizon Problem The Monopole (Relic Particle)

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Kinetic Theory of Dark Energy within General Relativity

Kinetic Theory of Dark Energy within General Relativity Kinetic Theory of Dark Energy within General Relativity Author: Nikola Perkovic* percestyler@gmail.com University of Novi Sad, Faculty of Sciences, Institute of Physics and Mathematics Abstract: This paper

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

Lecture 3.1 :! Electric Flux

Lecture 3.1 :! Electric Flux Lecture 3.1 :! Electric Flux Lecture Outline:! Motion in a Uniform Electric Field! Symmetry and Electric Fields! Electric Flux! Gauss s Law!! Textbook Reading:! Ch. 26.6-27.3 Jan. 27, 2015 1 Announcements

More information

8 Cosmology. December 1997 Lecture Notes on General Relativity Sean M. Carroll

8 Cosmology. December 1997 Lecture Notes on General Relativity Sean M. Carroll December 1997 Lecture Notes on General Relativity Sean M. Carroll 8 Cosmology Contemporary cosmological models are based on the idea that the universe is pretty much the same everywhere a stance sometimes

More information

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight Guiding Questions 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands,

More information

Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6

Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6 Lecture 34: The Big Bang Readings: Sections 28-3 and 28-6 Key Ideas: Big Bang Model of the Universe Universe starts in a hot, dense state in the past Universe expands & cools with time Cosmological Redshift

More information

General Relativity Lecture 20

General Relativity Lecture 20 General Relativity Lecture 20 1 General relativity General relativity is the classical (not quantum mechanical) theory of gravitation. As the gravitational interaction is a result of the structure of space-time,

More information

Modeling the Universe A Summary

Modeling the Universe A Summary Modeling the Universe A Summary Questions to Consider 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands, what, if anything, is it expanding

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies) ASTR 1040 Accel Astro: Stars & Galaxies Today s s `Cosmological Events Look at models for our universe,, and what prompted ideas about big-bang bang beginnings Cosmic Microwave Background Simulation: Large-scale

More information

Clusters are Very Large Magnets. U NM December 1, 2009

Clusters are Very Large Magnets. U NM December 1, 2009 Clusters are Very Large Magnets U NM December 1, 2009 Carilli & Taylor 2002 (ARA&A) B ~ 10 µg Hydra A Faraday Rota

More information

Introduction to (homogeneous) cosmology. Martin Kunz Université de Genève

Introduction to (homogeneous) cosmology. Martin Kunz Université de Genève Introduction to (homogeneous) cosmology Martin Kunz Université de Genève global outline funny fluids fundamental notions, the FLRW universe metric, scale factor, redshift, distances Einstein eqn s, evolution

More information

arxiv:gr-qc/ v1 15 Apr 1997

arxiv:gr-qc/ v1 15 Apr 1997 Indeterministic Quantum Gravity and Cosmology VII. Dynamical Passage through Singularities: Black Hole and Naked Singularity, Big Crunch and Big Bang Vladimir S. MASHKEVICH 1 arxiv:gr-qc/9704038v1 15 Apr

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past Gravity: Einstein s General Theory of Relativity The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Gravity: Einstein s General Theory of Relativity Galileo and falling

More information

Lecture 25: Cosmology: The end of the Universe, Dark Matter, and Dark Energy. Astronomy 111 Wednesday November 29, 2017

Lecture 25: Cosmology: The end of the Universe, Dark Matter, and Dark Energy. Astronomy 111 Wednesday November 29, 2017 Lecture 25: Cosmology: The end of the Universe, Dark Matter, and Dark Energy Astronomy 111 Wednesday November 29, 2017 Reminders Online homework #11 due Monday at 3pm One more lecture after today Monday

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

Modeling the Universe Chapter 11 Hawley/Holcomb. Adapted from Dr. Dennis Papadopoulos UMCP

Modeling the Universe Chapter 11 Hawley/Holcomb. Adapted from Dr. Dennis Papadopoulos UMCP Modeling the Universe Chapter 11 Hawley/Holcomb Adapted from Dr. Dennis Papadopoulos UMCP Spectral Lines - Doppler λ λ em 1+ z = obs z = λ obs λ λ em em Doppler Examples Doppler Examples Expansion Redshifts

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Galileo and falling bodies Galileo Galilei: all bodies fall at the same speed force needed to accelerate a body is

More information

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity With Applications to Cosmology Michael Dine Department of Physics University of California, Santa Cruz November/December, 2009 We have barely three lectures to cover about five chapters in your text. To

More information