Transactions on Modelling and Simulation vol 7, 1994 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 7, 1994 WIT Press, ISSN X"

Transcription

1 On the calculation of natural frequencies of microstructures using the DRBEM T.R. Bridges & L.C. Wrobel Wessex Institute of Technology, University of Portsmouth, Ashurst Lodge, Ashurst, Southampton, S040 7AA, UK 1 Introduction This paper discusses the calculation of the natural frequencies of thin structural components using the Dual Reciprocity boundary element method. This technique, introduced by Nardini and Brebbia in 1982, has certain advantages over other boundary element techniques in that it produces a linear, time independent, boundary only system which is compatible with standard 'black box' eigenvalue solvers. Results are presented which provide comparison with theoretical approximations and show how the method behaves for a more realistic application, a microstructure, for which finite element results are available. Traditional integral equation formulations, involving the elastodynamic fundamental solution, which is complex valued and frequency dependent, lead to a non-linear system [1-4]. One is therefore forced to find the minimum value of the complex determinant of the system of equations which is an extremely inefficient, error prone process. For this reason, it has recently been more popular to use approximate formulations employing the elastostatic fundamental solution which, through its independence of frequency, leads to a linear, real valued system. The domain integral which results from such a formulation, has been treated in different ways as outlined below. The mixed boundary integral-finite element approach [5] requires discretization of the domain using internal cells. Although producing a standard eigenvalue problem, the presence of internal variables generates larger systems of equations. Alternatively, the Multiple Reciprocity Method (MRM) [6] involves a transformation of the domain integral into a series of equivalent boundary integrals by using a sequence of higher order fundamental solutions. This method has been successfully applied to acoustics [7-9] i.e. the Helmholtz equation where the series of higher-order fundamental solutions are complete and convergent. However, for elastodynamics, the series is not complete and may converge to an incorrect solution. Another possibility is to use the Dual Reciprocity Method (DRM) [10], which approximates the inertia term using global interpolation functions as will be explained in more detail in the following section. Again, a standard eigenvalue problem results, but without the need for internal discretization [11-15]. The eigenvalue solver used in the present case was taken from Numerical Recipes [16] which implements the Q-R algorithm preceded by reduction of the system matrix to upper Hessenberg form [17]. Other possibilities exist such as the Lanczos algorithm [18] which may increase the efficiency of the solution.

2 530 Boundary Element Method XVI 2 Dynamic Analysis The following description attempts to outline the essential concepts which are needed in the formulation of the elastodynamic problem using dual reciprocity. In order to keep the description uncluttered, no time will be expended on basic boundary element techniques which are well documented in, for example, reference [19]. The equilibrium state of an elastic homogeneous body can be stated as which requires boundary conditions and Transactions on Modelling and Simulation vol 7, 1994 WIT Press, ISSN X initial conditions puk (1) Ui Ui on FI, pi (TijTij --= pi on 1^ (2) %,=w9, 6, = 60 (3) The integral equation statement of the problem can be written as t%t y ^tpt y mt^t py ^^ which has employed the elastostatic fundamental solution w*&, namely Kelvin's solution of the Navier equation C«*,M + j-r^;wt,m + A<ei = 0 (5) where A^ is the Dirac delta and ej are orthogonal unit vectors. The effect of the DRM is to reduce the last remaining domain integral over the accelerations i/& in (4) to integrals over F. This is done by introducing the approximation where fi are known approximating functions and o^ are unknown, time dependent coefficients for directions k = 1,2. The functions employed in this instance are simply /' = a + r (7) where a, so as not to dominate r, is the average of all element lengths. Given a particular stress field one can substitute for u in the domain integral and, applying the divergence theorem, eventually obtain (8) r r J=\ r r where itmk is obtained from writing (8) as the Navier equation giving 1-2i/ o 1 =

3 from which it follows that Boundary Element Method XVI 531 y^l_^ [(4-5f/)r,nm - (1-5i/)r^n, + [(4 - Supposing now that Q is discretized using TV boundary nodes and / internal interpolation points, the boundary element equation can now be expressed in terms of matrices as N N N+I If this equation is applied at each node in turn, the system Hu - Gp = p(hu - GP)a (13) is obtained, in which c has been combined with H to produce H. Supposing now, that u(x,y,t) varies harmonically with time, then where u; is angular frequency. Then % = -w2% (14) Hu - Gp = u~p(gp - HU)F-IU = w^su (15) Note that the harmonic behaviour of u removes the time dependency and so now, it is only necessary to apply the boundary conditions (2). On doing this, one can reduce the size of the system by partitioning the matrices according to components which correspond to either I\ or Fo like so: Hoi Hoo U2 Goi G U2 ^ ^ and then eliminating p^ to obtain (H22 - G2lGljHi2)u2 - ^(822 ~ ^ig^s^)^. (17) The above generalized eigenvalue problem can be solved using a library routine capable of dealing with real, general matrices such as the Q-R or Lanczos algorithms. 3 Applications 3.1 Example 1 - One-Dimensional Beam The axial modes of a very thin structural component can be compared with the theoretical solution for a one-dimensional cantilever by making the aspect ratio very large and using Poisson's ratio equal to zero. The model, shown in figure 1, is fixed at one end in both x and y directions and has E p - 1. Several cases were analysed with increasing aspect ratios ranging from 1:10 up to 1:1000. Obviously, the higher the aspect ratio, the closer the approximation to a one-dimensional body, but problems begin to arise when elements get very close to one another since the radial function? approaches zero making the integration nearly singular. This problem was overcome using the integration scheme of Telles [20] in which a cubic transformation is employed to shift the Gauss points towards the near singular point.

4 532 Boundary Element Method XVI Figure 1: Dimensions of the Thin Beam The theoretical solution for the natural frequencies of a one-dimensional beam of length, density p and Young's modulus E, is given by Craig [21] as The bar chart shown in figure 2, displays the percentage error in the first five natural frequencies obtained using only 22 elements. It is interesting to note that some negative eigenvalues were obtained for the higher aspect ratios. These could be made to disappear by improving the integration, either by increasing the number of elements, or the number of Gauss points on singular elements. However, there was no significant change in the positive values. Table 1 shows the magnitude of the percentage error for the beam with ratio 50:1. The first five frequencies compare wall with the analytical approximation. Natural Frequencies for the Ratio 50:1 Natural Frequency BEM Analytical % Diff Wl LJi Wg W W Table 1: Comparison with Analytical Approximation 3.2 Example 2 - Accelerometer Hinge Tests have been carried out which have shown the DRM to be effective in solving problems for which the structural geometry is relatively uncomplicated [22]. This example illustrates how the method behaves for a component which has sections of very different orders of magnitude. The model, shown in figure 3, is part of an accelerometer for use in aircraft navigation systems. It has total length of 3.4 mm and width 0.4 mm. The blade, which is the very narrow section connecting the two end blocks, is a mere 8 /im across and has a length of 0.3 mm which gives it an aspect ratio of 1:37.5. The Young's modulus used was 1.9x10^ N/rnrn^ with density p = 8.93x10"^ Kg/mm? and a Poisson's ratio of The differing orders of dimension of the central section meant that meshing the model was not as straightforward as one might expect. Finding a satisfactory discretization proved to be quite difficult and simply doubling the number of elements did not always mean that an inadequate mesh could be rectified. The second natural frequency and beyond were very stable and convergence was achieved quite rapidly, however, the first

5 Boundary Element Method XVI 533 Errors in Natural Frequencies :1 20:1 50:1 100:1 Ratio a:b 250:1 500:1 1000:1 Figure 2: Percentage Errors in Natural Frequencies for Different Ratios a : 6 frequency was much less stable and was the source of the difficulties. This is unfortunate, since for some applications, it is the first fundamental frequency that is the most important. It should be noted that similar problems were encountered when analysing the model usingfiniteelements, and so this instability is not unique to the DRM. However, results which compared very well with those obtained by finite element analysis were achieved using just 76 elements, around half of these being concentrated around the sensitive area,figure3 (b). Exact details of thefiniteelement mesh are unavailable although it is known that the mesh was refined until satisfactory convergence was achieved. Experimental results were obtained for this structure by gluing it to a piezoceramical bimorph and driving it with a sinus-voltage signal of variable frequency. Displacements of more than 0.5 /im were observed using an optical stereo microscope (x!50) and a scanning electron microscope. Information relating blade thickness to the first fundamental frequency was obtained for a few specimen hinges revealing a linear relationship from which the results given here could be extrapolated. Due to the rounded edges of the structures, the thickness could only be measured to an accuracy of 0.5 pm and the 'bestfit'line through the data points was drawn by eye. Table 2 shows the results relating to a series of meshes starting with 76 elements and doubling each time. Experimental data is only available for the first mode since sufficiently accurate measurements cannot be made for the much higher frequencies of the other modes. 4 Conclusions The dual reciprocity boundary element method is an effective means of calculating the eigenfrequencies of a structural system using a direct approach rather than employing a sweeping frequency analysis. The use of the elastostatic fundamental solution makes

6 534 Boundary Element Method XVI (a) (b) (c) (d) Figure 3: (a) Geometry of the accelerometer hinge with the mesh sensitive area (b). (c) First mode, (d) Second mode. Natural Frequencies of the Accelerometer Hinge DRBEM FEM Experimental Mode Mode Mode Table 2: Comparisons with FEM and experimental results.

7 Boundary Element Method XVI 535 it possible to form a standard eigenvalue system which can then be passed to a "black box" solver. So far, it has been possible to obtain accurate results without the need to approximate the inertia term throughout the domain using internal points. This is useful for ease of modelling and in reducing the number of degrees of freedom. This paper has demonstrated that accurate results can be obtained for problems where the geometry presents difficulties in integration due to the radial function r approaching zero. However, care must be taken when choosing a suitable discretization since an inadequate mesh can lead to seemingly unstable results for low frequencies. The examples presented here are a preliminary part of on-going work investigating different kinds of microstructures, which will include extension to three dimensions. 5 Acknowledgement This research forms part of the European Commission ESPRIT project 6874, Microsystem Analysis and Simulation System (MASS). The accelerometer hinge analysed here was designed by MicroParts. The finite element analysis of this structure was carried out by Dr. A. Larhmann from the Technical University of Berlin and the experimental data was obtained by Dr. C. Lefimollmann of MicroParts. References [1] G. De Mey, "Calculation of eigenvalues of the Helmholtz equation by an integral equation method," WermaZzoW JowrW /or Mfmerzca/ Mef/Ws zn Engzneerzng, Vol. 10, pp 59-66, [2] G.R.C. Tai and R.P. Shaw, "Helmholtz equation eigenvalues and eigenmodes for arbitrary domains," JowrW o/yae /Icowshca/ 5"ocze^ o/amerzca, Vol. 56, pp , [3] Y. Niwa, S. Kobayashiand M. Kitahara, "Determinationof eigenvalues by boundary element methods," in DeWopmemfs zn BowWar%/ E/ememi AWWs, Vol. 2, Applied Science Publishers, London, [4] J.O. Adeyeye, M.J.M. Bernal and K.E. Pitman, "An improved boundary integral equation method for Helmholtz equation," /nfernafzow Jo%rW/or g, Vol. 21, pp , [5] G. Bezine, "A mixed boundary integral-finite element approach to plate vibration problems," Mechanics Research Communications, Vol. 7, pp , [6] A.J. Nowak and C.A. Brebbia, "The multiple reciprocity method. A new approach for transforming BEM domain integrals to the boundary," Engineering Analysis, Vol. 6, pp , [7] N. Kamiya and E. Andoh, "Eigenvalue analysis by boundary element method," Jo^nia/ o/.s'otw and ^razzon, Vol. 160, pp , [8] N. Kamiya and E. Andoh, "Standard eigenvalue analysis by boundary element method," Commwnzca/zmts 2% A^merzcaf Me</Ws z% En^zneermg, Vol. 9, pp , [9] N. Kamiya, E. Andoh and K. Nogae, "Eigenvalue analysis by the boundary element method: new developments," Ez^meerzng /Ima/yszs, Vol. 12, pp , 1993.

8 536 Boundary Element Method XVI [10] P.W. Partridge, C.A. Brebbia and L.C. Wrobel, The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton and Elsevier, London, [11] D. Nardini and C.A. Brebbia, "A new approach to free vibration analysis using boundary elements," in Proc. Jth Int. Conf. Bound. Elms., Computational Mechanics Publications, Southampton and Springer- Verlag, Berlin, [12] P.K. Banerjee, S. Ahmad and K.C. Wang, "A new BEM formulation for the acoustic eigenfrequency analysis," International Journal for Numerical Methods in Engineer- ;%?, Vol. 26, pp , [13] J.P. Coyette and K.R. Fyfe, "An improved formulation for acoustic eigenmode extraction from boundary element models," Trans. ASME, Journal of Vibration and Acoustics, Vol. 112, pp , [14] A. Ali, C. Rajakumar and S.M. Yunus, "On the formulation of the acoustic boundary element eigenvalue problems," International Journal for Numerical Methods in f, Vol. 31, pp , [15] C. Rajakumar, A. Ali and S.M. Yunus, "Lanczos algorithm for acoustic boundary element eigenvalue problems," Journal of the Acoustical Society of America, Vol. 91, pp , [16] W. H. Press, W. T. Tenkolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes The Art of Scientific Computing, Cambridge University Press, [17] J. Wilkinson, The Algebraic Eigenvalue Problem, Springer- Verlag, Berlin, [18] C. Rajakumar and C. R. Rogers, "The Lanczos algorithm applied to unsymmetric generalized eigenvalue problems," International Journal of Numerical Methods in Engineering, Vol 32, pp , [19] C. A. Brebbia, J. C. F. Telles, L. C. Wrobel, Boundary Element Techniques, Springer- Verlag, Berlin and New York, [20] J. C. F. Telles, "A Self-Adaptive Co-ordinate Transformation for Efficient Numerical Evaluation of General Boundary Element Integrals," International Journal for Mfmenco/ MeMock m #%# meermp, Vol. 24, pp , [21] R. R. Craig, Structural Dynamics, Wiley, Chichester, [22] C. A. Brebbia and D. Nardini, "Dynamic analysis in solid mechanics by an alternative boundary elements procedure," International Journal of Solid Dynamics and Earthquake Engineering, Vol 2, pp , 1983.

Abstract INTRODUCTION

Abstract INTRODUCTION Iterative local minimum search for eigenvalue determination of the Helmholtz equation by boundary element formulation N. Kamiya,E. Andoh, K. Nogae Department ofinformatics and Natural Science, School of

More information

Transactions on Modelling and Simulation vol 8, 1994 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 8, 1994 WIT Press,   ISSN X Model analysis of plates using the dual reciprocity boundary element method T.W. Davies & F.A. Moslehy Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida,

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Plate-soil elastodynamic coupling using analysis S.F.A. Baretto, H.B. Coda, W.S. Venturini Sao Carlos School of Engineering, University ofsao Paulo, Sao Carlos - SP, Brazil BEM Abstract The aim of this

More information

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Non-conforming BEM elastoplastic contact problems D. Martin and M.H. Aliabadi discretisation in Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Abstract In this paper,

More information

A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC PROBLEMS IN SEMI-INFINITE MEDIA

A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC PROBLEMS IN SEMI-INFINITE MEDIA 8 th GRACM International Congress on Computational Mechanics Volos, 2 July 5 July 205 A MODIFIED DECOUPLED SCALED BOUNDARY-FINITE ELEMENT METHOD FOR MODELING 2D IN-PLANE-MOTION TRANSIENT ELASTODYNAMIC

More information

A comparative study of the direct boundary element method and the dual reciprocity boundary element method in solving the Helmholtz equation

A comparative study of the direct boundary element method and the dual reciprocity boundary element method in solving the Helmholtz equation University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2007 A comparative study of the direct boundary element method and the

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Simplifying integration for logarithmic singularities R.N.L. Smith Department ofapplied Mathematics & OR, Cranfield University, RMCS, Shrivenham, Swindon, Wiltshire SN6 SLA, UK Introduction Any implementation

More information

The method of fundamental solutions for Poisson's equation M.A. Golberg Czrc/e

The method of fundamental solutions for Poisson's equation M.A. Golberg Czrc/e The method of fundamental solutions for Poisson's equation M.A. Golberg Czrc/e ABSTRACT We show how to extend the method of fundamental solutions (MFS) to solve Poisson's equation in 2D without boundary

More information

On the use of multipole methods for domain integration in the BEM

On the use of multipole methods for domain integration in the BEM On the use of multipole methods for domain integration in the BEM A.A. Mammoii, M.S. Ingber & M.J. Brown Department of Mechanical Engineering, University of New Mexico, USA Abstract Often, a single application

More information

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method University of Hertfordshire Department of Mathematics Study on the Dual Reciprocity Boundary Element Method Wattana Toutip Technical Report 3 July 999 Preface The boundary Element method (BEM) is now recognised

More information

Boundary Element Analysis of Shear Deformable Shallow Shells Under Harmonic Excitation

Boundary Element Analysis of Shear Deformable Shallow Shells Under Harmonic Excitation Copyright 2014 Tech Science Press CMES, vol.100, no.2, pp.105-118, 2014 Boundary Element Analysis of Shear Deformable Shallow Shells Under Harmonic Excitation J. Useche 1 Abstract: In this work, the harmonic

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Vibration of Thin Beams by PIM and RPIM methods. *B. Kanber¹, and O. M. Tufik 1

Vibration of Thin Beams by PIM and RPIM methods. *B. Kanber¹, and O. M. Tufik 1 APCOM & ISCM -4 th December, 23, Singapore Vibration of Thin Beams by PIM and RPIM methods *B. Kanber¹, and O. M. Tufik Mechanical Engineering Department, University of Gaziantep, Turkey. *Corresponding

More information

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION

SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 SIMULATION OF PLANE STRAIN FIBER COMPOSITE PLATES IN BENDING THROUGH A BEM/ACA/HM FORMULATION Theodore V. Gortsas

More information

FEM type method for reconstruction of plane stress tensors from limited data on principal directions

FEM type method for reconstruction of plane stress tensors from limited data on principal directions Mesh Reduction Methods 57 FEM type method for reconstruction of plane stress tensors from limited data on principal directions J. Irša & A. N. Galybin Wessex Institute of Technology, Southampton, UK Abstract

More information

Appendix 1. Numerical Integration: Regular Integrals

Appendix 1. Numerical Integration: Regular Integrals The Dual Reciprocity 269 Appendix 1 Numerical Integration: Regular Integrals 1 Introduction The numerical integration formulae given in this Appendix are used for integration over boundary elements which

More information

Abstract. Introduction

Abstract. Introduction Structural vibration isolation by rows of piles S.E. Kattis", D. Polyzos*, D.E. Beskos* "Department of Mechanical Engineering, University ofpatras, G^-26 j 00 f6zrr^ Greece ^Department of Civil Engineering,

More information

DISPENSA FEM in MSC. Nastran

DISPENSA FEM in MSC. Nastran DISPENSA FEM in MSC. Nastran preprocessing: mesh generation material definitions definition of loads and boundary conditions solving: solving the (linear) set of equations components postprocessing: visualisation

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Multi-Point Constraints

Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Single point constraint examples Multi-Point constraint examples linear, homogeneous linear, non-homogeneous linear, homogeneous

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,   ISSN X A simple coupling of 2D BEM and FEM bar model applied to mass matrix elastodynamic analysis Coda,H.B*; Venturini W.S* and Aliabadi, M.HT * Sao Carlos School of Eng., University of Sao Paulo, Br, venturin@usp.

More information

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS th Pan-American Congress of Applied Mechanics January 04-08, 00, Foz do Iguaçu, PR, Brazil AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS Otávio Augusto Alves

More information

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method

Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method 9210-220 Post Graduate Diploma in Mechanical Engineering Computational mechanics using finite element method You should have the following for this examination one answer book scientific calculator No

More information

Transactions on Modelling and Simulation vol 2, 1993 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 2, 1993 WIT Press,  ISSN X A general integral-equation formulation for anisotropic elastostatics M.M. Perez"'*, L.C. Wrobel* * Wessex Institute of Technology, University of Portsmouth, Ashurst Lodge, Ashurst, Southampton S04 2AA,

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,  ISSN X An alternative boundary element formulation for plate bending analysis J.B. Paiva, L.O. Neto Structures Department, Sao Carlos Civil Engineering School, f, BrazzY Abstract This work presents an alternative

More information

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov*

Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov* Application of a non-local failure criterion to a crack in heterogeneous media S. Bavaglia*, S.E. Mikhailov* University of Perugia, Italy Email: mic@unipg.it ^Wessex Institute of Technology, Ashurst Lodge,

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media

A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media Archive of Applied Mechanics 74 25 563--579 Springer-Verlag 25 DOI 1.17/s419-5-375-8 A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media H. Wang, Q.-H.

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Sudeep Bosu Tata Consultancy Services GEDC, 185 LR,

More information

PGroupN background theory

PGroupN background theory 12/12/03 Dr Francesco Basile, Geomarc Ltd PGroupN background theory Estimation of the deformations and load distributions in a group of piles generally requires the use of computer-based methods of analysis.

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Pure bending analysis

More information

COMPUTATIONAL ELASTICITY

COMPUTATIONAL ELASTICITY COMPUTATIONAL ELASTICITY Theory of Elasticity and Finite and Boundary Element Methods Mohammed Ameen Alpha Science International Ltd. Harrow, U.K. Contents Preface Notation vii xi PART A: THEORETICAL ELASTICITY

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,   ISSN X A path-independent integral for the calculation of stress intensity factors in three-dimensional bodies C.M. Bainbridge," M.H. Aliabadi," D.P. Rooke* "Wessex Institute of Technology, Ashurst Lodge, Ashurst,

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials

FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Boundary Elements and Other Mesh Reduction Methods XXXVIII 113 FEM/FMBEM coupling for acoustic structure interaction and acoustic design sensitivity analysis with sound-absorbing materials Y. M. Xu, H.

More information

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Bruce Butler Walt Disney World, Orlando, Florida bruce.butler@disney.com Manoj Chopra, Member, ASCE University of Central

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Back Matter Index The McGraw Hill Companies, 2004

Back Matter Index The McGraw Hill Companies, 2004 INDEX A Absolute viscosity, 294 Active zone, 468 Adjoint, 452 Admissible functions, 132 Air, 294 ALGOR, 12 Amplitude, 389, 391 Amplitude ratio, 396 ANSYS, 12 Applications fluid mechanics, 293 326. See

More information

Two Tier projects for students in ME 160 class

Two Tier projects for students in ME 160 class ME 160 Introduction to Finite Element Method Spring 2016 Topics for Term Projects by Teams of 2 Students Instructor: Tai Ran Hsu, Professor, Dept. of Mechanical engineering, San Jose State University,

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS)

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS UNIT I : FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PART A (2 MARKS) 1. Write the types

More information

Toward a novel approach for damage identification and health monitoring of bridge structures

Toward a novel approach for damage identification and health monitoring of bridge structures Toward a novel approach for damage identification and health monitoring of bridge structures Paolo Martino Calvi 1, Paolo Venini 1 1 Department of Structural Mechanics, University of Pavia, Italy E-mail:

More information

Transactions on the Built Environment vol 12, 1995 WIT Press, ISSN

Transactions on the Built Environment vol 12, 1995 WIT Press,   ISSN Transactions on the Built Environment vol 12, 1995 WIT Press, www.witpress.com, ISSN 1743-359 Design and analysis of a resonant gyroscope suitable for fabrication using the LIGA process L. Yao, E. Chowanietz,

More information

An alternative multi-region BEM technique for layered soil problems

An alternative multi-region BEM technique for layered soil problems An alternative multi-region BM technique for layered soil problems D.B. Ribeiro & J.B. Paiva Structural ngineering Department, São Carlos ngineering School, University of São Paulo, Brazil. Abstract Different

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

IV B.Tech. I Semester Supplementary Examinations, February/March FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80

IV B.Tech. I Semester Supplementary Examinations, February/March FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 www..com www..com Code No: M0322/R07 Set No. 1 IV B.Tech. I Semester Supplementary Examinations, February/March - 2011 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer

More information

Schur decomposition in the scaled boundary finite element method in elastostatics

Schur decomposition in the scaled boundary finite element method in elastostatics IOP Conference Series: Materials Science and Engineering Schur decomposition in the scaled boundary finite element method in elastostatics o cite this article: M Li et al 010 IOP Conf. Ser.: Mater. Sci.

More information

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT 54 Journal of Marine Science and Technology, Vol. 10, No. 1, pp. 54-60 (2002) DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT Sung-Shan Hsiao*, Ming-Chung Lin**, and

More information

Plate analysis using classical or Reissner- Mindlin theories

Plate analysis using classical or Reissner- Mindlin theories Plate analysis using classical or Reissner- Mindlin theories L. Palermo Jr. Faculty of Civil Engineering, State Universiv at Campinas, Brazil Abstract Plates can be solved with classical or Reissner-Mindlin

More information

ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN XFEM APPROACH

ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN XFEM APPROACH VI International Conference on Adaptive Modeling and Simulation ADMOS 213 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN

More information

An accelerated predictor-corrector scheme for 3D crack growth simulations

An accelerated predictor-corrector scheme for 3D crack growth simulations An accelerated predictor-corrector scheme for 3D crack growth simulations W. Weber 1 and G. Kuhn 2 1,2 1 Institute of Applied Mechanics, University of Erlangen-Nuremberg Egerlandstraße 5, 91058 Erlangen,

More information

Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing example

Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing example AMAS Workshop on Smart Materials and Structures SMART 03 (pp.313 324) Jadwisin, September 2-5, 2003 Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing

More information

LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS

LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS LOCAL DIFFERENTIAL QUADRATURE METHOD FOR ELLIPTIC EQUATIONS IN IRREGULAR DOMAINS L.H. Shen and D.L. Young * Department of Civil Engineering and Hydrotech Research Institute National Taiwan University Taipei,

More information

Iterative schemes for the solution of systems of equations arising from the DRM in multidomains

Iterative schemes for the solution of systems of equations arising from the DRM in multidomains CHAPTER 7 Iterative schemes for the solution of systems of equations arising from the DRM in multidomains M.I. Portapila 1 &H.Power 2 1 Wessex Institute of Technology, UK. 2 Department of Mechanical Engineering,

More information

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP Yasar Deger Wolfram Lienau Peter Sandford Sulzer Markets & Sulzer Pumps Ltd Sulzer Pumps (UK) Ltd Technology Ltd

More information

Code No: RT41033 R13 Set No. 1 IV B.Tech I Semester Regular Examinations, November - 2016 FINITE ELEMENT METHODS (Common to Mechanical Engineering, Aeronautical Engineering and Automobile Engineering)

More information

FINITE ELEMENT ANALYSIS OF BEAM

FINITE ELEMENT ANALYSIS OF BEAM YMCA University of Science & Technology, Faridabad, Haryana, Oct 9-, FINITE ANALYSIS OF Hasan Zakir Jafri, I.A. Khan, S.M. Muzakkir, Research Scholar, Faculty of Engineering & Technology, Jamia Millia

More information

FLUID-STRUCTURE AND ELECTRIC INTERACTION ANALYSIS OF PIEZOELECTRIC FLAP IN A CHANNEL USING A STRONGLY COUPLED FEM SCHEME

FLUID-STRUCTURE AND ELECTRIC INTERACTION ANALYSIS OF PIEZOELECTRIC FLAP IN A CHANNEL USING A STRONGLY COUPLED FEM SCHEME 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK FLUID-STRUCTURE AND ELECTRIC INTERACTION ANALYSIS

More information

Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems

Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems Sādhanā Vol. 33, Part 4, August 2008, pp. 385 401. Printed in India Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems YUSUF YESILCE 1, OKTAY DEMIRDAG 2 and SEVAL CATAL

More information

Fast multipole boundary element method for the analysis of plates with many holes

Fast multipole boundary element method for the analysis of plates with many holes Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational

More information

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact

Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Arbitrary Normal and Tangential Loading Sequences for Circular Hertzian Contact Philip P. Garland 1 and Robert J. Rogers 2 1 School of Biomedical Engineering, Dalhousie University, Canada 2 Department

More information

Fractal two-level finite element method for free vibration of cracked beams

Fractal two-level finite element method for free vibration of cracked beams 61 Fractal two-level finite element method for free vibration of cracked beams A.Y.T. Leung School of Engineering, University of Manchester, Manchester M13 9PL, UK R.K.L. Su Ove Arup & Partners, Hong Kong

More information

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD Dona Varghese 1, M.G Rajendran 2 1 P G student, School of Civil Engineering, 2 Professor, School of Civil Engineering

More information

1 Introduction The prediction of transmission paths of vibrations is of importance in, among others, structural, automotive, marine and aviation engin

1 Introduction The prediction of transmission paths of vibrations is of importance in, among others, structural, automotive, marine and aviation engin Energy Flow in Plate Assembles by Hierarchical Version of Finite Element Method M. Wachulec, P.H. Kirkegaard Λ Department of Civil Engineering, Aalborg University Sohngaardsholmsvej 57, 9000, Aalborg,

More information

Flow-Induced Vibration Analysis of Supported Pipes with a Crack

Flow-Induced Vibration Analysis of Supported Pipes with a Crack Flow-Induced Vibration Analysis of Supported Pipes with a Crack Jin-Hyuk Lee 1 *, Samer Masoud Al-Said,3 1 Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE, Department

More information

Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior

Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior ISSN 0386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 83, 2006 Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior Kazuo MITSUI* ( Received

More information

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load Arun Mukherjee 1, Dr. Sreyashi Das (nee Pal) 2 and Dr. A. Guha Niyogi 3 1 PG student, 2 Asst. Professor,

More information

Primitive variable dual reciprocity boundary element method solution of incompressible Navier Stokes equations

Primitive variable dual reciprocity boundary element method solution of incompressible Navier Stokes equations Engineering Analysis with Boundary Elements 23 (1999) 443 455 Primitive variable dual reciprocity boundary element method solution of incompressible Navier Stokes equations Božidar Šarler a, *,ünther Kuhn

More information

Mechanics of Inflatable Fabric Beams

Mechanics of Inflatable Fabric Beams Copyright c 2008 ICCES ICCES, vol.5, no.2, pp.93-98 Mechanics of Inflatable Fabric Beams C. Wielgosz 1,J.C.Thomas 1,A.LeVan 1 Summary In this paper we present a summary of the behaviour of inflatable fabric

More information

Three-dimensional thermo-mechanical analysis of layered elasticlplastic solids

Three-dimensional thermo-mechanical analysis of layered elasticlplastic solids Three-dimensional thermo-mechanical analysis of layered elasticlplastic solids W. Peng & Y.-T. Hsia Seagate Technology, U.S.A. Abstract At high temperature a layered solid undergoes intense thermal loading

More information

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition Fluid Structure Interaction and Moving Boundary Problems IV 63 Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition K.-H. Jeong, G.-M. Lee, T.-W. Kim & J.-I.

More information

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Amirhossein Keivani & Ahmad Shooshtari Ferdowsi University of Mashhad, Mashhad, Iran. Ahmad Aftabi

More information

Topology Optimization Applied to the Design of Functionally Graded Piezoelectric Bimorph

Topology Optimization Applied to the Design of Functionally Graded Piezoelectric Bimorph Topology Optimization Applied to the Design of Functionally Graded Piezoelectric Bimorph Ronny C. Carbonari", Emilio C. N. Silva" and Glaucio H. Paulino'' "Department ofmechatronics and Mechanical Systems

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD

ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD Journal of Sound and Vibration (1999) 219(2), 265 277 Article No. jsvi.1998.1874, available online at http://www.idealibrary.com.on ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY

More information

Vibration analysis of circular arch element using curvature

Vibration analysis of circular arch element using curvature Shock and Vibration 15 (28) 481 492 481 IOS Press Vibration analysis of circular arch element using curvature H. Saffari a,. Tabatabaei a, and S.H. Mansouri b a Civil Engineering Department, University

More information

Lecture Notes in Engineering

Lecture Notes in Engineering Lecture Notes in Engineering The Springer-Verlag Lecture Notes provide rapid (approximately six months), refereed publication of topical items, longer than ordinary journal articles but shorter and less

More information

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method Center for Turbulence Research Annual Research Briefs 2006 313 Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method By Y. Khalighi AND D. J. Bodony 1. Motivation

More information

TRANSVERSE VIBRATION OF A GEAR WHEEL

TRANSVERSE VIBRATION OF A GEAR WHEEL ISSN 14-364 TRANSVERSE VIBRATION OF A GEAR WHEEL Stanislaw Noga, Rzeszow University of Technology, ul. W. Pola, 35 959 Rzeszow, Poland. Abstract: In the paper, transversal vibration of the annular plate

More information

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach S. Stefanizzi GEODATA SpA, Turin, Italy G. Barla Department of Structural and Geotechnical Engineering,

More information

Vibration analysis of free isotropic cracked plates

Vibration analysis of free isotropic cracked plates Computational Methods and Experimental Measurements XII 475 Vibration analysis of free isotropic cracked plates M. Alfano & L. Pagnotta Department of Mechanical Engineering, University of Calabria, Italy

More information

Eigenvalues of Trusses and Beams Using the Accurate Element Method

Eigenvalues of Trusses and Beams Using the Accurate Element Method Eigenvalues of russes and Beams Using the Accurate Element Method Maty Blumenfeld Department of Strength of Materials Universitatea Politehnica Bucharest, Romania Paul Cizmas Department of Aerospace Engineering

More information

On optimisation of structures under stability constraints - a simple example

On optimisation of structures under stability constraints - a simple example Rakenteiden Mekaniikka Journal of Structural Mechanics Vol. 49, No 2, 26, pp. 69 77 rmseura.tkk.fi/rmlehti/ c The authors 26. Open access under CC BY-SA 4. license. On optimisation of structures under

More information

Transactions on Modelling and Simulation vol 18, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 18, 1997 WIT Press,  ISSN X Variable separation in acoustic radiation problems using Chebyshev polynomials Z. Wozniak* and C. Purcell** *ORTECH Corporation, Mississauga, Ontario, Canada, L5K1B3 Email: zwozniak@ortech.on.ca **Defence

More information

The Method of Fundamental Solutions with Eigenfunction Expansion Method for Nonhomogeneous Diffusion Equation

The Method of Fundamental Solutions with Eigenfunction Expansion Method for Nonhomogeneous Diffusion Equation The Method of Fundamental Solutions with Eigenfunction Expansion Method for Nonhomogeneous Diffusion Equation D. L. Young, 1 C. W. Chen, 1 C. M. Fan, 1 C. C. Tsai 2 1 Department of Civil Engineering and

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Integral equations for crack systems in a slightly heterogeneous elastic medium

Integral equations for crack systems in a slightly heterogeneous elastic medium Boundary Elements and Other Mesh Reduction Methods XXXII 65 Integral equations for crack systems in a slightly heterogeneous elastic medium A. N. Galybin & S. M. Aizikovich Wessex Institute of Technology,

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

UNIVERSITY OF HERTFORDSHIRE DEPARTMENT OF MATHEMATICS

UNIVERSITY OF HERTFORDSHIRE DEPARTMENT OF MATHEMATICS UNIVERSITY OF HERTFORDSHIRE DEPARTMENT OF MATHEMATICS A multiple node method for corners and discontinuous boundary problems in the boundary element method Wattana Toutip Technical Report April 999 Abstract

More information

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability

A Novel FEM Method for Predicting Thermoacoustic Combustion Instability Excerpt from the Proceedings of the COMSOL Conference 009 Milan A Novel FEM Method for Predicting Thermoacoustic Combustion Instability G. Campa *, S.M. Camporeale Politecnico di Bari * campa@imedado.poliba.it,

More information

FLUTTER PREDICTION OF A SWEPT BACK PLATE USING EXPERIMENTAL MODAL PARAMETERS

FLUTTER PREDICTION OF A SWEPT BACK PLATE USING EXPERIMENTAL MODAL PARAMETERS Symposium on Applied Aerodynamics and Design of Aerospace Vehicle (SAROD 2011) November 16-18, 2011, Bangalore, India FLUTTER PREDICTION OF A SWEPT BACK PLATE USING EXPERIMENTAL MODAL PARAMETERS A.C.Pankaj*,

More information

BOUNDARY PARTICLE METHOD FOR INVERSE CAUCHY PROBLEMS OF INHOMOGENEOUS HELMHOLTZ EQUATIONS

BOUNDARY PARTICLE METHOD FOR INVERSE CAUCHY PROBLEMS OF INHOMOGENEOUS HELMHOLTZ EQUATIONS Journal of Marine Science and Technology, Vol. 7, No. 3, pp. 57-63 (9) 57 BOUNDARY PARTICLE METHOD FOR INVERSE CAUCHY PROBLEMS OF INHOMOGENEOUS HELMHOLTZ EQUATIONS Wen Chen* and Zhuojia Fu* Key words:

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers

Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers Magneto-Mechanical Modeling and Simulation of MEMS Sensors Based on Electroactive Polymers F.J.O. RODRIGUES, L.M. GONÇALVES, J.H. CORREIA, P.M. MENDES University of Minho, Dept. Industrial Electronics,

More information

Numerical integration in the axisymmetric finite element formulation

Numerical integration in the axisymmetric finite element formulation Advances in Engineering Software 31 (2000) 137 141 Short Communication Numerical integration in the axisymmetric finite element formulation J.D. Clayton a, J.J. Rencis b, * a The George W. Woodruff School

More information

3. Overview of MSC/NASTRAN

3. Overview of MSC/NASTRAN 3. Overview of MSC/NASTRAN MSC/NASTRAN is a general purpose finite element analysis program used in the field of static, dynamic, nonlinear, thermal, and optimization and is a FORTRAN program containing

More information

Reduction of Finite Element Models of Complex Mechanical Components

Reduction of Finite Element Models of Complex Mechanical Components Reduction of Finite Element Models of Complex Mechanical Components Håkan Jakobsson Research Assistant hakan.jakobsson@math.umu.se Mats G. Larson Professor Applied Mathematics mats.larson@math.umu.se Department

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 03 Quiz # April 8, 03 Name: SOUTION ID#: PS.: A the

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information