Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems

Size: px
Start display at page:

Download "Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems"

Transcription

1 Lanczos Bidiagonalization with Subspace Augmentation for Discrete Inverse Problems Per Christian Hansen Technical University of Denmark Ongoing work with Kuniyoshi Abe, Gifu Dedicated to Dianne P. O Leary

2 Many Many Thanks to Dianne for Inspiration, Insight, and Very Nice Collaborations Dianne, Jim and I wrote a book and tried it on students in Bari. It is water! Pictures by Nicola Mastronardi 2/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

3 Overview of Talk Discrete inverse problem: Ax = b 1. Iterative Krylov-subspace methods regularizing iterations. 2. Augmenting the Krylov subspace for improved solutions. 3. Lanczos bidiagonalization algorithm with augmented subspace. 4. Numerical examples that illustrate the advantage of this idea. 3/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

4 Regularization Algorithms Variational formulations take the form min ka x bk R(x) ª x where R(x) is a regularization terms that penalizes unwanted features in the solution, and is a user-chosen regularization parameter. H & O Leary 1993, O Leary 2001; Rust & O Leary 2008 choosing λ. Projection formulations take the form min x ka x bk 2 2 s.t. x 2 S k ; where the \signal subspace" S k is a linear subspace of dimension k. If S k is chosen such that it captures the main features in the solution, then this approach is well suited for large-scale problems. Hybrid methods that apply regularization to the projected problem. Chung, Nagy & O Leary 2008 hybrid method with GCV. 4/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

5 The Signal Subspace In some applications we can use a pre-determined subspace, e.g., spanned by the Fourier basis, the discrete cosine bases, a wavelet basis, etc. An example: truncated SVD S k = spanfv 1 ; v 2 ; : : : ; v k g: Alternatively we can use a subspace determined by the given problem, e.g., the Krylov subspace K k associated with a speci c iterative method CGLS : spanfa T b; A T A A T b; (A T A) 2 A T b; : : :g ; GMRES : spanfb; A b; A 2 b; : : :g ; RRGMRES : spanfa b; A 2 b; A 3 b; : : :g : O Leary & Simmons 1981, Kilmer & O Leary 2001 regularizing iterations. 5/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

6 Illustration of Semi-Convergence A y b ¹x = exact solution 6/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

7 Augmented Signal Subspace Let W p denote a linear subspace that captures additional speci c components of the desired solution; dim(w p ) = p k = no. its. Then it can be advantageous to use an augmented linear subspace S p;k = W p + K k ; W p = R(W p ) = spanfw 1 ; : : : ; w p g : Ex.: deriv2 & GMRES. All vectors in the Krylov subspace! 0 at end points. Now use w 1 = (1; 1; : : : ; 1) T, w 2 = (1; 2; : : : ; n) T. GMRES Augmented GMRES Here we want an e±cient CGLS-type algorithm to solve the problem min x ka x bk 2 2 s.t. x 2 S p;k = W p + K k (A T A; A T b) : 7/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

8 Overview of Methods Square matrix A 2 R n n ² \Augmented (RR)GMRES" (Baglama, Reichel 2007), where the subspace augmentation idea was originally formulated. An elegant and e±cient algorithmthat uses an incorrect subspace. ² \R 3 GMRES" (Dong, Garde, H 2014), uses the correct subspace, less elegant, still e±cient. Rectangular matrix A 2 R m n (this work) ² In some problems (e.g., tomography) the matrix A is rectangular. ² In some problems (tomography, inverse heat equation) the Arnoldi subspace is not suited. ² \LBAS" { Lanczos bidiagonalization with augmented subspace. ² Open question: can we use LSQR or LSMR to implement this? 8/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

9 Towards our Algorithm LBAS We want to solve min x ka x bk 2 2 s.t. x 2 W p + K k (A T A; A T b) : In principle we could use, say, a Hessenberg decomposition A [ W p ; A T b ; A T A A T b ; ; (A T A) k 1 A T b ] = V p+k+1 H p+k and compute the solution as x (k) = [ W p ; A T b ; A T A A T b ; : : : ; (A T A) k 1 A T b ] y (k) ; y (k) = argmin y kh p+1 y V T p+k+1bk 2 2 : But we prefer to use a stable and e±cient \standard" algorithm. Run the bidiagonalization algorithm to compute an orthonormal basis of K k (A T A; A T b), and augment it by W p in each step of the algorithm. This seems cumbersome { but the overhead is favorably small! 9/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

10 Setting the Stage for Our Algorithm At step k we have the decomposition h A [ V k ; W p ] = U k+1 ; U e i B k G k k 0 F k where ² A V k = U k+1 B k is obtained after k steps of the bidiag. process. ² V k 2 R n k has orthonormal columns that span K j (A T A; A T b). ² U k+1 2 R m (k+1) has orthonormal columns, u 1 = b=kbk 2. ² eu k 2 R m p : range(aw p ) = range(u k+1 G k + eu k F k ) and eu k T U k+1 = 0. ² B k 2 R (k+1) k is a lower bidiagonal matrix. ² F k 2 R p p and changes in every iteration. ² G k is (k + 1) p and is updated along with B k. The columns of [ V j ; W p ] form a basis for S p;j. 10/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

11 More Details Recall that A [ V k ; W p ] = h U k+1 ; U e i B k G k k 0 F k : The matrices G k 2 R (k+1) p and F k 2 R p p are composed of the coe±cients of AW p with respect to basis of range(u k+1 ) and range( e U k ), respectively: G k = U T k+1aw p ; F k = e U T k AW p : Then the iterate x (k) 2 S p;k is given by x (k) = [ V k ; W p ] y (k), where " # " # y (k) Bk G k U T 2 k+1 = argmin y y b : 0 F k eu T j 2 11/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

12 Algorithm: LBAS 1. Set U 1 = b=kbk 2, V 0 = [ ], B 0 = [ ], G 0 = U T 1 AW p, and k = Use the bidiag. process to obtain v k, u k+1 such that A V k = U k+1 B k, where 2 3 V k = [V k 1 ; v k ], U k+1 = [ U k ; u k+1 ], B k = 4 B 0 k G 3. Compute G k = k 1 u T k+1 AW 2 R (k+1) p. p 4. Orthonormalize AW p with respect to U k+1 to obtain e U k 2 R m p. 5. Compute F k = U e k T AW p 2 R p p. " # " Bk G k U T k+1 6. Solve min y y 0 F k 7. Then x (k) = [ V k ; W p ] y (k). eu T k # b 8. Stop, or set k := k + 1 and return to step to obtain y (k). Recomputation of e U k and F k in each step; but p is small! 12/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

13 Efficient and Stable Implementation In each step we update the orthogonal factorization: 2 " # T (11) k T (12) 3 k Bk G k 6 = Q 4 0 T (22) 7 5 ; 0 F k k 0 0 T (11) k 2 R k k and T (22) k 2 R p p are upper triangular, Q is orthogonal. Update T (11) k via Givens rotations that are also applied to G k and U T k+1 b. eu k is already orthogonal to U k, hence (in principle) we can perform the update eu k+1 = (I m u k+1 u T k+1 ) e U k : For numerical stability: must reorthogonalize the columns of V k, U k+1, and e U k. Consider the use of partial reorthogonalization. Algorithm HYBR (Chung, Nagy, O Leary 2008) uses full reorthogonalization. 13/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

14 Numerical Examples Setting up the test problems: 1. Generate noise-free system: A x exact = b exact. 2. Add noise: b = b exact + e where e is a random vector of Gaussian white noise scaled such that kek 2 =kb exact k 2 =. 3. We show best solution within the iterations plus: ² relative error kx exact x (k) k 2 =kx exact k 2, ² relative residual norm kb A x (k) k 2 =kbk 2. We compare combinations of the following algorithms: ² CGLS is the implementation from Regularization Tools. ² RRGMRES is the implementation from Regularization Tools. ² R 3 GMRES is our implementation (Dong, Garde, H 2014). ² LBAS is our new algorithm. 14/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

15 Large Component in Augment. Subspace Test problem deriv2(n,2), n = 32, relative noise level = W 2 = spanfw 1 ; w 2 g; w 1 = (1; 1; : : : ; 1) T ; w 2 = (1; 2; : : : ; n) T : For this problem kw 2 W2 T x exact k 2 =kx exact k 2 = 0:99 ; k(i W 2 W2 T )x exactk 2 =kx exact k 2 = 0:035 ; we only need to spend e ort in capturing the small component in W 2?. 15/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

16 Capture a Discontinuity Test problem gravity(n), n = 100, = 10 3, exact sol. changed to include a discontinuity between elements ` = 50 and ` + 1 = 51. Augmentation matrix W 2 allows us to represent this discontinuity: ones(`; 1) zeros(`; 1) w 1 = ; w zeros(n `; 1) 2 = : ones(n `; 1) 16/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

17 Fix Boundary Conditions Here W 2 compensates for the \incorrect" or \incompatible" boundary conditions implicit in A, by allowing the regularized solutions to have nonzero values and nonzero derivatives at the endpoints. 17/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

18 Fix Boundary Conditions, Rectangular A The matrix A is rectangular so RRGMRES and R 3 GMRES cannot be used. 18/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

19 Compute Spectrum of X-Ray Source The spectrum of an X-ray source (where accelerated electrons hit an anode) consists of a continuous spectrum superimposed with line spectra. We know the frequencies of the line spectral, so we can easily incorporate this information through the augmentation subspace. Experiment with two choices: W delta two delta functions at the right frequencies, W Gauss two narrow Gauss functions at the right frequencies. Exact spectrum Many thanks to Jan Sijbers for inspiration to this example. 19/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

20 Conclusions We consider (again) how to augment the Krylov subspace. Focus here on rectangular matrices and Lanczos bidiag. We develop an efficent algorihtm LBAS. Numerical examples demonstrate the advantage of LBAS. Future work: Selective reorthogonalization? Is it occasionally necessary to do the MGS twice? A similar algorithm based on MINRES/MR-II? Hybrid algorithm with regularization of projected problem! 20/20 P. C. Hansen Lanczos Bidiagonalization with Subspace Augmentation (for Dianne)

Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact

Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact Zdeněk Strakoš Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/ strakos Hong Kong, February

More information

Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Golub-Kahan iterative bidiagonalization and determining the noise level in the data Golub-Kahan iterative bidiagonalization and determining the noise level in the data Iveta Hnětynková,, Martin Plešinger,, Zdeněk Strakoš, * Charles University, Prague ** Academy of Sciences of the Czech

More information

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Krylov Space Methods Nonstationary sounds good Radu Trîmbiţaş Babeş-Bolyai University Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17 Introduction These methods are used both to solve

More information

ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS

ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS BIT Numerical Mathematics 6-3835/3/431-1 $16. 23, Vol. 43, No. 1, pp. 1 18 c Kluwer Academic Publishers ITERATIVE REGULARIZATION WITH MINIMUM-RESIDUAL METHODS T. K. JENSEN and P. C. HANSEN Informatics

More information

Augmented GMRES-type methods

Augmented GMRES-type methods Augmented GMRES-type methods James Baglama 1 and Lothar Reichel 2, 1 Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail: jbaglama@math.uri.edu. Home page: http://hypatia.math.uri.edu/

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Inverse Ill Posed Problems in Image Processing

Inverse Ill Posed Problems in Image Processing Inverse Ill Posed Problems in Image Processing Image Deblurring I. Hnětynková 1,M.Plešinger 2,Z.Strakoš 3 hnetynko@karlin.mff.cuni.cz, martin.plesinger@tul.cz, strakos@cs.cas.cz 1,3 Faculty of Mathematics

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 31, pp. 204-220, 2008. Copyright 2008,. ISSN 1068-9613. ETNA NOISE PROPAGATION IN REGULARIZING ITERATIONS FOR IMAGE DEBLURRING PER CHRISTIAN HANSEN

More information

Embedded techniques for choosing the parameter in Tikhonov regularization

Embedded techniques for choosing the parameter in Tikhonov regularization NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. (24) Published online in Wiley Online Library (wileyonlinelibrary.com)..934 Embedded techniques for choosing the parameter in Tikhonov

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

1 Extrapolation: A Hint of Things to Come

1 Extrapolation: A Hint of Things to Come Notes for 2017-03-24 1 Extrapolation: A Hint of Things to Come Stationary iterations are simple. Methods like Jacobi or Gauss-Seidel are easy to program, and it s (relatively) easy to analyze their convergence.

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

LSMR: An iterative algorithm for least-squares problems

LSMR: An iterative algorithm for least-squares problems LSMR: An iterative algorithm for least-squares problems David Fong Michael Saunders Institute for Computational and Mathematical Engineering (icme) Stanford University Copper Mountain Conference on Iterative

More information

Simple iteration procedure

Simple iteration procedure Simple iteration procedure Solve Known approximate solution Preconditionning: Jacobi Gauss-Seidel Lower triangle residue use of pre-conditionner correction residue use of pre-conditionner Convergence Spectral

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

A Parameter-Choice Method That Exploits Residual Information

A Parameter-Choice Method That Exploits Residual Information A Parameter-Choice Method That Exploits Residual Information Per Christian Hansen Section for Scientific Computing DTU Informatics Joint work with Misha E. Kilmer Tufts University Inverse Problems: Image

More information

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices Chapter 7 Iterative methods for large sparse linear systems In this chapter we revisit the problem of solving linear systems of equations, but now in the context of large sparse systems. The price to pay

More information

FGMRES for linear discrete ill-posed problems

FGMRES for linear discrete ill-posed problems FGMRES for linear discrete ill-posed problems Keiichi Morikuni Department of Informatics, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies, Sokendai, 2-1-2 Hitotsubashi,

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 28, pp. 49-67, 28. Copyright 28,. ISSN 68-963. A WEIGHTED-GCV METHOD FOR LANCZOS-HYBRID REGULARIZATION JULIANNE CHUNG, JAMES G. NAGY, AND DIANNE P.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated.

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated. Math 504, Homework 5 Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated 1 Find the eigenvalues and the associated eigenspaces

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 33, pp. 63-83, 2009. Copyright 2009,. ISSN 1068-9613. ETNA SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS LOTHAR REICHEL AND QIANG YE Dedicated to

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Dedicated to Gérard Meurant on the occasion of his 60th birthday.

Dedicated to Gérard Meurant on the occasion of his 60th birthday. SIMPLE SQUARE SMOOTHING REGULARIZATION OPERATORS LOTHAR REICHEL AND QIANG YE Dedicated to Gérard Meurant on the occasion of his 60th birthday. Abstract. Tikhonov regularization of linear discrete ill-posed

More information

Arnoldi-Tikhonov regularization methods

Arnoldi-Tikhonov regularization methods Arnoldi-Tikhonov regularization methods Bryan Lewis a, Lothar Reichel b,,1 a Rocketcalc LLC, 100 W. Crain Ave., Kent, OH 44240, USA. b Department of Mathematical Sciences, Kent State University, Kent,

More information

Bindel, Spring 2016 Numerical Analysis (CS 4220) Notes for

Bindel, Spring 2016 Numerical Analysis (CS 4220) Notes for Notes for 2016-03-11 Woah, We re Halfway There Last time, we showed that the QR iteration maps upper Hessenberg matrices to upper Hessenberg matrices, and this fact allows us to do one QR sweep in O(n

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 9 Minimizing Residual CG

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 9 1. qr and complete orthogonal factorization poor man s svd can solve many problems on the svd list using either of these factorizations but they

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems

Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Moments, Model Reduction and Nonlinearity in Solving Linear Algebraic Problems Zdeněk Strakoš Charles University, Prague http://www.karlin.mff.cuni.cz/ strakos 16th ILAS Meeting, Pisa, June 2010. Thanks

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

Math 310 Final Project Recycled subspaces in the LSMR Krylov method

Math 310 Final Project Recycled subspaces in the LSMR Krylov method Math 310 Final Project Recycled subspaces in the LSMR Krylov method Victor Minden November 25, 2013 1 Introduction In many applications, it is the case that we are interested not only in solving a single

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 6 Matrix Models Section 6.2 Low Rank Approximation Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Edgar

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut Collaborators: Jodi Mead and Iveta Hnetynkova DEPARTMENT OF MATHEMATICS

More information

Krylov subspace projection methods

Krylov subspace projection methods I.1.(a) Krylov subspace projection methods Orthogonal projection technique : framework Let A be an n n complex matrix and K be an m-dimensional subspace of C n. An orthogonal projection technique seeks

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

INVERSE SUBSPACE PROBLEMS WITH APPLICATIONS

INVERSE SUBSPACE PROBLEMS WITH APPLICATIONS INVERSE SUBSPACE PROBLEMS WITH APPLICATIONS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Given a square matrix A, the inverse subspace problem is concerned with determining a closest matrix to A with a

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Computing tomographic resolution matrices using Arnoldi s iterative inversion algorithm

Computing tomographic resolution matrices using Arnoldi s iterative inversion algorithm Stanford Exploration Project, Report 82, May 11, 2001, pages 1 176 Computing tomographic resolution matrices using Arnoldi s iterative inversion algorithm James G. Berryman 1 ABSTRACT Resolution matrices

More information

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems

LARGE SPARSE EIGENVALUE PROBLEMS. General Tools for Solving Large Eigen-Problems LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization General Tools for Solving Large Eigen-Problems

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Automatic stopping rule for iterative methods in discrete ill-posed problems

Automatic stopping rule for iterative methods in discrete ill-posed problems Comp. Appl. Math. DOI 10.1007/s40314-014-0174-3 Automatic stopping rule for iterative methods in discrete ill-posed problems Leonardo S. Borges Fermín S. Viloche Bazán Maria C. C. Cunha Received: 20 December

More information

LARGE SPARSE EIGENVALUE PROBLEMS

LARGE SPARSE EIGENVALUE PROBLEMS LARGE SPARSE EIGENVALUE PROBLEMS Projection methods The subspace iteration Krylov subspace methods: Arnoldi and Lanczos Golub-Kahan-Lanczos bidiagonalization 14-1 General Tools for Solving Large Eigen-Problems

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization

Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization Extension of GKB-FP algorithm to large-scale general-form Tikhonov regularization Fermín S. Viloche Bazán, Maria C. C. Cunha and Leonardo S. Borges Department of Mathematics, Federal University of Santa

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Lecture 9 Least Square Problems

Lecture 9 Least Square Problems March 26, 2018 Lecture 9 Least Square Problems Consider the least square problem Ax b (β 1,,β n ) T, where A is an n m matrix The situation where b R(A) is of particular interest: often there is a vectors

More information

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems

Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Regularization methods for large-scale, ill-posed, linear, discrete, inverse problems Silvia Gazzola Dipartimento di Matematica - Università di Padova January 10, 2012 Seminario ex-studenti 2 Silvia Gazzola

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut DEPARTMENT OF MATHEMATICS AND STATISTICS Prague 2008 MATHEMATICS AND STATISTICS

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems

Charles University Faculty of Mathematics and Physics DOCTORAL THESIS. Krylov subspace approximations in linear algebraic problems Charles University Faculty of Mathematics and Physics DOCTORAL THESIS Iveta Hnětynková Krylov subspace approximations in linear algebraic problems Department of Numerical Mathematics Supervisor: Doc. RNDr.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 26, No. 4, pp. 1001 1021 c 2005 Society for Industrial and Applied Mathematics BREAKDOWN-FREE GMRES FOR SINGULAR SYSTEMS LOTHAR REICHEL AND QIANG YE Abstract. GMRES is a

More information

Statistically-Based Regularization Parameter Estimation for Large Scale Problems

Statistically-Based Regularization Parameter Estimation for Large Scale Problems Statistically-Based Regularization Parameter Estimation for Large Scale Problems Rosemary Renaut Joint work with Jodi Mead and Iveta Hnetynkova March 1, 2010 National Science Foundation: Division of Computational

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME MS&E 38 (CME 338 Large-Scale Numerical Optimization Course description Instructor: Michael Saunders Spring 28 Notes : Review The course teaches

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Arnoldi Notes for 2016-11-16 Krylov subspaces are good spaces for approximation schemes. But the power basis (i.e. the basis A j b for j = 0,..., k 1) is not good for numerical work. The vectors in the

More information

On the influence of eigenvalues on Bi-CG residual norms

On the influence of eigenvalues on Bi-CG residual norms On the influence of eigenvalues on Bi-CG residual norms Jurjen Duintjer Tebbens Institute of Computer Science Academy of Sciences of the Czech Republic duintjertebbens@cs.cas.cz Gérard Meurant 30, rue

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Greedy Tikhonov regularization for large linear ill-posed problems

Greedy Tikhonov regularization for large linear ill-posed problems International Journal of Computer Mathematics Vol. 00, No. 00, Month 200x, 1 20 Greedy Tikhonov regularization for large linear ill-posed problems L. Reichel, H. Sadok, and A. Shyshkov (Received 00 Month

More information

Institute for Advanced Computer Studies. Department of Computer Science. Two Algorithms for the The Ecient Computation of

Institute for Advanced Computer Studies. Department of Computer Science. Two Algorithms for the The Ecient Computation of University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR{98{12 TR{3875 Two Algorithms for the The Ecient Computation of Truncated Pivoted QR Approximations

More information

CG and MINRES: An empirical comparison

CG and MINRES: An empirical comparison School of Engineering CG and MINRES: An empirical comparison Prequel to LSQR and LSMR: Two least-squares solvers David Fong and Michael Saunders Institute for Computational and Mathematical Engineering

More information

Iterative Methods for Linear Systems of Equations

Iterative Methods for Linear Systems of Equations Iterative Methods for Linear Systems of Equations Projection methods (3) ITMAN PhD-course DTU 20-10-08 till 24-10-08 Martin van Gijzen 1 Delft University of Technology Overview day 4 Bi-Lanczos method

More information

Generalized MINRES or Generalized LSQR?

Generalized MINRES or Generalized LSQR? Generalized MINRES or Generalized LSQR? Michael Saunders Systems Optimization Laboratory (SOL) Institute for Computational Mathematics and Engineering (ICME) Stanford University New Frontiers in Numerical

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

A hybrid reordered Arnoldi method to accelerate PageRank computations

A hybrid reordered Arnoldi method to accelerate PageRank computations A hybrid reordered Arnoldi method to accelerate PageRank computations Danielle Parker Final Presentation Background Modeling the Web The Web The Graph (A) Ranks of Web pages v = v 1... Dominant Eigenvector

More information

Krylov Subspace Methods that Are Based on the Minimization of the Residual

Krylov Subspace Methods that Are Based on the Minimization of the Residual Chapter 5 Krylov Subspace Methods that Are Based on the Minimization of the Residual Remark 51 Goal he goal of these methods consists in determining x k x 0 +K k r 0,A such that the corresponding Euclidean

More information

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems Abstract and Applied Analysis Article ID 237808 pages http://dxdoiorg/055/204/237808 Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite

More information

SIGNAL AND IMAGE RESTORATION: SOLVING

SIGNAL AND IMAGE RESTORATION: SOLVING 1 / 55 SIGNAL AND IMAGE RESTORATION: SOLVING ILL-POSED INVERSE PROBLEMS - ESTIMATING PARAMETERS Rosemary Renaut http://math.asu.edu/ rosie CORNELL MAY 10, 2013 2 / 55 Outline Background Parameter Estimation

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

2017 Society for Industrial and Applied Mathematics

2017 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 39, No. 5, pp. S24 S46 2017 Society for Industrial and Applied Mathematics GENERALIZED HYBRID ITERATIVE METHODS FOR LARGE-SCALE BAYESIAN INVERSE PROBLEMS JULIANNE CHUNG AND ARVIND

More information

Main matrix factorizations

Main matrix factorizations Main matrix factorizations A P L U P permutation matrix, L lower triangular, U upper triangular Key use: Solve square linear system Ax b. A Q R Q unitary, R upper triangular Key use: Solve square or overdetrmined

More information

Newton s method for obtaining the Regularization Parameter for Regularized Least Squares

Newton s method for obtaining the Regularization Parameter for Regularized Least Squares Newton s method for obtaining the Regularization Parameter for Regularized Least Squares Rosemary Renaut, Jodi Mead Arizona State and Boise State International Linear Algebra Society, Cancun Renaut and

More information

Probabilistic upper bounds for the matrix two-norm

Probabilistic upper bounds for the matrix two-norm Noname manuscript No. (will be inserted by the editor) Probabilistic upper bounds for the matrix two-norm Michiel E. Hochstenbach Received: date / Accepted: date Abstract We develop probabilistic upper

More information

Old and new parameter choice rules for discrete ill-posed problems

Old and new parameter choice rules for discrete ill-posed problems Old and new parameter choice rules for discrete ill-posed problems Lothar Reichel Giuseppe Rodriguez Dedicated to Claude Brezinski and Sebastiano Seatzu on the Occasion of Their 70th Birthdays. Abstract

More information

Large-scale eigenvalue problems

Large-scale eigenvalue problems ELE 538B: Mathematics of High-Dimensional Data Large-scale eigenvalue problems Yuxin Chen Princeton University, Fall 208 Outline Power method Lanczos algorithm Eigenvalue problems 4-2 Eigendecomposition

More information

Index. Copyright (c)2007 The Society for Industrial and Applied Mathematics From: Matrix Methods in Data Mining and Pattern Recgonition By: Lars Elden

Index. Copyright (c)2007 The Society for Industrial and Applied Mathematics From: Matrix Methods in Data Mining and Pattern Recgonition By: Lars Elden Index 1-norm, 15 matrix, 17 vector, 15 2-norm, 15, 59 matrix, 17 vector, 15 3-mode array, 91 absolute error, 15 adjacency matrix, 158 Aitken extrapolation, 157 algebra, multi-linear, 91 all-orthogonality,

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems

A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems A Chebyshev-based two-stage iterative method as an alternative to the direct solution of linear systems Mario Arioli m.arioli@rl.ac.uk CCLRC-Rutherford Appleton Laboratory with Daniel Ruiz (E.N.S.E.E.I.H.T)

More information

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve

Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Newton s Method for Estimating the Regularization Parameter for Least Squares: Using the Chi-curve Rosemary Renaut, Jodi Mead Arizona State and Boise State Copper Mountain Conference on Iterative Methods

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring Marco Donatelli Dept. of Science and High Tecnology U. Insubria (Italy) Joint work with M. Hanke

More information

Preconditioned GMRES Revisited

Preconditioned GMRES Revisited Preconditioned GMRES Revisited Roland Herzog Kirk Soodhalter UBC (visiting) RICAM Linz Preconditioning Conference 2017 Vancouver August 01, 2017 Preconditioned GMRES Revisited Vancouver 1 / 32 Table of

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

Krylov Subspaces. Lab 1. The Arnoldi Iteration

Krylov Subspaces. Lab 1. The Arnoldi Iteration Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra

More information

Chapter 5 Orthogonality

Chapter 5 Orthogonality Matrix Methods for Computational Modeling and Data Analytics Virginia Tech Spring 08 Chapter 5 Orthogonality Mark Embree embree@vt.edu Ax=b version of February 08 We needonemoretoolfrom basic linear algebra

More information

Matrices, Moments and Quadrature, cont d

Matrices, Moments and Quadrature, cont d Jim Lambers CME 335 Spring Quarter 2010-11 Lecture 4 Notes Matrices, Moments and Quadrature, cont d Estimation of the Regularization Parameter Consider the least squares problem of finding x such that

More information

MATCOM and Selected MATCOM Functions

MATCOM and Selected MATCOM Functions book-onlin page 567 Appendix C MATCOM and Selected MATCOM Functions C.1 MATCOM and Selected MATCOM Functions C.1.1 What is MATCOM? MATCOM is a MATLAB-based interactive software package containing the implementation

More information

Numerical linear algebra

Numerical linear algebra Numerical linear algebra Purdue University CS 51500 Fall 2017 David Gleich David F. Gleich Call me Prof Gleich Dr. Gleich Please not Hey matrix guy! Huda Nassar Call me Huda Ms. Huda Please not Matrix

More information

ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM. Dedicated to Ken Hayami on the occasion of his 60th birthday.

ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM. Dedicated to Ken Hayami on the occasion of his 60th birthday. ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM ENYINDA ONUNWOR AND LOTHAR REICHEL Dedicated to Ken Hayami on the occasion of his 60th birthday. Abstract. The singular

More information