Méthodes d énergie pour le potentiel de double couche: Une inégalité de Poincaré oubliée.

Size: px
Start display at page:

Download "Méthodes d énergie pour le potentiel de double couche: Une inégalité de Poincaré oubliée."

Transcription

1 Méthodes d énergie pour le potentiel de double couche: Une inégalité de Poincaré oubliée. Martin Costabel IRMAR, Université de Rennes 1 2e Journée de l équipe d analyse numérique Rennes 25 oct 2007 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 1 / 26

2 L inégalité de Poincaré Théorème Soit R 3 un domaine lipschitzien borné et + = R 3 \. Alors il existe une constante µ 1 telle que pour tout u harmonique dans +, Hloc 1 jusqu au bord et zéro à l infini et - soit u = u + sur Γ = ( potentiel de simple couche ) et u ds = 0 Γ - soit n u = n u + sur Γ ( potentiel de double couche ) on ait l estimation 1 u 2 µ u 2 µ u 2 + Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 2 / 26

3 W. Stekloff 1900 [Ann. Fac. Sci Toulouse 2 (1900) ] Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 3 / 26

4 W. Stekloff 1900 [Ann. Fac. Sci Toulouse 2 (1900) ] Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 3 / 26

5 W. Stekloff 1900 [Ann. Fac. Sci Toulouse 2 (1900) ] Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 3 / 26

6 W. Stekloff 1900 [Ann. Fac. Sci Toulouse 2 (1900) ] Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 3 / 26

7 L inégalité de Poincaré Théorème Soit R 3 un domaine lipschitzien borné et + = R 3 \. Alors il existe une constante µ 1 telle que pour tout u harmonique dans +, Hloc 1 jusqu au bord et zéro à l infini et - soit u = u + sur Γ = ( potentiel de simple couche ) et u ds = 0 Γ - soit n u = n u + sur Γ ( potentiel de double couche ) on ait l estimation 1 u 2 µ u 2 µ u 2 + Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 4 / 26

8 Références, de Poincaré à nos jours H. POINCARÉ. La méthode de Neumann et le problème de Dirichlet. Acta Math. 20 (1896) W. STEKLOFF. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) A. KORN. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) 557. Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 5 / 26

9 Références, de Poincaré à nos jours H. POINCARÉ. La méthode de Neumann et le problème de Dirichlet. Acta Math. 20 (1896) W. STEKLOFF. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) A. KORN. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) 557. Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 5 / 26

10 A. Korn 1900 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 6 / 26

11 Références, de Poincaré à nos jours H. POINCARÉ. La méthode de Neumann et le problème de Dirichlet. Acta Math. 20 (1896) W. STEKLOFF. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) A. KORN. Sur la méthode de Neumann et le problème de Dirichlet.. C. R. 130 (1900) 557. W. STEKLOFF. Remarque à une note de M. A. Korn: Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) W. STEKLOFF. Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique. Ann. Fac. Sci. Toulouse (2) 2 (1900) O. STEINBACH, W. L. WENDLAND. On C. Neumann s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001) M. COSTABEL. Some historical remarks on the positivity of boundary integral operators. Ch. 1 of Boundary Element Analysis - Mathematical Aspects and Applications (M. Schanz, O. Steinbach, Eds.) Lecture Notes in Applied and Computational Mechanics Vol 29, Springer, Berlin Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 7 / 26

12 Références, de Poincaré à nos jours H. POINCARÉ. La méthode de Neumann et le problème de Dirichlet. Acta Math. 20 (1896) W. STEKLOFF. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) A. KORN. Sur la méthode de Neumann et le problème de Dirichlet.. C. R. 130 (1900) 557. W. STEKLOFF. Remarque à une note de M. A. Korn: Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) W. STEKLOFF. Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique. Ann. Fac. Sci. Toulouse (2) 2 (1900) O. STEINBACH, W. L. WENDLAND. On C. Neumann s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001) M. COSTABEL. Some historical remarks on the positivity of boundary integral operators. Ch. 1 of Boundary Element Analysis - Mathematical Aspects and Applications (M. Schanz, O. Steinbach, Eds.) Lecture Notes in Applied and Computational Mechanics Vol 29, Springer, Berlin Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 7 / 26

13 Références, de Poincaré à nos jours H. POINCARÉ. La méthode de Neumann et le problème de Dirichlet. Acta Math. 20 (1896) W. STEKLOFF. Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) A. KORN. Sur la méthode de Neumann et le problème de Dirichlet.. C. R. 130 (1900) 557. W. STEKLOFF. Remarque à une note de M. A. Korn: Sur la méthode de Neumann et le problème de Dirichlet. C. R. 130 (1900) W. STEKLOFF. Les méthodes générales pour résoudre les problèmes fondamentaux de la physique mathématique. Ann. Fac. Sci. Toulouse (2) 2 (1900) O. STEINBACH, W. L. WENDLAND. On C. Neumann s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262 (2001) M. COSTABEL. Some historical remarks on the positivity of boundary integral operators. Ch. 1 of Boundary Element Analysis - Mathematical Aspects and Applications (M. Schanz, O. Steinbach, Eds.) Lecture Notes in Applied and Computational Mechanics Vol 29, Springer, Berlin Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 7 / 26

14 Équation intégrale de Neumann pour le problème de Dirichlet Potentiel de double couche dans R 3 \ Γ = + : u(x) = Dg(x) = 1 n(y) (y x) 4π Γ x y 3 g(y) ds(y) Relations de saut sur Γ: n u + = n u ; u + u = g ; Déf: Kg := 1 2 (u+ + u ) Traces sur Γ: u + = ( I + K )g Problème de Dirichlet intérieur: u = f sur Γ Équation intégrale du potentiel de double couche: u = Dg avec ( 1 2 I K )g = f = 1 2 (I 2K )g = ( I ( 1 2 I + K )) g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 8 / 26

15 Équation intégrale de Neumann pour le problème de Dirichlet Potentiel de double couche dans R 3 \ Γ = + : u(x) = Dg(x) = 1 n(y) (y x) 4π Γ x y 3 g(y) ds(y) Relations de saut sur Γ: n u + = n u ; u + u = g ; Déf: Kg := 1 2 (u+ + u ) Traces sur Γ: u + = ( I + K )g Problème de Dirichlet intérieur: u = f sur Γ Équation intégrale du potentiel de double couche: u = Dg avec ( 1 2 I K )g = f = 1 2 (I 2K )g = ( I ( 1 2 I + K )) g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 8 / 26

16 Équation intégrale de Neumann pour le problème de Dirichlet Potentiel de double couche dans R 3 \ Γ = + : u(x) = Dg(x) = 1 n(y) (y x) 4π Γ x y 3 g(y) ds(y) Relations de saut sur Γ: n u + = n u ; u + u = g ; Déf: Kg := 1 2 (u+ + u ) Traces sur Γ: u + = ( I + K )g Problème de Dirichlet intérieur: u = f sur Γ Équation intégrale du potentiel de double couche: u = Dg avec ( 1 2 I K )g = f = 1 2 (I 2K )g = ( I ( 1 2 I + K )) g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 8 / 26

17 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 9 / 26

18 Beer 1856, dans C. Neumann: Untersuchungen über das Logarithmische und Newtonsche Potential, Teubner Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 10 / 26

19 Beer 1856, dans C. Neumann: Untersuchungen über das Logarithmische und Newtonsche Potential, Teubner Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 10 / 26

20 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Poincaré 1896: u = 2 D(2K ) l f l=0 Convergence dans L (R 3 ) si Γ C 1+α Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 11 / 26

21 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Poincaré 1896: u = 2 D(2K ) l f l=0 Convergence dans L (R 3 ) si Γ C 1+α Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 11 / 26

22 Poincaré 1896: Équations intégrales sans equations intégrales Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 12 / 26

23 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Poincaré 1896: u = 2 D(2K ) l f l=0 Convergence dans L (R 3 ) si Γ C 1+α Steinbach-Wendland 2001: g = ( 1 2 I + K )l f l=0 Convergence dans H 1/2 (Γ) si Γ lipschitzien; syst. ell. d ordre 2 ds R n Ouvert: Convergence dans L 2 (Γ); ordre > 2; t ; Maxwell... Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 13 / 26

24 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Poincaré 1896: u = 2 D(2K ) l f l=0 Convergence dans L (R 3 ) si Γ C 1+α Steinbach-Wendland 2001: g = ( 1 2 I + K )l f l=0 Convergence dans H 1/2 (Γ) si Γ lipschitzien; syst. ell. d ordre 2 ds R n Ouvert: Convergence dans L 2 (Γ); ordre > 2; t ; Maxwell... Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 13 / 26

25 La série de Neumann C. Neumann 1877: g = 2 (2K ) l f l=0 Convergence dans C 0 (Γ)/R si Γ est convexe: dθ x(y) = 1 n(y) (y x) ds(y) 4π x y 3 est une mesure de masse 1, positive si Γ convexe Poincaré 1896: u = 2 D(2K ) l f l=0 Convergence dans L (R 3 ) si Γ C 1+α Steinbach-Wendland 2001: g = ( 1 2 I + K )l f l=0 Convergence dans H 1/2 (Γ) si Γ lipschitzien; syst. ell. d ordre 2 ds R n Ouvert: Convergence dans L 2 (Γ); ordre > 2; t ; Maxwell... Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 13 / 26

26 Le Grand Bouleversement D. HILBERT. Über das Dirichletsche Prinzip. Jb. DMV 8 (1900) D. HILBERT. Über das Dirichletsche Prinzip. Math. Ann. 59 (1904) D. HILBERT. Über das Dirichletsche Prinzip. J. R. A. Math. 129 (1905) I. FREDHOLM. Sur une classe d équations fonctionnelles. Acta Math. 27 (1903), no. 1, A. KORN. Über freie und erzwungene Schwingungen. Eine Einführung in die Theorie der linearen Integralgleichungen. B. G. Teubner, Leipzig A. KNESER. Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik. Vieweg, Braunschweig H. B. HEYWOOD, M. R. FRÉCHET, J. HADAMARD. L équation de Fredholm et ses applications à la physique mathématique. Hermann, Paris T. LALESCO. Introduction à la théorie des équations intégrales. Avec une préface de É. Picard. Hermann, Paris V. VOLTERRA. Leçons sur les équations intégrales et les équations intégro-différentielles. Gauthier-Villars, Paris M. BÔCHER. An introduction to the study of integral equations. Cambridge University Press H. POINCARÉ. Remarques diverses sur l équation de Fredholm. Acta Math. 33 (1909) D. HILBERT. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 14 / 26

27 Le Grand Bouleversement D. HILBERT. Über das Dirichletsche Prinzip. Jb. DMV 8 (1900) D. HILBERT. Über das Dirichletsche Prinzip. Math. Ann. 59 (1904) D. HILBERT. Über das Dirichletsche Prinzip. J. R. A. Math. 129 (1905) I. FREDHOLM. Sur une classe d équations fonctionnelles. Acta Math. 27 (1903), no. 1, A. KORN. Über freie und erzwungene Schwingungen. Eine Einführung in die Theorie der linearen Integralgleichungen. B. G. Teubner, Leipzig A. KNESER. Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik. Vieweg, Braunschweig H. B. HEYWOOD, M. R. FRÉCHET, J. HADAMARD. L équation de Fredholm et ses applications à la physique mathématique. Hermann, Paris T. LALESCO. Introduction à la théorie des équations intégrales. Avec une préface de É. Picard. Hermann, Paris V. VOLTERRA. Leçons sur les équations intégrales et les équations intégro-différentielles. Gauthier-Villars, Paris M. BÔCHER. An introduction to the study of integral equations. Cambridge University Press H. POINCARÉ. Remarques diverses sur l équation de Fredholm. Acta Math. 33 (1909) D. HILBERT. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 14 / 26

28 Le Grand Bouleversement D. HILBERT. Über das Dirichletsche Prinzip. Jb. DMV 8 (1900) D. HILBERT. Über das Dirichletsche Prinzip. Math. Ann. 59 (1904) D. HILBERT. Über das Dirichletsche Prinzip. J. R. A. Math. 129 (1905) I. FREDHOLM. Sur une classe d équations fonctionnelles. Acta Math. 27 (1903), no. 1, A. KORN. Über freie und erzwungene Schwingungen. Eine Einführung in die Theorie der linearen Integralgleichungen. B. G. Teubner, Leipzig A. KNESER. Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik. Vieweg, Braunschweig H. B. HEYWOOD, M. R. FRÉCHET, J. HADAMARD. L équation de Fredholm et ses applications à la physique mathématique. Hermann, Paris T. LALESCO. Introduction à la théorie des équations intégrales. Avec une préface de É. Picard. Hermann, Paris V. VOLTERRA. Leçons sur les équations intégrales et les équations intégro-différentielles. Gauthier-Villars, Paris M. BÔCHER. An introduction to the study of integral equations. Cambridge University Press H. POINCARÉ. Remarques diverses sur l équation de Fredholm. Acta Math. 33 (1909) D. HILBERT. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 14 / 26

29 Le Grand Bouleversement D. HILBERT. Über das Dirichletsche Prinzip. Jb. DMV 8 (1900) D. HILBERT. Über das Dirichletsche Prinzip. Math. Ann. 59 (1904) D. HILBERT. Über das Dirichletsche Prinzip. J. R. A. Math. 129 (1905) I. FREDHOLM. Sur une classe d équations fonctionnelles. Acta Math. 27 (1903), no. 1, A. KORN. Über freie und erzwungene Schwingungen. Eine Einführung in die Theorie der linearen Integralgleichungen. B. G. Teubner, Leipzig A. KNESER. Die Integralgleichungen und ihre Anwendungen in der mathematischen Physik. Vieweg, Braunschweig H. B. HEYWOOD, M. R. FRÉCHET, J. HADAMARD. L équation de Fredholm et ses applications à la physique mathématique. Hermann, Paris T. LALESCO. Introduction à la théorie des équations intégrales. Avec une préface de É. Picard. Hermann, Paris V. VOLTERRA. Leçons sur les équations intégrales et les équations intégro-différentielles. Gauthier-Villars, Paris M. BÔCHER. An introduction to the study of integral equations. Cambridge University Press H. POINCARÉ. Remarques diverses sur l équation de Fredholm. Acta Math. 33 (1909) D. HILBERT. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Teubner, Leipzig Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 14 / 26

30 Et maintenant des maths pour The Bilaplacian Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 15 / 26

31 Et maintenant des maths pour The Bilaplacian Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 15 / 26

32 Green formulas for 2 = : Smooth bounded domain in R 2 ; boundary Γ; exterior domain + 2 ( u v = u v + n u v u n v ) ds Γ 2 u v = α u α ( v + n u v τ n u τ v nu 2 n v ) ds α =2 Γ = α u α ( v + n u v + s τ n u v nu 2 n v ) ds α =2 Γ 0 σ 1: 2 ( u v = a σ (u, v) + Nσ u v M σ u n v ) ds Γ Z Z X u v + (1 σ) α u α v a σ(u, v) = σ α =2 M σ = σ u + (1 σ) 2 nu : bending moment N σ = n u + (1 σ) s τ nu : twisting moment Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 16 / 26

33 Green formulas for 2 = : Smooth bounded domain in R 2 ; boundary Γ; exterior domain + 2 ( u v = u v + n u v u n v ) ds Γ 2 u v = α u α ( v + n u v τ n u τ v nu 2 n v ) ds α =2 Γ = α u α ( v + n u v + s τ n u v nu 2 n v ) ds α =2 Γ 0 σ 1: 2 ( u v = a σ (u, v) + Nσ u v M σ u n v ) ds Γ Z Z X u v + (1 σ) α u α v a σ(u, v) = σ α =2 M σ = σ u + (1 σ) 2 nu : bending moment N σ = n u + (1 σ) s τ nu : twisting moment Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 16 / 26

34 Green formulas for 2 = : Smooth bounded domain in R 2 ; boundary Γ; exterior domain + 2 ( u v = u v + n u v u n v ) ds Γ 2 u v = α u α ( v + n u v τ n u τ v nu 2 n v ) ds α =2 Γ = α u α ( v + n u v + s τ n u v nu 2 n v ) ds α =2 Γ 0 σ 1: 2 ( u v = a σ (u, v) + Nσ u v M σ u n v ) ds Γ Z Z X u v + (1 σ) α u α v a σ(u, v) = σ α =2 M σ = σ u + (1 σ) 2 nu : bending moment N σ = n u + (1 σ) s τ nu : twisting moment Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 16 / 26

35 Green formulas for 2 = : Smooth bounded domain in R 2 ; boundary Γ; exterior domain + 2 ( u v = u v + n u v u n v ) ds Γ 2 u v = α u α ( v + n u v τ n u τ v nu 2 n v ) ds α =2 Γ = α u α ( v + n u v + s τ n u v nu 2 n v ) ds α =2 Γ 0 σ 1: 2 ( u v = a σ (u, v) + Nσ u v M σ u n v ) ds Γ Z Z X u v + (1 σ) α u α v a σ(u, v) = σ α =2 M σ = σ u + (1 σ) 2 nu : bending moment N σ = n u + (1 σ) s τ nu : twisting moment Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 16 / 26

36 Traces (smooth domain) Z Z 2 u v = a(u, v) + `Nu v Mu nv ds Γ Cauchy data: (γ 0 u, γ 1 u) := (u, nu, Nu, Mu) on Γ Traces: (γ 0, γ 1 ) : H s () H s 1 2 (Γ) H s 3 2 (Γ) H s 7 2 (Γ) H s 5 2 (Γ) Energy norm (s = 2): X := H 3 2 (Γ) H 1 2 (Γ) = γ0 H 2 () (γ 0, γ 1 ) : H 2 ( 2 ; ) X X First Green formula a(u, v) = 2 u v + γ 1 u, γ 0 v Second Green formula ( 2 u v u 2 v ) = γ 1 u, γ 0 v + γ 0 u, γ 1 v Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 17 / 26

37 Traces (smooth domain) Z Z 2 u v = a(u, v) + `Nu v Mu nv ds Γ Cauchy data: (γ 0 u, γ 1 u) := (u, nu, Nu, Mu) on Γ Traces: (γ 0, γ 1 ) : H s () H s 1 2 (Γ) H s 3 2 (Γ) H s 7 2 (Γ) H s 5 2 (Γ) Energy norm (s = 2): X := H 3 2 (Γ) H 1 2 (Γ) = γ0 H 2 () (γ 0, γ 1 ) : H 2 ( 2 ; ) X X First Green formula a(u, v) = 2 u v + γ 1 u, γ 0 v Second Green formula ( 2 u v u 2 v ) = γ 1 u, γ 0 v + γ 0 u, γ 1 v Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 17 / 26

38 Traces (smooth domain) Z Z 2 u v = a(u, v) + `Nu v Mu nv ds Γ Cauchy data: (γ 0 u, γ 1 u) := (u, nu, Nu, Mu) on Γ Traces: (γ 0, γ 1 ) : H s () H s 1 2 (Γ) H s 3 2 (Γ) H s 7 2 (Γ) H s 5 2 (Γ) Energy norm (s = 2): X := H 3 2 (Γ) H 1 2 (Γ) = γ0 H 2 () (γ 0, γ 1 ) : H 2 ( 2 ; ) X X First Green formula a(u, v) = 2 u v + γ 1 u, γ 0 v Second Green formula ( 2 u v u 2 v ) = γ 1 u, γ 0 v + γ 0 u, γ 1 v Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 17 / 26

39 Representation Formula, Single and Double Layer Fundamental solution: G(x) = 1 8π x 2 log x ( G = 1 (log x + 1)) 2π Representation in u(x) = Z 2 u(y) G(x y) dy Z + ` Nu(y)G(x y) + Mu(y) n(y) G(x y) ds(y) Γ Z ` nu(y)m(y)g(x y) u(y)n(y)g(x y) ds(y) Γ = N f (x) + S γ 1 u(x) Dγ 0 u(x) Distributional definitions N f = G f S φ = G γ 0 φ Dg = G γ 1 g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 18 / 26

40 Representation Formula, Single and Double Layer Fundamental solution: G(x) = 1 8π x 2 log x ( G = 1 (log x + 1)) 2π Representation in u(x) = Z 2 u(y) G(x y) dy Z + ` Nu(y)G(x y) + Mu(y) n(y) G(x y) ds(y) Γ Z ` nu(y)m(y)g(x y) u(y)n(y)g(x y) ds(y) Γ = N f (x) + S γ 1 u(x) Dγ 0 u(x) Distributional definitions N f = G f S φ = G γ 0 φ Dg = G γ 1 g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 18 / 26

41 Representation Formula, Single and Double Layer Fundamental solution: G(x) = 1 8π x 2 log x ( G = 1 (log x + 1)) 2π Representation in u(x) = Z 2 u(y) G(x y) dy Z + ` Nu(y)G(x y) + Mu(y) n(y) G(x y) ds(y) Γ Z ` nu(y)m(y)g(x y) u(y)n(y)g(x y) ds(y) Γ = N f (x) + S γ 1 u(x) Dγ 0 u(x) Distributional definitions N f = G f S φ = G γ 0 φ Dg = G γ 1 g Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 18 / 26

42 The double layer potential D ` g 0 g 1 (x) = Z Γ ` N(y)G(x y)g0 (y) + M(y)G(x y)g 1 (y) ds(y) Jump relations: [γ 0 Dg] = g ; [γ 1 Dg] = 0 Z Kg(x) = One-sided traces: γ + 0 Dg = g + Kg ; γ 2 1 Dg = Wg Γ «N(y)G(x y) M(y)G(x y) g0 n(x) N(y)G(x y) n(x) M(y)G(x y) g 1 «(y)ds(y) Integral equation for the interior Dirichlet problem ` 1 I K g = f 2 Orders: ` 0 1 : Not a classical Fredholm second kind integral equation! +1 0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 19 / 26

43 The double layer potential D ` g 0 g 1 (x) = Z Γ ` N(y)G(x y)g0 (y) + M(y)G(x y)g 1 (y) ds(y) Jump relations: [γ 0 Dg] = g ; [γ 1 Dg] = 0 Z Kg(x) = One-sided traces: γ + 0 Dg = g + Kg ; γ 2 1 Dg = Wg Γ «N(y)G(x y) M(y)G(x y) g0 n(x) N(y)G(x y) n(x) M(y)G(x y) g 1 «(y)ds(y) Integral equation for the interior Dirichlet problem ` 1 I K g = f 2 Orders: ` 0 1 : Not a classical Fredholm second kind integral equation! +1 0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 19 / 26

44 The double layer potential D ` g 0 g 1 (x) = Z Γ ` N(y)G(x y)g0 (y) + M(y)G(x y)g 1 (y) ds(y) Jump relations: [γ 0 Dg] = g ; [γ 1 Dg] = 0 Z Kg(x) = One-sided traces: γ + 0 Dg = g + Kg ; γ 2 1 Dg = Wg Γ «N(y)G(x y) M(y)G(x y) g0 n(x) N(y)G(x y) n(x) M(y)G(x y) g 1 «(y)ds(y) Integral equation for the interior Dirichlet problem ` 1 I K g = f 2 Orders: ` 0 1 : Not a classical Fredholm second kind integral equation! +1 0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 19 / 26

45 The double layer potential D ` g 0 g 1 (x) = Z Γ ` N(y)G(x y)g0 (y) + M(y)G(x y)g 1 (y) ds(y) Jump relations: [γ 0 Dg] = g ; [γ 1 Dg] = 0 Z Kg(x) = One-sided traces: γ + 0 Dg = g + Kg ; γ 2 1 Dg = Wg Γ «N(y)G(x y) M(y)G(x y) g0 n(x) N(y)G(x y) n(x) M(y)G(x y) g 1 «(y)ds(y) Integral equation for the interior Dirichlet problem ` 1 I K g = f 2 Orders: ` 0 1 : Not a classical Fredholm second kind integral equation! +1 0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 19 / 26

46 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

47 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

48 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

49 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Continuity S : X H 2 loc(r 2 ) ; D : X H 2 ( 2 ; ) Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

50 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Representation formula in u H 2 ( 2 ; ) : u = G 2 u + S γ 1 u Dγ 0 u Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

51 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Jump relations [γ 0 S φ] = 0 ; [γ 1 S φ] = φ ; [γ 0 Dg] = g ; [γ 1 D] = 0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

52 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Definition of boundary integral operators V φ = {γ 0 S φ}, K φ = {γ 1 S φ} on X Kg = {γ 0 Dg}, Wg = {γ 1 Dg} on X Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

53 Lipschitz boundaries: Spaces, traces and potentials Dirichlet trace: X = H 2 ( )/H 2 0 ( ) = H 2 ( + )/H 2 0 ( + ) = H 2 (R 2 )/H 2 0 (R 2 \ Γ) γ 0 : H 2 () X: Canonical projection Neumann trace: γ 1 = γ 1,σ : H 2 ( 2 ; ) X H 2 Γ (R2 ) defined by the first Green formula: γ 1 u, γ 0 v := R 2 u v a(u, v) Definition Single layer potential: S φ = G γ 0 φ Double layer potential : Dg = G γ 1 g With these definitions, many things work and look the same as for the Laplace operator or other second order operators: Etc... K = K, KV = VK, K W = WK, VW = 1 4 I K 2... Calderón projector, Poincaré-Steklov operator, Boundary integral equations... Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 20 / 26

54 And finally: The Energy Removal of zero-energy fields in X 0 = {g X p P 1 : g, γ 0 p = 0}; X 0 = X/γ 0 P 1 ; X 0 = (X 0) The Neumann problem u H 2 () : 2 u = 0, γ 1 u = g is solvable g X 0 Finiteness of energy in + For u = S φ, φ X : a + (u, u) < φ X 0 and a + (u, u) = 0 φ = 0 For u = Dg, g X : a + (u, u) < and a + (u, u) = 0 g γ 0 P 1 Lemma The total energy a (u, u) + a + (u, u) defines positive quadratic forms on X 0 via single layer potentials u = S φ on X 0 via double layer potentials u = Dg Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 21 / 26

55 And finally: The Energy Removal of zero-energy fields in X 0 = {g X p P 1 : g, γ 0 p = 0}; X 0 = X/γ 0 P 1 ; X 0 = (X 0) The Neumann problem u H 2 () : 2 u = 0, γ 1 u = g is solvable g X 0 Finiteness of energy in + For u = S φ, φ X : a + (u, u) < φ X 0 and a + (u, u) = 0 φ = 0 For u = Dg, g X : a + (u, u) < and a + (u, u) = 0 g γ 0 P 1 Lemma The total energy a (u, u) + a + (u, u) defines positive quadratic forms on X 0 via single layer potentials u = S φ on X 0 via double layer potentials u = Dg Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 21 / 26

56 And finally: The Energy Removal of zero-energy fields in X 0 = {g X p P 1 : g, γ 0 p = 0}; X 0 = X/γ 0 P 1 ; X 0 = (X 0) The Neumann problem u H 2 () : 2 u = 0, γ 1 u = g is solvable g X 0 Finiteness of energy in + For u = S φ, φ X : a + (u, u) < φ X 0 and a + (u, u) = 0 φ = 0 For u = Dg, g X : a + (u, u) < and a + (u, u) = 0 g γ 0 P 1 Lemma The total energy a (u, u) + a + (u, u) defines positive quadratic forms on X 0 via single layer potentials u = S φ on X 0 via double layer potentials u = Dg Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 21 / 26

57 The Poincaré Fundamental Lemma for 2 Lemma There exists µ = µ(γ) 1 such that if u = S φ, φ X 0, or u = Dg, g X, then Proof of the Corollary: 1 µ a (u, u) a + (u, u) µa (u, u) a(u, u) (µ + 1)a (u, u) a(u, u) (1 + µ)a + (u, u) a + (u, u) = a(u, u) a (u, u) µ µ+1a(u, u) a (u, u) = a(u, u) a + (u, u) µ µ+1a(u, u) a + (u, u) a (u, u) µ 1 µ+1 a(u, u) Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 22 / 26

58 The Poincaré Fundamental Lemma for 2 Proof Martin Costabel of the (Rennes) Corollary: Inégalité de Poincaré oubliée 2e J d équipe 22 / 26 Lemma There exists µ = µ(γ) 1 such that if u = S φ, φ X 0, or u = Dg, g X, then Corollary 1 µ a (u, u) a + (u, u) µa (u, u) On the Hilbert space X 0 with the norm of the total energy g 2 a = a(u, u) = a (u, u) + a + (u, u) ; (u = Dg) the operators A + and A defined by the bilinear forms a + and a are positive definite, selfadjoint bounded operators satisfying A + + A = I. The 3 operators A +, A and A + A are contractions: A + a µ µ + 1 ; A a µ µ + 1 ; A+ A a µ 1 µ + 1

59 The Poincaré Fundamental Lemma for 2 Lemma There exists µ = µ(γ) 1 such that if u = S φ, φ X 0, or u = Dg, g X, then Proof of the Corollary: 1 µ a (u, u) a + (u, u) µa (u, u) a(u, u) (µ + 1)a (u, u) a(u, u) (1 + µ)a + (u, u) a + (u, u) = a(u, u) a (u, u) µ µ+1a(u, u) a (u, u) = a(u, u) a + (u, u) µ µ+1a(u, u) a + (u, u) a (u, u) µ 1 µ+1 a(u, u) Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 22 / 26

60 The biharmonic double layer potential operator From the first Green formulas and the jump relations, one has the expressions for the total and partial energies u = Dg, g X 0 : a + (u, u) = Wg, ( 1 2 I + K )g ; a(u, u) = Wg, g Hence we can identify: g 2 a = Wg, g ; A + = 1 2 I + K ; A + A = 2K Theorem The operators 1 2 I + K are positive definite selfadjoint operators on X 0 with the energy norm. The operators 1 2 I + K and 2K are contractions. The Dirichlet problem in : 2 u = 0, γ 0 u = f X can be solved by a double layer potential u = Dg, where g is given by the convergent Neumann series g = ( 1 2 I K ) 1 f = ( 1 2 I + K )l f Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 23 / 26 l=0

61 The biharmonic double layer potential operator Theorem The operators 1 2 I + K are positive definite selfadjoint operators on X 0 with the energy norm. The operators 1 2 I + K and 2K are contractions. The Dirichlet problem in : 2 u = 0, γ 0 u = f X can be solved by a double layer potential u = Dg, where g is given by the convergent Neumann series g = ( 1 2 I K ) 1 f = ( 1 2 I + K )l f On the quotient space X 0, the following Neumann series is also convergent: g = ( 1 2 (I 2K )) 1 f = 2 (2K ) l f l=0 l=0 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 23 / 26

62 The contraction constant (Poincaré estimate) For the norm 1 2 (I 2K W we have seen 1 I K Wg, ( 1 2 W = sup I K )g 2 g X 0 Wg, g a (u, u) = sup{ u is a double layer potential } a + (u, u) + a (u, u) a + (u, u) = 1 inf{ u is a double layer potential } a + (u, u) + a (u, u) In a similar way, we get, by representing single layer potentials by their Dirichlet data 1 I + K V 1 g, ( 1 2 V 1 = sup I + K )g 2 g X V 1 g, g a (u, u) = sup{ u is a single layer potential } a + (u, u) + a (u, u) a + (u, u) = 1 inf{ u is a single layer potential } a + (u, u) + a (u, u) Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 24 / 26

63 The contraction constant (Poincaré estimate) For the norm 1 2 (I 2K W we have seen 1 I K Wg, ( 1 2 W = sup I K )g 2 g X 0 Wg, g a (u, u) = sup{ u is a double layer potential } a + (u, u) + a (u, u) a + (u, u) = 1 inf{ u is a double layer potential } a + (u, u) + a (u, u) In a similar way, we get, by representing single layer potentials by their Dirichlet data 1 I + K V 1 g, ( 1 2 V 1 = sup I + K )g 2 g X V 1 g, g a (u, u) = sup{ u is a single layer potential } a + (u, u) + a (u, u) a + (u, u) = 1 inf{ u is a single layer potential } a + (u, u) + a (u, u) Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 24 / 26

64 The contraction constant (Steinbach-Wendland estimate) Recall: The Poincaré-Steklov operator in : S : γu γ 1 u (Lu = 0) S = ( 1 2 I + K )V 1 ( S.L.: u=s ϕ ; γu=v ϕ ; γ 1 u=( 1 2 I+K )ϕ ) = W ( 1 2 I K ) 1 ( D.L.: u=dv ; γu=( 1 2 I+K )v ; γ 1u= Wv ) = W + S( 1 2 I + K ) ( S(I ( 1 2 I+K ))=W ) = W + ( 1 2 I + K )V 1 ( 1 2I + K ) symmetric form Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 25 / 26

65 The contraction constant (Steinbach-Wendland estimate) Recall: The Poincaré-Steklov operator in : S : γu γ 1 u (Lu = 0) S = ( 1 2 I + K )V 1 ( S.L.: u=s ϕ ; γu=v ϕ ; γ 1 u=( 1 2 I+K )ϕ ) = W ( 1 2 I K ) 1 ( D.L.: u=dv ; γu=( 1 2 I+K )v ; γ 1u= Wv ) = W + S( 1 2 I + K ) ( S(I ( 1 2 I+K ))=W ) = W + ( 1 2 I + K )V 1 ( 1 2I + K ) symmetric form Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 25 / 26

66 The contraction constant (Steinbach-Wendland estimate) Recall: The Poincaré-Steklov operator in : S : γu γ 1 u (Lu = 0) S = ( 1 2 I + K )V 1 ( S.L.: u=s ϕ ; γu=v ϕ ; γ 1 u=( 1 2 I+K )ϕ ) = W ( 1 2 I K ) 1 ( D.L.: u=dv ; γu=( 1 2 I+K )v ; γ 1u= Wv ) = W + S( 1 2 I + K ) ( S(I ( 1 2 I+K ))=W ) = W + ( 1 2 I + K )V 1 ( 1 2I + K ) symmetric form Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 25 / 26

67 The contraction constant (Steinbach-Wendland estimate) Recall: The Poincaré-Steklov operator in : S : γu γ 1 u (Lu = 0) S = ( 1 2 I + K )V 1 ( S.L.: u=s ϕ ; γu=v ϕ ; γ 1 u=( 1 2 I+K )ϕ ) = W ( 1 2 I K ) 1 ( D.L.: u=dv ; γu=( 1 2 I+K )v ; γ 1u= Wv ) = W + S( 1 2 I + K ) ( S(I ( 1 2 I+K ))=W ) = W + ( 1 2 I + K )V 1 ( 1 2I + K ) symmetric form Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 25 / 26

68 The contraction constant (Steinbach-Wendland estimate) Recall: The Poincaré-Steklov operator in : S : γu γ 1 u (Lu = 0) S = ( 1 2 I + K )V 1 ( S.L.: u=s ϕ ; γu=v ϕ ; γ 1 u=( 1 2 I+K )ϕ ) = W ( 1 2 I K ) 1 ( D.L.: u=dv ; γu=( 1 2 I+K )v ; γ 1u= Wv ) = W + S( 1 2 I + K ) ( S(I ( 1 2 I+K ))=W ) = W + ( 1 2 I + K )V 1 ( 1 2I + K ) symmetric form Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 25 / 26

69 The contraction constant (Steinbach-Wendland estimate) If a, b R and b b 2 + a and a > 0, then a b a < 1 If A, B are bounded selfadjoint operators and B = B 2 + A and A ai > 0, then q B a < Let B = 1 I + K in X 2 V 1. The symmetric representation of S V 1 ( 1 2 I + K ) = S = ( 1 2 I + K )V 1 ( 1 2 I + K ) + W shows that B = B 2 + A, A c 0 I > 0 with c 0 = inf v X 0 v, Wv v, V 1 v Hence B V c 0 < 1 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 26 / 26

70 The contraction constant (Steinbach-Wendland estimate) If a, b R and b b 2 + a and a > 0, then a b a < 1 If A, B are bounded selfadjoint operators and B = B 2 + A and A ai > 0, then q B a < Let B = 1 I + K in X 2 V 1. The symmetric representation of S V 1 ( 1 2 I + K ) = S = ( 1 2 I + K )V 1 ( 1 2 I + K ) + W shows that B = B 2 + A, A c 0 I > 0 with c 0 = inf v X 0 v, Wv v, V 1 v Hence B V c 0 < 1 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 26 / 26

71 The contraction constant (Steinbach-Wendland estimate) If a, b R and b b 2 + a and a > 0, then a b a < 1 If A, B are bounded selfadjoint operators and B = B 2 + A and A ai > 0, then q B a < Let B = 1 I + K in X 2 V 1. The symmetric representation of S V 1 ( 1 2 I + K ) = S = ( 1 2 I + K )V 1 ( 1 2 I + K ) + W shows that B = B 2 + A, A c 0 I > 0 with c 0 = inf v X 0 v, Wv v, V 1 v Hence B V c 0 < 1 Martin Costabel (Rennes) Inégalité de Poincaré oubliée 2e J d équipe 26 / 26

Séminaire Équations aux dérivées partielles École Polytechnique

Séminaire Équations aux dérivées partielles École Polytechnique Séminaire Équations aux dérivées partielles École Polytechnique CARLOS E. KENIG The Dirichlet problem for the biharmonic equation in a Lipschitz domain Séminaire Équations aux dérivées partielles (Polytechnique)

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

On the Spectrum of Volume Integral Operators in Acoustic Scattering

On the Spectrum of Volume Integral Operators in Acoustic Scattering 11 On the Spectrum of Volume Integral Operators in Acoustic Scattering M. Costabel IRMAR, Université de Rennes 1, France; martin.costabel@univ-rennes1.fr 11.1 Volume Integral Equations in Acoustic Scattering

More information

Invertibility of the biharmonic single layer potential operator

Invertibility of the biharmonic single layer potential operator Invertibility of the biharmonic single layer potential operator Martin COSTABEL & Monique DAUGE Abstract. The 2 2 system of integral equations corresponding to the biharmonic single layer potential in

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Stability of the Laplace single layer boundary integral operator in Sobolev spaces O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2016/2 Technische

More information

An Existence Proof of the Generalized Green Function

An Existence Proof of the Generalized Green Function Osaka Mathematical Journal Vol. 5, No. 1, June 1953 An Existence Proof of the Generalized Green Function By Shigeharu HARADA 1. We denote by L{u} the differential operator where p(x) and q(x) are continuous

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

Preconditioned space-time boundary element methods for the heat equation

Preconditioned space-time boundary element methods for the heat equation W I S S E N T E C H N I K L E I D E N S C H A F T Preconditioned space-time boundary element methods for the heat equation S. Dohr and O. Steinbach Institut für Numerische Mathematik Space-Time Methods

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure Kato s inequality when u is a measure L inégalité de Kato lorsque u est une mesure Haïm Brezis a,b, Augusto C. Ponce a,b, a Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4

More information

On the uniform Poincaré inequality

On the uniform Poincaré inequality On the uniform Poincaré inequality Abdesslam oulkhemair, Abdelkrim Chakib To cite this version: Abdesslam oulkhemair, Abdelkrim Chakib. On the uniform Poincaré inequality. Communications in Partial Differential

More information

Positive eigenfunctions for the p-laplace operator revisited

Positive eigenfunctions for the p-laplace operator revisited Positive eigenfunctions for the p-laplace operator revisited B. Kawohl & P. Lindqvist Sept. 2006 Abstract: We give a short proof that positive eigenfunctions for the p-laplacian are necessarily associated

More information

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ALEX BIJLSMA A note on elliptic functions approximation by algebraic numbers of bounded degree Annales de la faculté des sciences de Toulouse 5 e série, tome

More information

A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains

A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains A Remark on the Regularity of Solutions of Maxwell s Equations on Lipschitz Domains Martin Costabel Abstract Let u be a vector field on a bounded Lipschitz domain in R 3, and let u together with its divergence

More information

Darboux Integrability - A Brief Historial Survey

Darboux Integrability - A Brief Historial Survey Utah State University DigitalCommons@USU Mathematics and Statistics Faculty Presentations Mathematics and Statistics 5-22-2011 Darboux Integrability - A Brief Historial Survey Ian M. Anderson Utah State

More information

A MHD problem on unbounded domains - Coupling of FEM and BEM

A MHD problem on unbounded domains - Coupling of FEM and BEM A MHD problem on unbounded domains - Coupling of FEM and BEM Wiebke Lemster and Gert Lube Abstract We consider the MHD problem on R 3 = Ω Ω E, where Ω is a bounded, conducting Lipschitz domain and Ω E

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

On Computation of Positive Roots of Polynomials and Applications to Orthogonal Polynomials. University of Bucharest CADE 2007.

On Computation of Positive Roots of Polynomials and Applications to Orthogonal Polynomials. University of Bucharest CADE 2007. On Computation of Positive Roots of Polynomials and Applications to Orthogonal Polynomials Doru Ştefănescu University of Bucharest CADE 2007 21 February 2007 Contents Approximation of the Real Roots Bounds

More information

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms

Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Inequalities of Babuška-Aziz and Friedrichs-Velte for differential forms Martin Costabel Abstract. For sufficiently smooth bounded plane domains, the equivalence between the inequalities of Babuška Aziz

More information

(2) g(p) = f D(pq)p(q)dSt

(2) g(p) = f D(pq)p(q)dSt SYMMETRIZING KERNELS AND THE INTEGRAL EQUATIONS OF FIRST KIND OF CLASSICAL POTENTIAL THEORY JAMES LUCIEN HOWLAND 1. A symmetric kernel G is said to symmetrize the kernel K by composition on the left in

More information

Introduction to the Boundary Element Method

Introduction to the Boundary Element Method Introduction to the Boundary Element Method Salim Meddahi University of Oviedo, Spain University of Trento, Trento April 27 - May 15, 2015 1 Syllabus The Laplace problem Potential theory: the classical

More information

Fact Sheet Functional Analysis

Fact Sheet Functional Analysis Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

More information

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN Electronic Journal of Differential Equations, Vol. 2013 2013, No. 196, pp. 1 28. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu STOKES PROBLEM

More information

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1. A strong comparison result for viscosity solutions to Hamilton-Jacobi-Bellman equations with Dirichlet condition on a non-smooth boundary and application to parabolic problems Sébastien Chaumont a a Institut

More information

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION C ANNALES DE L I. H. P., SECTION C KAISING TSO Remarks on critical exponents for hessian operators Annales de l I. H. P., section C, tome 7, n o 2 (1990), p. 113-122

More information

INTEGRAL EQUATIONS. Introduction à la Théorie des Equations intégrales. By T.

INTEGRAL EQUATIONS. Introduction à la Théorie des Equations intégrales. By T. 236 INTEGRAL EQUATIONS. [Feb., it is obvious that we have also (r + 1)P 2 = r p2 + 1 mod p\ But this congruence is implied by (7) alone, as one may readily verify by multiplying (7) by r p \ Other cases

More information

Space time finite and boundary element methods

Space time finite and boundary element methods Space time finite and boundary element methods Olaf Steinbach Institut für Numerische Mathematik, TU Graz http://www.numerik.math.tu-graz.ac.at based on joint work with M. Neumüller, H. Yang, M. Fleischhacker,

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Extending Zagier s Theorem on Continued Fractions and Class Numbers

Extending Zagier s Theorem on Continued Fractions and Class Numbers Extending Zagier s Theorem on Continued Fractions and Class Numbers Colin Weir University of Calgary Joint work with R. K. Guy, M. Bauer, M. Wanless West Coast Number Theory December 2012 The Story of

More information

i=1 α i. Given an m-times continuously

i=1 α i. Given an m-times continuously 1 Fundamentals 1.1 Classification and characteristics Let Ω R d, d N, d 2, be an open set and α = (α 1,, α d ) T N d 0, N 0 := N {0}, a multiindex with α := d i=1 α i. Given an m-times continuously differentiable

More information

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION C ANNALES DE L I. H. P., SECTION C KLAUS ECKER GERHARD HUISKEN Interior curvature estimates for hypersurfaces of prescribed mean curvature Annales de l I. H. P., section C, tome 6, n o 4 (1989), p. 251-260.

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Geometric bounds for Steklov eigenvalues

Geometric bounds for Steklov eigenvalues Geometric bounds for Steklov eigenvalues Luigi Provenzano École Polytechnique Fédérale de Lausanne, Switzerland Joint work with Joachim Stubbe June 20, 2017 luigi.provenzano@epfl.ch (EPFL) Steklov eigenvalues

More information

Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints

Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints Divergence Boundary Conditions for Vector Helmholtz Equations with Divergence Constraints Urve Kangro Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 Roy Nicolaides

More information

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1 On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma Ben Schweizer 1 January 16, 2017 Abstract: We study connections between four different types of results that

More information

An Attempt of Characterization of Functions With Sharp Weakly Complete Epigraphs

An Attempt of Characterization of Functions With Sharp Weakly Complete Epigraphs Journal of Convex Analysis Volume 1 (1994), No.1, 101 105 An Attempt of Characterization of Functions With Sharp Weakly Complete Epigraphs Jean Saint-Pierre, Michel Valadier Département de Mathématiques,

More information

Technische Universität Dresden

Technische Universität Dresden Technische Universität Dresden Als Typoskript gedruckt Herausgeber: Der Rektor arxiv:1502.05496v1 [math.fa] 19 Feb 2015 On a class of block operator matrices in system theory. Sascha Trostorff Institut

More information

Domain decomposition methods via boundary integral equations

Domain decomposition methods via boundary integral equations Domain decomposition methods via boundary integral equations G. C. Hsiao a O. Steinbach b W. L. Wendland b a Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716, USA. E

More information

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP Dedicated to Professor Gheorghe Bucur on the occasion of his 7th birthday ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP EMIL POPESCU Starting from the usual Cauchy problem, we give

More information

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids joint work with Hengguang Li Yu Qiao School of Mathematics and Information Science Shaanxi Normal University Xi an,

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

hal , version 6-26 Dec 2012

hal , version 6-26 Dec 2012 ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ABDEHAFID YOUNSI Abstract. In this paper, we give a new regularity criterion on the uniqueness results of weak solutions for the 3D Navier-Stokes equations

More information

Séminaire de Théorie spectrale et géométrie

Séminaire de Théorie spectrale et géométrie Séminaire de Théorie spectrale et géométrie MATTHIAS LESCH Some aspects of the De Rham complex on non-compact manifolds Séminaire de Théorie spectrale et géométrie, tome S9 (1991), p. 115-118.

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

Static Maxwell Type Problems: Functional A Posteriori Error Estimates and Estimates for the Maxwell Constant in 3D. Dirk Pauly

Static Maxwell Type Problems: Functional A Posteriori Error Estimates and Estimates for the Maxwell Constant in 3D. Dirk Pauly Static Maxwell Type Problems: Functional A Posteriori Error Estimates and Estimates for the Maxwell Constant in 3D Dirk Pauly Fakultät für Mathematik Universität Duisburg-Essen, Campus Essen, Germany partially

More information

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS Abdelhafid Younsi To cite this version: Abdelhafid Younsi. ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS. 4 pages. 212. HAL Id:

More information

A new regularity criterion for weak solutions to the Navier-Stokes equations

A new regularity criterion for weak solutions to the Navier-Stokes equations A new regularity criterion for weak solutions to the Navier-Stokes equations Yong Zhou Department of Mathematics, East China Normal University Shanghai 6, CHINA yzhou@math.ecnu.edu.cn Proposed running

More information

Some isoperimetric inequalities with application to the Stekloff problem

Some isoperimetric inequalities with application to the Stekloff problem Some isoperimetric inequalities with application to the Stekloff problem by A. Henrot, Institut Élie Cartan, UMR7502 Nancy Université - CNRS - INRIA, France, e-mail : antoine.henrot@iecn.u-nancy.fr. G.A.

More information

Frederic Brechenmacher. To cite this version: HAL Id: hal

Frederic Brechenmacher. To cite this version: HAL Id: hal A controversy and the writing of a history: the discussion of small oscillations (1760-1860) from the standpoint of the controversy between Jordan and Kronecker (1874) Frederic Brechenmacher To cite this

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Generalized Budan-Fourier theorem and virtual roots

Generalized Budan-Fourier theorem and virtual roots Generalized Budan-Fourier theorem and virtual roots Michel Coste Tomas Lajous Henri Lombardi. Marie-Françoise Roy July 8, 2004 In this Note we give a proof of a generalized version of the classical Budan-Fourier

More information

NOTE ON THE NODAL LINE OF THE P-LAPLACIAN. 1. Introduction In this paper we consider the nonlinear elliptic boundary-value problem

NOTE ON THE NODAL LINE OF THE P-LAPLACIAN. 1. Introduction In this paper we consider the nonlinear elliptic boundary-value problem 2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 155 162. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

More information

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

RAIRO ANALYSE NUMÉRIQUE

RAIRO ANALYSE NUMÉRIQUE RAIRO ANALYSE NUMÉRIQUE REINHARD SCHOLZ A mixed method for 4th order problems using linear finite elements RAIRO Analyse numérique, tome 12, n o 1 (1978), p. 85-90.

More information

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková 29 Kragujevac J. Math. 31 (2008) 29 42. SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION Dagmar Medková Czech Technical University, Faculty of Mechanical Engineering, Department of Technical

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Sobolev Embedding Theorems Embedding Operators and the Sobolev Embedding Theorem

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Second Order Elliptic PDE

Second Order Elliptic PDE Second Order Elliptic PDE T. Muthukumar tmk@iitk.ac.in December 16, 2014 Contents 1 A Quick Introduction to PDE 1 2 Classification of Second Order PDE 3 3 Linear Second Order Elliptic Operators 4 4 Periodic

More information

THE LENT PARTICLE FORMULA

THE LENT PARTICLE FORMULA THE LENT PARTICLE FORMULA Nicolas BOULEAU, Laurent DENIS, Paris. Workshop on Stochastic Analysis and Finance, Hong-Kong, June-July 2009 This is part of a joint work with Laurent Denis, concerning the approach

More information

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 2 1999 LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY R. Bunoiu and J. Saint Jean Paulin Abstract: We study the classical steady Stokes equations with homogeneous

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY

GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY GENERATING NON-NOETHERIAN MODULES CONSTRUCTIVELY THIERRY COQUAND, HENRI LOMBARDI, CLAUDE QUITTÉ Abstract. In [6], Heitmann gives a proof of a Basic Element Theorem, which has as corollaries some versions

More information

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Revista Colombiana de Matemáticas Volumen 46(2121, páginas 1-13 Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source Explosión para una ecuación no lineal de difusión no local con fuente Mauricio

More information

Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity

Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity Philippe Ciarlet a, Cristinel Mardare b a Department of Mathematics, City University of Hong Kong, 83

More information

SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS: RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS GIUSEPPE BUTTAZZO AND GIANNI DAL MASO

SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS: RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS GIUSEPPE BUTTAZZO AND GIANNI DAL MASO BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 23, Number 2, October 1990 SHAPE OPTIMIZATION FOR DIRICHLET PROBLEMS: RELAXED SOLUTIONS AND OPTIMALITY CONDITIONS GIUSEPPE BUTTAZZO AND

More information

np n p n, where P (E) denotes the

np n p n, where P (E) denotes the Mathematical Research Letters 1, 263 268 (1994) AN ISOPERIMETRIC INEQUALITY AND THE GEOMETRIC SOBOLEV EMBEDDING FOR VECTOR FIELDS Luca Capogna, Donatella Danielli, and Nicola Garofalo 1. Introduction The

More information

WHO AUTHORED THE FIRST INTEGRAL EQUATIONS BOOK IN THE WORLD?

WHO AUTHORED THE FIRST INTEGRAL EQUATIONS BOOK IN THE WORLD? Seminar on Fixed Point Theory Cluj-Napoca, Volume 1, 2000, 81-86 http://www.math.ubbcluj.ro/ nodeacj/journal.htm WHO AUTHORED THE FIRST INTEGRAL EQUATIONS BOOK IN THE WORLD? Ioan A. Rus Department of Applied

More information

A note on the Stokes operator and its powers

A note on the Stokes operator and its powers J Appl Math Comput (2011) 36: 241 250 DOI 10.1007/s12190-010-0400-0 JAMC A note on the Stokes operator and its powers Jean-Luc Guermond Abner Salgado Received: 3 December 2009 / Published online: 28 April

More information

NEW RESULTS ON TRANSMISSION EIGENVALUES. Fioralba Cakoni. Drossos Gintides

NEW RESULTS ON TRANSMISSION EIGENVALUES. Fioralba Cakoni. Drossos Gintides Inverse Problems and Imaging Volume 0, No. 0, 0, 0 Web site: http://www.aimsciences.org NEW RESULTS ON TRANSMISSION EIGENVALUES Fioralba Cakoni epartment of Mathematical Sciences University of elaware

More information

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION C ANNALES DE L I. H. P., SECTION C E. DI BENEDETTO NEIL S. TRUDINGER Harnack inequalities for quasi-minima of variational integrals Annales de l I. H. P., section C, tome 1, n o 4 (1984), p. 295-308

More information

Research Article Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators

Research Article Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators International Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 963802, 15 pages doi:10.5402/2012/963802 Research Article Approximation of Solutions of Nonlinear Integral Equations

More information

THE LEBESGUE DIFFERENTIATION THEOREM VIA THE RISING SUN LEMMA

THE LEBESGUE DIFFERENTIATION THEOREM VIA THE RISING SUN LEMMA Real Analysis Exchange Vol. 29(2), 2003/2004, pp. 947 951 Claude-Alain Faure, Gymnase de la Cité, Case postale 329, CH-1000 Lausanne 17, Switzerland. email: cafaure@bluemail.ch THE LEBESGUE DIFFERENTIATION

More information

Mixed exterior Laplace s problem

Mixed exterior Laplace s problem Mixed exterior Laplace s problem Chérif Amrouche, Florian Bonzom Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des Pays de l Adour, IPRA, Avenue de l Université, 64000 Pau

More information

Volume and surface integral equations for electromagnetic scattering by a dielectric body

Volume and surface integral equations for electromagnetic scattering by a dielectric body Volume and surface integral equations for electromagnetic scattering by a dielectric body M. Costabel, E. Darrigrand, and E. H. Koné IRMAR, Université de Rennes 1,Campus de Beaulieu, 35042 Rennes, FRANCE

More information

Spectrum of one dimensional p-laplacian Operator with indefinite weight

Spectrum of one dimensional p-laplacian Operator with indefinite weight Spectrum of one dimensional p-laplacian Operator with indefinite weight A. Anane, O. Chakrone and M. Moussa 2 Département de mathématiques, Faculté des Sciences, Université Mohamed I er, Oujda. Maroc.

More information

CONTROL SYSTEM DEFINED BY SOME INTEGRAL OPERATOR. Marek Majewski

CONTROL SYSTEM DEFINED BY SOME INTEGRAL OPERATOR. Marek Majewski Opuscula Math. 37, no. (7), 33 35 http://dx.doi.org/.7494/opmath.7.37..33 Opuscula Mathematica CONTROL SYSTEM DEFINED BY SOME INTEGRAL OPERATOR Marek Majewski Communicated by Zdzisław Jackiewicz Abstract.

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

On a Class of Multidimensional Optimal Transportation Problems

On a Class of Multidimensional Optimal Transportation Problems Journal of Convex Analysis Volume 10 (2003), No. 2, 517 529 On a Class of Multidimensional Optimal Transportation Problems G. Carlier Université Bordeaux 1, MAB, UMR CNRS 5466, France and Université Bordeaux

More information

ON THE KLEINMAN-MARTIN INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC SCATTERING BY A DIELECTRIC BODY

ON THE KLEINMAN-MARTIN INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC SCATTERING BY A DIELECTRIC BODY ON THE KLEINMAN-MARTIN INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC SCATTERING BY A DIELECTRIC BODY MARTIN COSTABEL AND FRÉDÉRIQUE LE LOUËR Abstract. The interface problem describing the scattering of

More information

Section 44. A Space-Filling Curve

Section 44. A Space-Filling Curve 44. A Space-Filling Curve 1 Section 44. A Space-Filling Curve Note. In this section, we give the surprising result that there is a continuous function from the interval [0,1] onto the unit square [0,1]

More information

MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN THERMAL EQUILIBRIUM

MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN THERMAL EQUILIBRIUM Electronic Journal of Differential Equations, Vol. 2005(2005), No. 123, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) MIXED

More information

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM JENICĂ CRÎNGANU We derive existence results for operator equations having the form J ϕu = N f u, by using

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Radu Dascaliuc 1. Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Radu Dascaliuc 1. Department of Mathematics, Texas A&M University, College Station, TX 77843, USA Ann. I. H. Poincaré AN 005) 385 40 www.elsevier.com/locate/anihpc On backward-time behavior of the solutions to the -D space periodic Navier Stokes equations Sur le comportement rétrograde en temps des

More information

A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR

A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR Proyecciones Vol. 19, N o 2, pp. 105-112, August 2000 Universidad Católica del Norte Antofagasta - Chile A VARIATIONAL INEQUALITY RELATED TO AN ELLIPTIC OPERATOR A. WANDERLEY Universidade do Estado do

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere

Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere Jun Kitagawa and Micah Warren January 6, 011 Abstract We give a sufficient condition on initial

More information

First kind boundary integral formulation for the Hodge-Helmholtz equation

First kind boundary integral formulation for the Hodge-Helmholtz equation First kind boundary integral formulation for the Hodge-Helmholtz equation X.Claeys & R.Hiptmair LJLL UPMC / INRIA Alpines, SAM ETH Zürich Integral equation for low frequency Maxwell Ω = bounded Lipschitz,

More information

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze L. NIRENBERG An extended interpolation inequality Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3 e série, tome 20, n

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p

L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p L p MAXIMAL REGULARITY FOR SECOND ORDER CAUCHY PROBLEMS IS INDEPENDENT OF p RALPH CHILL AND SACHI SRIVASTAVA ABSTRACT. If the second order problem ü + B u + Au = f has L p maximal regularity for some p

More information

Goebel and Kirk fixed point theorem for multivalued asymptotically nonexpansive mappings

Goebel and Kirk fixed point theorem for multivalued asymptotically nonexpansive mappings CARPATHIAN J. MATH. 33 (2017), No. 3, 335-342 Online version at http://carpathian.ubm.ro Print Edition: ISSN 1584-2851 Online Edition: ISSN 1843-4401 Goebel and Kirk fixed point theorem for multivalued

More information

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS Zhongwei Shen Abstract. Let L = diva be a real, symmetric second order elliptic operator with bounded measurable coefficients.

More information

Boundary regularity of solutions of degenerate elliptic equations without boundary conditions

Boundary regularity of solutions of degenerate elliptic equations without boundary conditions Boundary regularity of solutions of elliptic without boundary Iowa State University November 15, 2011 1 2 3 4 If the linear second order elliptic operator L is non with smooth coefficients, then, for any

More information

Stochastic calculus and martingales on trees

Stochastic calculus and martingales on trees Stochastic calculus and martingales on trees (Calcul stochastique et martingales sur les arbres) Jean Picard Laboratoire de Mathématiques Appliquées (CNRS UMR 6620) Université Blaise Pascal 63177 Aubière

More information

SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK. On Maxwell s and Poincaré s Constants. Dirk Pauly SM-UDE

SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK. On Maxwell s and Poincaré s Constants. Dirk Pauly SM-UDE SCHIFTENEIHE DE FAKULTÄT FÜ MATHEMATIK On Maxwell s and Poincaré s Constants by Dirk Pauly SM-UDE-772 2013 On Maxwell s and Poincaré s Constants Dirk Pauly November 11, 2013 Dedicated to Sergey Igorevich

More information