P(X 0 = j 0,... X nk = j k )

Size: px
Start display at page:

Download "P(X 0 = j 0,... X nk = j k )"

Transcription

1 Introduction to Probability Example Sheet 3 - Michaelmas 2006 Michael Tehranchi Problem. Let (X n ) n 0 be a homogeneous Markov chain on S with transition matrix P. Given a k N, let Z n = X kn. Prove that (Z n ) n 0 is Markov chain with transition matrix P k. Solution. First we prove a general result: if (X n ) n 0 is a Markov chain then for any collection of states i,..., i k and any collection of indices 0 n <... < n k we have P(X nk = i k X nk = i k,..., X n = i ) = P(X nk = i k X nk = i k ). Equivalently, we will show that P(X n = i,..., X nk = i k ) = P(X nk = i k X nk = i k ) P(X n2 = i 2 X n = i ). Note that where A n,...,n k i,...,i k P(X n = i,..., X nk = i k ) = j A n,...,n k i,...,i k P(X 0 = j 0,... X nk = j k ) = {(j 0,..., j nk ) S n k+ : j nl = i l for l =,..., k}. But by induction we have P(X 0 = j 0,... X n = j n ) = P(X n = j n X n = j n ) P(X = j X 0 = j 0 )P(X 0 = j 0 ). Hence for n m and i m, i n S we have P(X n = i n X m = i m ) = P(X n = i n, X m = i m ) P(X m = i m ) j A m,n P(X n = j n X n = j n ) P(X = j X 0 = j 0 )P(X 0 = j 0 ) im,in = j A P(X m m = j m X m = j m ) P(X = j X 0 = j 0 )P(X 0 = j 0 ) im = P(X n = j n X n = j n ) P(X m+ = j m+ X m = j m ) j B m,n im,in where B m,n i m,i n = {(j m,..., j n ) S n m+ : j m = i m, j n = i m }. The claim now follows. Returning to the specific problem, we have P(Z n = i n Z n = i n,..., Z 0 = i 0 ) = P(X kn = i n X k(n ) = i n,..., X 0 = i 0 ) = P(X kn = i n X k(n ) = i n ) = (P k ) in,i n = P(Z n = i n Z n = i n ) and (Z n ) n is a Markov chain with transition matrix P k.

2 Problem 2. Let U, U 2,... be a sequence of independent random variable uniformly distributed on [0, ]. Given a function G : S [0, ] S, let (X n ) n be defined recursively by X n+ = G(X n, U n+ ). Show that (X n ) n is a Markov chain on S. Prove that all Markov chains can be realized in this fashion with a suitable choice of the function G. Solution 2. Let i 0,..., i n+ be any collection of points in S. Since U n+ is independent of X 0,..., X n we have P(X n+ = i n+ X 0 = i 0,..., X n = i n ) = P(G(X n, U n+ ) = i n+ X 0 = i 0,..., X n = i n ) = P(G(i n, U n+ ) = i n+ ) = P(G(X n, U n+ ) = i n+ X n = i n ) = P(X n+ = i n+ X n = i n ) and hence (X n ) n is a Markov chain. The transition probabilities are then given by p ij = P(G(i, U ) = j). Conversely, suppose P = (p ij ) i,j is an arbitrary stochastic matrix. Let G : S [0, ] S be defined by j j G(i, u) = j if p ik u < p ik. If U is a random variable uniformly distributed on [0, ] then k= P(G(i, U) = j) = p ij by construction. Hence the Markov chain with transition matrix P can be realized by the recurrence X n+ = G(X n, U n+ ) where U, U 2,... is a sequence of independent uniform [0, ] random variables. Problem 3. Let X, X 2,... be a sequence of independent random variables with k= P(X n = ) = P(X n = ) = 2 for all n. Let S n = X X n. Prove that (S n ) n 0 is a recurrent Markov chain on the set of integers Z = {0, ±, ±2,...}. [You might find Stirling s formula useful: n! 2πn n+/2 e n.] Solution 3. The stochastic process (S n ) n is a Markov chain since for all integers i,..., i n+ we have P(S n+ = i n+ S = i,..., S n = i n ) = P(S n + X n+ = i n+ S = i,..., S n = i n ) = P(X n+ = i n+ i n ) = P(S n+ = i n+ S n = i n ) 2

3 where we have used the fact that X n+ is independent of S,... S n. We can prove recurrence in two ways. First, by counting the left and right turns of the random walk we have { 0 if n is odd P(S n = 0) = 2 n( n n/2 By Stirling s formula, we have the approximation ( ) 2k 22k k πk and which implies p 00 (n) = n= ) if n is even. P(S n = 0) =. n= The state zero is thus a recurrent state. Since the Markov chain is irreducible, it is recurrent. Alternatively, let X n = S n + X 0 and define the stopping time T = inf{n 0 : X n = 0}. Let h i = P(T < X 0 = i). By conditioning on the first step of the walk we have h i = 2 h i + 2 h i+. All solutions to this linear difference equation are of the form h i = a + bi for constants a, b R. Since we have the bound 0 h i then b = 0. Also, we have the boundary condition h 0 = so a =. In particular, the P(S n = 0 for some n } = 2 h + 2 h = and the random walk is recurrent. Problem 4. Fix a natural number d, and let X, X 2,... be a sequence of independent vector-valued random variables with for all i d, where P(X n = e i ) = P(X n = e i ) = 2d e i = (0,..., 0,, 0,..., 0) }{{}}{{} i d i Let S n = X + + X n. Prove that (S n ) n 0 is a transient Markov chain on Z d if and only if d 3. [You may find the following inequality useful: If i i d = dn then i! i d! (n!) d.] Solution 4. As before, by counting the left, right, up, down, etc. turns of the random walk we have { 0 if n is odd P(S n = 0) = (2d) n n! i + +i d =n/2 (i!) 2 (i d if n is even.!) 2 For d = 2, a miracle occurs and P(S 2k = 0) = [2 2k( 2k k ) ] 2 exactly. By Stirling s formula we have P(S 2k = 0) (πk), and since n p 00(n) = the walk is recurrent. 3

4 We can bound the probability of {S 2k = 0} by (2d) 2k i + +i d =k (2k)! (2d) 2k (2k)! (i!) 2 (i d!) 2 k! min i + +i d =k(i!) (i d!) = (4d) k (2k)! k! min i + +i d =k(i!) (i d!) = (4d) k (2k)! k![(k/d)!] d Ck d/2 i + +i d =k k! (i!) (i d!) for some constant C > 0, at least when k is divisible by d, where we have used the fact k! i + +i d =k = (i!) (i d!) dk. (If k is not divisible by d we have min i + +i d =k(i!) (i d!) = ( k/d!) d( {k/d}) ( + k/d!) d{k/d} where x is the greatest integer less than or equal to x and {x} = x x is the fractional part of x, in which case the asymptotics still hold.) If d 3 the sum n p 00(n) converges and 0 is a transient state, and hence the chain is transient. Problem 5. Let T and T 2 be stopping times for a Markov chain (X n ) n 0 on S. Prove that each of the following are also stopping times:. T = min{n : X n = i} for some fixed i S. 2. T (ω) = N for all ω Ω for a fixed N N. 3. T = min{t, T 2 }. 4. T = max{t, T 2 }. 5. T = T + T 2. Solution 5. By definition, a random variable T : Ω N { } is a stopping time if and only if for every n N there is a function f n : S n+ {0, } such that {T =n} = f n (X 0,..., X n ). Notice that that if T is a stopping time then there exist functions g n such that {T n+} = g n (X 0,..., X n ) since {T n+} = {T n} = n g k (X 0,..., X k ) Conversely, if a random variable T has the property that for every n N there is a function g n such that {T n+} = g n (X 0,..., X n ) then T is a stopping time, since {T =n} = {T n} {T n+} = g n (X 0,..., X n ) g n (X 0,..., X n ). Similarly, T is a stopping time if and only if there exist then there exists h n such that {T n} = h n (X 0,..., X n ). 4 k=0

5 {T =n} = {X i,...,x n i,x n=i} {τ=n} = { if n = N 0 if n N {T n+} = {T n+,t 2 n+} = {T n+} {T2 n+}. {T n} = {T n,t 2 n} = {T n} {T2 n}. 5. {T =n} = n k=0 {T =k} {T2 =n k}. Problem 6. A flea hops randomly on the vertices of a triangle with vertices labelled,2, and 3, hopping to each of the other vertices with equal probability. If the flea starts at vertex, find the probability that after n hops the flea is back to vertex. A second flea also starts at vertex and hops about on the vertices of a triangle, but this flea is twice as likely to jump clockwise as anticlockwise. What is the probability that after n hops this second flea is back to vertex? Solution 6. At any time, the flea is either on vertex (state A), or it is on one of the two other vertices (state A). If it is in state a, it hops to state b with probability. On the other hand, if it is in state B, it hops to state A with probability /2 and stays in state B with probability /2. Hence the transition matrix is ( 0 P = 2 The eigenvalues of P are and /2. We know from general principle that (P n ) = a + b( /2) n for some constants a, b. But (P 0 ) = and (P ) = 0 so The desired probability is 2 ). (P n ) = ( /2)n. Now label the vertices of the triangle states, 2, and 3. The transition matrix is P = with eigenvalues and ± i 2 2 = 3 3 /2 e ±iπ/6, where i =. We know that the entries of the matrix P n are of the form (P n ) ij = a + ( 3 /2 ) n (b cos(πn/6) + c sin(πn/6)). 5

6 Since (P 0 ) =, (P ) = 0, and (P 2 ) = 4 we have 9 (P n ) = ( 3 /2 ) n cos(nπ/6) In both cases, it saves time to notice that the invariant distribution puts probability /3 on vertex, so that the constant term a = /3. Problem 7. Consider the second flea of Problem 6. What is the expected number of hops the flea makes before it is first back to vertex? What is the expected number of times the flea visits vertex 3 before first reaching vertex 2? (Assume that the vertices are labelled so that is clockwise.) Solution 7. Consider the Markov chain (X n ) n 0 on {, 2, 3} with transition matrix P = For each vertex i let T i = inf{n : X n = i}. Since the chain is irreducible and positive recurrent, and has unique invariant distribution π = (/3, /3, /3), we have E (T ) = π = 3. Now we are asked to compute E ( T 2 n= {X n=3}). Here are two approaches: First, let k i = E T2 i n= {X n=3}. Then by conditioning on X we have T 2 k = E( {Xn=3} X 0 = ) n= T 2 = E( {Xn=3} X 0 =, X = 2)P(X = 2 X 0 = ) n= T 2 +E( {Xn=3} X 0 =, X = 3)P(X = 3 X 0 = ) n= = (0)(2/3) + ( + k 3 )(/3) where we have used the time homogeneity of the chain. Similarly, k 3 = (0)(/3) + (k )(2/3) so that k = 3/7. Here is another approach. Let N = T 2 n= {X n=3}. Note that P (N = 0) = P(X = 2 X 0 = ) = 2/3. 6

7 and for k, so that P (N = k) = P (X = 3, X 2 =,..., X 2k 2 =, X 2k = 3, X 2k = 2} +P (X = 3, X 2 =,..., X 2k 2 =, X 2k = 3, X 2k =, X 2k+ = 2} = (/3) k+ (2/3) k + (/3) k (2/3) k+ = (7/6)(2/9) k E (N) = k(7/6)(2/9) k = 3/7 k= as before. [Thanks to those who contributed to these solutions during the examples class.] Although irrelevant to the question, note that k 2 = E 2 (N) = γ (2) 3 = π 3 /π 2 = is the expected number of times the flea visits vertex 3 before returning to vertex 2, assuming the flea began at vertex 2. 7

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Solution: (Course X071570: Stochastic Processes)

Solution: (Course X071570: Stochastic Processes) Solution I (Course X071570: Stochastic Processes) October 24, 2013 Exercise 1.1: Find all functions f from the integers to the real numbers satisfying f(n) = 1 2 f(n + 1) + 1 f(n 1) 1. 2 A secial solution

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2015 Ulm, 2015 2 Contents 1 Discrete-Time Markov Chains 5 1.1 Discrete-Time Markov Chains.....................

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

12 Markov chains The Markov property

12 Markov chains The Markov property 12 Markov chains Summary. The chapter begins with an introduction to discrete-time Markov chains, and to the use of matrix products and linear algebra in their study. The concepts of recurrence and transience

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

Positive and null recurrent-branching Process

Positive and null recurrent-branching Process December 15, 2011 In last discussion we studied the transience and recurrence of Markov chains There are 2 other closely related issues about Markov chains that we address Is there an invariant distribution?

More information

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution.

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution. Lecture 7 1 Stationary measures of a Markov chain We now study the long time behavior of a Markov Chain: in particular, the existence and uniqueness of stationary measures, and the convergence of the distribution

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

Markov chains. MC 1. Show that the usual Markov property. P(Future Present, Past) = P(Future Present) is equivalent to

Markov chains. MC 1. Show that the usual Markov property. P(Future Present, Past) = P(Future Present) is equivalent to Markov chains MC. Show that the usual Markov property is equivalent to P(Future Present, Past) = P(Future Present) P(Future, Past Present) = P(Future Present) P(Past Present). MC 2. Suppose that X 0, X,...

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

arxiv: v2 [math.pr] 4 Sep 2017

arxiv: v2 [math.pr] 4 Sep 2017 arxiv:1708.08576v2 [math.pr] 4 Sep 2017 On the Speed of an Excited Asymmetric Random Walk Mike Cinkoske, Joe Jackson, Claire Plunkett September 5, 2017 Abstract An excited random walk is a non-markovian

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING ERIC SHANG Abstract. This paper provides an introduction to Markov chains and their basic classifications and interesting properties. After establishing

More information

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS

Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona MARKOV CHAINS Autor: Anna Areny Satorra Director: Dr. David Márquez Carreras Realitzat a: Departament de probabilitat,

More information

Interlude: Practice Final

Interlude: Practice Final 8 POISSON PROCESS 08 Interlude: Practice Final This practice exam covers the material from the chapters 9 through 8. Give yourself 0 minutes to solve the six problems, which you may assume have equal point

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

FINITE MARKOV CHAINS

FINITE MARKOV CHAINS Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques Universitat de Barcelona FINITE MARKOV CHAINS Lidia Pinilla Peralta Director: Realitzat a: David Márquez-Carreras Departament de Probabilitat,

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

Applied Stochastic Processes

Applied Stochastic Processes Applied Stochastic Processes Jochen Geiger last update: July 18, 2007) Contents 1 Discrete Markov chains........................................ 1 1.1 Basic properties and examples................................

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

(i) What does the term communicating class mean in terms of this chain? d i = gcd{n 1 : p ii (n) > 0}.

(i) What does the term communicating class mean in terms of this chain? d i = gcd{n 1 : p ii (n) > 0}. Paper 3, Section I 9H Let (X n ) n 0 be a Markov chain with state space S. 21 (i) What does it mean to say that (X n ) n 0 has the strong Markov property? Your answer should include the definition of the

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results Discrete time Markov chains Discrete Time Markov Chains, Definition and classification 1 1 Applied Mathematics and Computer Science 02407 Stochastic Processes 1, September 5 2017 Today: Short recap of

More information

IEOR 6711: Professor Whitt. Introduction to Markov Chains

IEOR 6711: Professor Whitt. Introduction to Markov Chains IEOR 6711: Professor Whitt Introduction to Markov Chains 1. Markov Mouse: The Closed Maze We start by considering how to model a mouse moving around in a maze. The maze is a closed space containing nine

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

On asymptotic behavior of a finite Markov chain

On asymptotic behavior of a finite Markov chain 1 On asymptotic behavior of a finite Markov chain Alina Nicolae Department of Mathematical Analysis Probability. University Transilvania of Braşov. Romania. Keywords: convergence, weak ergodicity, strong

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Chapter 5 Markov Chain Monte Carlo MCMC is a kind of improvement of the Monte Carlo method By sampling from a Markov chain whose stationary distribution is the desired sampling distributuion, it is possible

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Centre for Research on Inner City Health St Michael s Hospital Toronto On leave from Department of Mathematics University of Manitoba Julien Arino@umanitoba.ca

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

1.2. Markov Chains. Before we define Markov process, we must define stochastic processes.

1.2. Markov Chains. Before we define Markov process, we must define stochastic processes. 1. LECTURE 1: APRIL 3, 2012 1.1. Motivating Remarks: Differential Equations. In the deterministic world, a standard tool used for modeling the evolution of a system is a differential equation. Such an

More information

Some Definition and Example of Markov Chain

Some Definition and Example of Markov Chain Some Definition and Example of Markov Chain Bowen Dai The Ohio State University April 5 th 2016 Introduction Definition and Notation Simple example of Markov Chain Aim Have some taste of Markov Chain and

More information

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1 List of Problems jacques@ucsd.edu Those question with a star next to them are considered slightly more challenging. Problems 9, 11, and 19 from the book The probabilistic method, by Alon and Spencer. Question

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

MARKOV CHAINS AND HIDDEN MARKOV MODELS

MARKOV CHAINS AND HIDDEN MARKOV MODELS MARKOV CHAINS AND HIDDEN MARKOV MODELS MERYL SEAH Abstract. This is an expository paper outlining the basics of Markov chains. We start the paper by explaining what a finite Markov chain is. Then we describe

More information

Probability & Computing

Probability & Computing Probability & Computing Stochastic Process time t {X t t 2 T } state space Ω X t 2 state x 2 discrete time: T is countable T = {0,, 2,...} discrete space: Ω is finite or countably infinite X 0,X,X 2,...

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Chapter 11 Advanced Topic Stochastic Processes

Chapter 11 Advanced Topic Stochastic Processes Chapter 11 Advanced Topic Stochastic Processes CHAPTER OUTLINE Section 1 Simple Random Walk Section 2 Markov Chains Section 3 Markov Chain Monte Carlo Section 4 Martingales Section 5 Brownian Motion Section

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 3: Regenerative Processes Contents 3.1 Regeneration: The Basic Idea............................... 1 3.2

More information

1 Random walks: an introduction

1 Random walks: an introduction Random Walks: WEEK Random walks: an introduction. Simple random walks on Z.. Definitions Let (ξ n, n ) be i.i.d. (independent and identically distributed) random variables such that P(ξ n = +) = p and

More information

Zdzis law Brzeźniak and Tomasz Zastawniak

Zdzis law Brzeźniak and Tomasz Zastawniak Basic Stochastic Processes by Zdzis law Brzeźniak and Tomasz Zastawniak Springer-Verlag, London 1999 Corrections in the 2nd printing Version: 21 May 2005 Page and line numbers refer to the 2nd printing

More information

Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n.

Birth-death chain. X n. X k:n k,n 2 N k apple n. X k: L 2 N. x 1:n := x 1,...,x n. E n+1 ( x 1:n )=E n+1 ( x n ), 8x 1:n 2 X n. Birth-death chains Birth-death chain special type of Markov chain Finite state space X := {0,...,L}, with L 2 N X n X k:n k,n 2 N k apple n Random variable and a sequence of variables, with and A sequence

More information

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9 IEOR 67: Stochastic Models I Solutions to Homework Assignment 9 Problem 4. Let D n be the random demand of time period n. Clearly D n is i.i.d. and independent of all X k for k < n. Then we can represent

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

Math Homework 5 Solutions

Math Homework 5 Solutions Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram

More information

Random Walks on Graphs. One Concrete Example of a random walk Motivation applications

Random Walks on Graphs. One Concrete Example of a random walk Motivation applications Random Walks on Graphs Outline One Concrete Example of a random walk Motivation applications shuffling cards universal traverse sequence self stabilizing token management scheme random sampling enumeration

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

Bootstrap random walks

Bootstrap random walks Bootstrap random walks Kais Hamza Monash University Joint work with Andrea Collevecchio & Meng Shi Introduction The two and three dimensional processes Higher Iterations An extension any (prime) number

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 Web pages are not equally important www.joe-schmoe.com

More information

Markov chains. Randomness and Computation. Markov chains. Markov processes

Markov chains. Randomness and Computation. Markov chains. Markov processes Markov chains Randomness and Computation or, Randomized Algorithms Mary Cryan School of Informatics University of Edinburgh Definition (Definition 7) A discrete-time stochastic process on the state space

More information

Stochastic Processes

Stochastic Processes MTHE/STAT455, STAT855 Fall 202 Stochastic Processes Final Exam, Solutions (5 marks) (a) (0 marks) Condition on the first pair to bond; each of the n adjacent pairs is equally likely to bond Given that

More information

Discrete time Markov chains

Discrete time Markov chains Chapter Discrete time Markov chains In this course we consider a class of stochastic processes called Markov chains. The course is roughly equally divided between discrete-time and continuous-time Markov

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Ergodic Properties of Markov Processes

Ergodic Properties of Markov Processes Ergodic Properties of Markov Processes March 9, 2006 Martin Hairer Lecture given at The University of Warwick in Spring 2006 1 Introduction Markov processes describe the time-evolution of random systems

More information

ABSTRACT MARKOV CHAINS, RANDOM WALKS, AND CARD SHUFFLING. Nolan Outlaw. May 2015

ABSTRACT MARKOV CHAINS, RANDOM WALKS, AND CARD SHUFFLING. Nolan Outlaw. May 2015 ABSTRACT MARKOV CHAINS, RANDOM WALKS, AND CARD SHUFFLING by Nolan Outlaw May 215 Chair: Dr. Gail Ratcliff, PhD Major Department: Mathematics A common question in the study of random processes pertains

More information

Question Points Score Total: 70

Question Points Score Total: 70 The University of British Columbia Final Examination - April 204 Mathematics 303 Dr. D. Brydges Time: 2.5 hours Last Name First Signature Student Number Special Instructions: Closed book exam, no calculators.

More information

arxiv:math/ v1 [math.co] 13 Jul 2005

arxiv:math/ v1 [math.co] 13 Jul 2005 A NEW PROOF OF THE REFINED ALTERNATING SIGN MATRIX THEOREM arxiv:math/0507270v1 [math.co] 13 Jul 2005 Ilse Fischer Fakultät für Mathematik, Universität Wien Nordbergstrasse 15, A-1090 Wien, Austria E-mail:

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

A sequence of triangle-free pseudorandom graphs

A sequence of triangle-free pseudorandom graphs A sequence of triangle-free pseudorandom graphs David Conlon Abstract A construction of Alon yields a sequence of highly pseudorandom triangle-free graphs with edge density significantly higher than one

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Mathematical Methods for Computer Science

Mathematical Methods for Computer Science Mathematical Methods for Computer Science Computer Science Tripos, Part IB Michaelmas Term 2016/17 R.J. Gibbens Problem sheets for Probability methods William Gates Building 15 JJ Thomson Avenue Cambridge

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is MARKOV CHAINS What I will talk about in class is pretty close to Durrett Chapter 5 sections 1-5. We stick to the countable state case, except where otherwise mentioned. Lecture 7. We can regard (p(i, j))

More information

Non-homogeneous random walks on a semi-infinite strip

Non-homogeneous random walks on a semi-infinite strip Non-homogeneous random walks on a semi-infinite strip Chak Hei Lo Joint work with Andrew R. Wade World Congress in Probability and Statistics 11th July, 2016 Outline Motivation: Lamperti s problem Our

More information

Chapter 2: Markov Chains and Queues in Discrete Time

Chapter 2: Markov Chains and Queues in Discrete Time Chapter 2: Markov Chains and Queues in Discrete Time L. Breuer University of Kent 1 Definition Let X n with n N 0 denote random variables on a discrete space E. The sequence X = (X n : n N 0 ) is called

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide n c: Solve the problem

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

What you learned in Math 28. Rosa C. Orellana

What you learned in Math 28. Rosa C. Orellana What you learned in Math 28 Rosa C. Orellana Chapter 1 - Basic Counting Techniques Sum Principle If we have a partition of a finite set S, then the size of S is the sum of the sizes of the blocks of the

More information

MAS275 Probability Modelling Exercises

MAS275 Probability Modelling Exercises MAS75 Probability Modelling Exercises Note: these questions are intended to be of variable difficulty. In particular: Questions or part questions labelled (*) are intended to be a bit more challenging.

More information

Markov and Gibbs Random Fields

Markov and Gibbs Random Fields Markov and Gibbs Random Fields Bruno Galerne bruno.galerne@parisdescartes.fr MAP5, Université Paris Descartes Master MVA Cours Méthodes stochastiques pour l analyse d images Lundi 6 mars 2017 Outline The

More information

Genealogy of Pythagorean triangles

Genealogy of Pythagorean triangles Chapter 0 Genealogy of Pythagorean triangles 0. Two ternary trees of rational numbers Consider the rational numbers in the open interval (0, ). Each of these is uniquely in the form q, for relatively prime

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo

Winter 2019 Math 106 Topics in Applied Mathematics. Lecture 9: Markov Chain Monte Carlo Winter 2019 Math 106 Topics in Applied Mathematics Data-driven Uncertainty Quantification Yoonsang Lee (yoonsang.lee@dartmouth.edu) Lecture 9: Markov Chain Monte Carlo 9.1 Markov Chain A Markov Chain Monte

More information