Model Identification for Wireless Propagation with Control of the False Discovery Rate

Size: px
Start display at page:

Download "Model Identification for Wireless Propagation with Control of the False Discovery Rate"

Transcription

1 Model Identification for Wireless Propagation with Control of the False Discovery Rate Christoph F. Mecklenbräuker (TU Wien) Joint work with Pei-Jung Chung (Univ. Edinburgh) Dirk Maiwald (Atlas Elektronik) Nicolai Czink (FTW) Bernard H. Fleury (Aalborg Univ. and FTW) Advanced Lectures in Wireless Communications

2 Motivation Tx Channel Rx ˆ C Risk for over-estimation C

3 Motivation What is interference depends on your knowledge of the channel

4 Uniform Linear Array ULA-8 Uniform Circular Array UCA

5 Some paths explained

6 Problem Formulation (1) Tx Rx

7 Problem Formulation (2) An array of n antennas receives m broadband wavefronts impinging at unknown delays and directions hidden in additive Gaussian noise (spatially and temporally white). Goal: Determine the number of signals m based on the array output and the associated parameters

8 Double-directional model Transfer function in 3-D case: DoA, DoD, delay! = " " " = P p m T j l d j k d j p m l k p p p c x 1 1) ( 2 1)cos ( 2 1)cos ( 2,, e e e # $ % & $ ' & $

9 Data Model Array output x (k) (t) for the kth snapshot is short-time Fourier transformed T " 1 ( k ) 1! ( k ) " j# t X (#) = w( t) x ( t)e T t= 0 For large T, we can approximately model the array output in frequency domain ( k ) X (!) = H (!;" ) S (!) + U (!) where the columns of the transfer matrix H model plane waves ( k ) ( k )

10 Data Model Statistics Linear data model ( k ) ( k ) X (!) = H (!;" ) S (!) + U ( k ) (!) Data statistics conditioned on the signal X (k ) S (k) ~ N C (HS (k )," 2 I)

11 Data Model Statistics Linear data model ( k ) ( k ) X (!) = H (!;" ) S (!) + U ( k ) (!) Data statistics conditioned on the signal X (k ) S (k) ~ N C (HS (k )," 2 I)

12 Conditional Data Model Log-likelihood Data statistics conditioned on the signal f X (x) = 1 " N # N ($) exp ' % 1 #($) x % * ) H($;&)S(k ) ($) 2, (

13 Wavefront Detection using a Multiple Hypotheses Test for m = 1, 2,... M Hypothesis H m : Array output contains at most (m 1) wavefronts hidden in the noise Alternative A m : Array output contains at least m wavefronts hidden in the noise

14 Test for model order selection Generalized Likelihood Ratio Test Equivalent to the Wald Test proposed by Steven Kay 1993 for parametric model order selection H 2 H

15 Test for model order selection Generalized Likelihood Ratio Test Equivalent to the Wald Test proposed by Steven Kay 1993 for parametric model order selection H 3 H

16 Test for model order selection Generalized Likelihood Ratio Test Equivalent to the Wald Test proposed by Steven Kay 1993 for parametric model order selection H 4 H Image: Wikipedia

17 Generalized Likelihood Ratio Test Based on the likelihood ratio, we obtain the test statistic where K 1 ( k ) ( k ) R ˆ = R ˆ (" ) = X (" ) X ( " j! K k = j j )

18 Traditional formulation Evaluate test statistic T m (θ) from data and compare with pre-computed threshold value T m <? t m t m := F Tm "1 (1"# m ) Inverse of cumulative distribution function is needed

19 Formulation with p-values Evaluate empirial significance value (=p-value) for test statistic T m (θ) from data and compare with the specified false-alarm probability T m <? t m t m := F Tm "1 (1"# m ) p m <? 1"# m p m := F Tm (T m )

20 Test distribution Under hypothesis H m, the statistic F m (ω j ;θ ) is F n 1,n2 -distributed where the degrees of freedom n 1, n 2 are given by n 1 = K ( 2 + dim(θ m ) ) n 2 = K ( 2n 2m dim(θ m 1 )) ^ Narrowband (J = 1): GLRT is equivalent to F- test [Shumway 1983]. Broadband (J > 1): test distribution is unknown

21 Where we are now in the talk At this point of the talk, we have a tool for computing (estimating) the p-values for all the hypotheses. That s acceptable because, we don t know the exact distribution of the broadband GLRT test statistic. (J being a small integer > 1) Now, let s talk about the type of errors, we can commit

22 PCE, FWE, FDR definitions Ref.[1] m hypothesis are assumed to be known in advance, R is observable, U, V, S, T are unobservable Control of type-one errors PCE = E(V/m) Per Comparison Error Rate FWE = P(V 1) Familywise Error Rate FDR = E(V/R) False Discovery Rate

23 Control of the false discovery rate (FDR) Traditional approach controls familywise error-rate (FWE). When the number of hypotheses is large than the power of Bonferroni-type procedures is substantially reduced. Benjamini and Hochberg proposed to control FDR instead of FWE in FDR is defined as the expected proportion of erroneously rejected hypotheses

24 Benjamini-Hochberg proc. When the test statistics corresponding to the true null hpotheses are independent, the following procedure controls the FDR at level q Sort the p-values: p (1), p (2),..., p (M) Find k = max { m : p (m) mq/m } Reject all H (1), H (2),..., H (k). (if no such k exists then don t reject any hypothesis)

25 Benjamini-Hochberg proc. Sort the p-values: p (1), p (2),..., p (M) Find k = max { m : p (m) mq/m } Reject all H (1), H (2),..., H (k)

26

27

28

29 Early take-home message The broadband test distribution under H m is not known. We apply the bootstrap technique to determine the distribution numerically. If all null hypotheses are true then controlling the FDR is equivalent to controlling the FWE Simulations show that the FDR-controlling procedure has always a higher probability of detection than the FWE controlling procedure. Reliability of the proposed test is not affected by the gain in power

30 ULA-8 UCA

31

32 Receiver s View on Weikendorf Site

33

34

35 Closing remark Model order selection is a problem which is asymmetric in its risks for over- or under-estimating the true model structure Multiple hypotheses tests let you control the various types of errors you could commit

36 Happy birthday

37 References Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B, (57): , R.H. Shumway. Replicated time-series regression: An approach to signal estimation and detection. In D.R. Brillinger and P.R. Krishnaiah, editors, Handbook of Statistics, Vol. 3, pages Elsevier Science Publishers B.V., S. Holm. A simple sequentially rejective multiple test procedure. Scand. J. Statist., 6:65 70, E. Efron. Bootstrap method. Another look at Jacknife. The Annals of Statistics, 7:1 26, Abdelhak M. Zoubir and B. Boashash. The bootstrap and its application in signal processing. IEEE Signal Processing Magazine, 15(1):56 76, January D. Maiwald. Breitbandverfahren zur Signalentdeckung und ortung mit Sensorgruppen in Seismik und Sonaranwendungen. Dr. Ing. Dissertation, Dept. of Electrical Engineering, Ruhr Universität Bochum, Shaker Verlag, Aachen, P.-J. Chung, J.F. Böhme, A.O. Hero, and C.F. Mecklenbräuker. Signal detection using a multiple hypothesis test. In Proc. Third IEEE Sensor Array and Multichannel Signal Processing Workshop, Barcelona, Spain, July P.-J. Chung, J.F. Böhme, C.F. Mecklenbräuker, and A.O. Hero. On signal detection using the benjamini-hochberg procedure. In Proc. IEEE Workshop on Statistical and Signal Processing, Bordeaux, France, July

38 FDR example

39 FDR example (continued)

40

41 120 MHz

42 Bootstrap approximation: assumptions The test statistic T m ( θ m ) is the sample mean of J samples $ T j = log 1+ n ' 1 & F m (" j ;# m )) % n 2 ( We consider T 1, T 2,..., T J as i.i.d. samples because X(ω j ) are asymptotically independent for T F m (ω j ;θ m ) are asymptotically F n 1,n2 -distributed

Tracking of Multiple Moving Sources Using Recursive EM Algorithm

Tracking of Multiple Moving Sources Using Recursive EM Algorithm Tracking of Multiple Moving Sources Using Recursive EM Algorithm Pei Jung Chung, Johann F. Böhme, Alfred O. Hero Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Alpha-Investing. Sequential Control of Expected False Discoveries

Alpha-Investing. Sequential Control of Expected False Discoveries Alpha-Investing Sequential Control of Expected False Discoveries Dean Foster Bob Stine Department of Statistics Wharton School of the University of Pennsylvania www-stat.wharton.upenn.edu/ stine Joint

More information

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method

Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Controlling the False Discovery Rate: Understanding and Extending the Benjamini-Hochberg Method Christopher R. Genovese Department of Statistics Carnegie Mellon University joint work with Larry Wasserman

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

Applying the Benjamini Hochberg procedure to a set of generalized p-values

Applying the Benjamini Hochberg procedure to a set of generalized p-values U.U.D.M. Report 20:22 Applying the Benjamini Hochberg procedure to a set of generalized p-values Fredrik Jonsson Department of Mathematics Uppsala University Applying the Benjamini Hochberg procedure

More information

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2

EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME. Xavier Mestre 1, Pascal Vallet 2 EXTENDED GLRT DETECTORS OF CORRELATION AND SPHERICITY: THE UNDERSAMPLED REGIME Xavier Mestre, Pascal Vallet 2 Centre Tecnològic de Telecomunicacions de Catalunya, Castelldefels, Barcelona (Spain) 2 Institut

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

Week 5 Video 1 Relationship Mining Correlation Mining

Week 5 Video 1 Relationship Mining Correlation Mining Week 5 Video 1 Relationship Mining Correlation Mining Relationship Mining Discover relationships between variables in a data set with many variables Many types of relationship mining Correlation Mining

More information

Sequential Analysis & Testing Multiple Hypotheses,

Sequential Analysis & Testing Multiple Hypotheses, Sequential Analysis & Testing Multiple Hypotheses, CS57300 - Data Mining Spring 2016 Instructor: Bruno Ribeiro 2016 Bruno Ribeiro This Class: Sequential Analysis Testing Multiple Hypotheses Nonparametric

More information

Step-down FDR Procedures for Large Numbers of Hypotheses

Step-down FDR Procedures for Large Numbers of Hypotheses Step-down FDR Procedures for Large Numbers of Hypotheses Paul N. Somerville University of Central Florida Abstract. Somerville (2004b) developed FDR step-down procedures which were particularly appropriate

More information

Control of Directional Errors in Fixed Sequence Multiple Testing

Control of Directional Errors in Fixed Sequence Multiple Testing Control of Directional Errors in Fixed Sequence Multiple Testing Anjana Grandhi Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102-1982 Wenge Guo Department of Mathematical

More information

Stat 206: Estimation and testing for a mean vector,

Stat 206: Estimation and testing for a mean vector, Stat 206: Estimation and testing for a mean vector, Part II James Johndrow 2016-12-03 Comparing components of the mean vector In the last part, we talked about testing the hypothesis H 0 : µ 1 = µ 2 where

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 28 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University December 3, 2015 1 2 3 4 5 1 Familywise error rates 2 procedure 3 Performance of with multiple

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Doing Cosmology with Balls and Envelopes

Doing Cosmology with Balls and Envelopes Doing Cosmology with Balls and Envelopes Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/ Larry Wasserman Department of Statistics Carnegie

More information

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling 140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling Cheng Qian, Lei Huang, and H. C. So Abstract A novel pseudo-noise

More information

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs

Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs Family-wise Error Rate Control in QTL Mapping and Gene Ontology Graphs with Remarks on Family Selection Dissertation Defense April 5, 204 Contents Dissertation Defense Introduction 2 FWER Control within

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus Multiple Antennas Channel Characterization and Modeling Mats Bengtsson, Björn Ottersten Channel characterization and modeling 1 September 8, 2005 Signal Processing @ KTH Research Focus Channel modeling

More information

Journal Club: Higher Criticism

Journal Club: Higher Criticism Journal Club: Higher Criticism David Donoho (2002): Higher Criticism for Heterogeneous Mixtures, Technical Report No. 2002-12, Dept. of Statistics, Stanford University. Introduction John Tukey (1976):

More information

Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses

Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses Improving the Performance of the FDR Procedure Using an Estimator for the Number of True Null Hypotheses Amit Zeisel, Or Zuk, Eytan Domany W.I.S. June 5, 29 Amit Zeisel, Or Zuk, Eytan Domany (W.I.S.)Improving

More information

On adaptive procedures controlling the familywise error rate

On adaptive procedures controlling the familywise error rate , pp. 3 On adaptive procedures controlling the familywise error rate By SANAT K. SARKAR Temple University, Philadelphia, PA 922, USA sanat@temple.edu Summary This paper considers the problem of developing

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

Detection theory 101 ELEC-E5410 Signal Processing for Communications

Detection theory 101 ELEC-E5410 Signal Processing for Communications Detection theory 101 ELEC-E5410 Signal Processing for Communications Binary hypothesis testing Null hypothesis H 0 : e.g. noise only Alternative hypothesis H 1 : signal + noise p(x;h 0 ) γ p(x;h 1 ) Trade-off

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

Non-specific filtering and control of false positives

Non-specific filtering and control of false positives Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 bourgon@ebi.ac.uk EBI is an outstation of the European Molecular Biology Laboratory Outline Multiple testing I: overview

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment

Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Acoustical Society of America Meeting Fall 2005 Passive Sonar Detection Performance Prediction of a Moving Source in an Uncertain Environment Vivek Varadarajan and Jeffrey Krolik Duke University Department

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

STONY BROOK UNIVERSITY. CEAS Technical Report 829

STONY BROOK UNIVERSITY. CEAS Technical Report 829 1 STONY BROOK UNIVERSITY CEAS Technical Report 829 Variable and Multiple Target Tracking by Particle Filtering and Maximum Likelihood Monte Carlo Method Jaechan Lim January 4, 2006 2 Abstract In most applications

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING Kaitlyn Beaudet and Douglas Cochran School of Electrical, Computer and Energy Engineering Arizona State University, Tempe AZ 85287-576 USA ABSTRACT The problem

More information

Modified Simes Critical Values Under Positive Dependence

Modified Simes Critical Values Under Positive Dependence Modified Simes Critical Values Under Positive Dependence Gengqian Cai, Sanat K. Sarkar Clinical Pharmacology Statistics & Programming, BDS, GlaxoSmithKline Statistics Department, Temple University, Philadelphia

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Statistics Journal Club, 36-825 Beau Dabbs and Philipp Burckhardt 9-19-2014 1 Paper

More information

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE

Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Econ 583 Homework 7 Suggested Solutions: Wald, LM and LR based on GMM and MLE Eric Zivot Winter 013 1 Wald, LR and LM statistics based on generalized method of moments estimation Let 1 be an iid sample

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

New Procedures for False Discovery Control

New Procedures for False Discovery Control New Procedures for False Discovery Control Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/ Elisha Merriam Department of Neuroscience University

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

A Large-Sample Approach to Controlling the False Discovery Rate

A Large-Sample Approach to Controlling the False Discovery Rate A Large-Sample Approach to Controlling the False Discovery Rate Christopher R. Genovese Department of Statistics Carnegie Mellon University Larry Wasserman Department of Statistics Carnegie Mellon University

More information

Generalized Linear Models (1/29/13)

Generalized Linear Models (1/29/13) STA613/CBB540: Statistical methods in computational biology Generalized Linear Models (1/29/13) Lecturer: Barbara Engelhardt Scribe: Yangxiaolu Cao When processing discrete data, two commonly used probability

More information

Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path

Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path Daniel Egea-Roca, Gonzalo Seco-Granados, José A López-Salcedo, Sunwoo Kim Dpt of Telecommunications and Systems

More information

Lecture 27. December 13, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 27. December 13, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

New Approaches to False Discovery Control

New Approaches to False Discovery Control New Approaches to False Discovery Control Christopher R. Genovese Department of Statistics Carnegie Mellon University http://www.stat.cmu.edu/ ~ genovese/ Larry Wasserman Department of Statistics Carnegie

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

A GLRT FOR RADAR DETECTION IN THE PRESENCE OF COMPOUND-GAUSSIAN CLUTTER AND ADDITIVE WHITE GAUSSIAN NOISE. James H. Michels. Bin Liu, Biao Chen

A GLRT FOR RADAR DETECTION IN THE PRESENCE OF COMPOUND-GAUSSIAN CLUTTER AND ADDITIVE WHITE GAUSSIAN NOISE. James H. Michels. Bin Liu, Biao Chen A GLRT FOR RADAR DETECTION IN THE PRESENCE OF COMPOUND-GAUSSIAN CLUTTER AND ADDITIVE WHITE GAUSSIAN NOISE Bin Liu, Biao Chen Syracuse University Dept of EECS, Syracuse, NY 3244 email : biliu{bichen}@ecs.syr.edu

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Aliaksandr Hubin University of Oslo Aliaksandr Hubin (UIO) Bayesian FDR / 25

Aliaksandr Hubin University of Oslo Aliaksandr Hubin (UIO) Bayesian FDR / 25 Presentation of The Paper: The Positive False Discovery Rate: A Bayesian Interpretation and the q-value, J.D. Storey, The Annals of Statistics, Vol. 31 No.6 (Dec. 2003), pp 2013-2035 Aliaksandr Hubin University

More information

False Discovery Rate

False Discovery Rate False Discovery Rate Peng Zhao Department of Statistics Florida State University December 3, 2018 Peng Zhao False Discovery Rate 1/30 Outline 1 Multiple Comparison and FWER 2 False Discovery Rate 3 FDR

More information

Wald s theorem and the Asimov data set

Wald s theorem and the Asimov data set Wald s theorem and the Asimov data set Eilam Gross & Ofer Vitells ATLAS statistics forum, Dec. 009 1 Outline We have previously guessed that the median significance of many toy MC experiments could be

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

ADAPTIVE ARRAY DETECTION ALGORITHMS WITH STEERING VECTOR MISMATCH

ADAPTIVE ARRAY DETECTION ALGORITHMS WITH STEERING VECTOR MISMATCH ADAPTIVE ARRAY DETECTIO ALGORITHMS WITH STEERIG VECTOR MISMATCH LIM Chin Heng, Elias Aboutanios Bernard Mulgrew Institute for Digital Communications School of Engineering & Electronics, University of Edinburgh

More information

ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE. By Wenge Guo and M. Bhaskara Rao

ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE. By Wenge Guo and M. Bhaskara Rao ON STEPWISE CONTROL OF THE GENERALIZED FAMILYWISE ERROR RATE By Wenge Guo and M. Bhaskara Rao National Institute of Environmental Health Sciences and University of Cincinnati A classical approach for dealing

More information

PROCEDURES CONTROLLING THE k-fdr USING. BIVARIATE DISTRIBUTIONS OF THE NULL p-values. Sanat K. Sarkar and Wenge Guo

PROCEDURES CONTROLLING THE k-fdr USING. BIVARIATE DISTRIBUTIONS OF THE NULL p-values. Sanat K. Sarkar and Wenge Guo PROCEDURES CONTROLLING THE k-fdr USING BIVARIATE DISTRIBUTIONS OF THE NULL p-values Sanat K. Sarkar and Wenge Guo Temple University and National Institute of Environmental Health Sciences Abstract: Procedures

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data Faming Liang, Chuanhai Liu, and Naisyin Wang Texas A&M University Multiple Hypothesis Testing Introduction

More information

False Discovery Rate Based Distributed Detection in the Presence of Byzantines

False Discovery Rate Based Distributed Detection in the Presence of Byzantines IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS () 1 False Discovery Rate Based Distributed Detection in the Presence of Byzantines Aditya Vempaty*, Student Member, IEEE, Priyadip Ray, Member, IEEE,

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

Sta$s$cs for Genomics ( )

Sta$s$cs for Genomics ( ) Sta$s$cs for Genomics (140.688) Instructor: Jeff Leek Slide Credits: Rafael Irizarry, John Storey No announcements today. Hypothesis testing Once you have a given score for each gene, how do you decide

More information

A multiple testing procedure for input variable selection in neural networks

A multiple testing procedure for input variable selection in neural networks A multiple testing procedure for input variable selection in neural networks MicheleLaRoccaandCiraPerna Department of Economics and Statistics - University of Salerno Via Ponte Don Melillo, 84084, Fisciano

More information

The miss rate for the analysis of gene expression data

The miss rate for the analysis of gene expression data Biostatistics (2005), 6, 1,pp. 111 117 doi: 10.1093/biostatistics/kxh021 The miss rate for the analysis of gene expression data JONATHAN TAYLOR Department of Statistics, Stanford University, Stanford,

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

Estimation of the False Discovery Rate

Estimation of the False Discovery Rate Estimation of the False Discovery Rate Coffee Talk, Bioinformatics Research Center, Sept, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

ACCURATE ASYMPTOTIC ANALYSIS FOR JOHN S TEST IN MULTICHANNEL SIGNAL DETECTION

ACCURATE ASYMPTOTIC ANALYSIS FOR JOHN S TEST IN MULTICHANNEL SIGNAL DETECTION ACCURATE ASYMPTOTIC ANALYSIS FOR JOHN S TEST IN MULTICHANNEL SIGNAL DETECTION Yu-Hang Xiao, Lei Huang, Junhao Xie and H.C. So Department of Electronic and Information Engineering, Harbin Institute of Technology,

More information

Two-stage stepup procedures controlling FDR

Two-stage stepup procedures controlling FDR Journal of Statistical Planning and Inference 38 (2008) 072 084 www.elsevier.com/locate/jspi Two-stage stepup procedures controlling FDR Sanat K. Sarar Department of Statistics, Temple University, Philadelphia,

More information

Department of Statistics University of Central Florida. Technical Report TR APR2007 Revised 25NOV2007

Department of Statistics University of Central Florida. Technical Report TR APR2007 Revised 25NOV2007 Department of Statistics University of Central Florida Technical Report TR-2007-01 25APR2007 Revised 25NOV2007 Controlling the Number of False Positives Using the Benjamini- Hochberg FDR Procedure Paul

More information

Peak Detection for Images

Peak Detection for Images Peak Detection for Images Armin Schwartzman Division of Biostatistics, UC San Diego June 016 Overview How can we improve detection power? Use a less conservative error criterion Take advantage of prior

More information

Introductory Econometrics

Introductory Econometrics Session 4 - Testing hypotheses Roland Sciences Po July 2011 Motivation After estimation, delivering information involves testing hypotheses Did this drug had any effect on the survival rate? Is this drug

More information

Robust covariance matrices estimation and applications in signal processing

Robust covariance matrices estimation and applications in signal processing Robust covariance matrices estimation and applications in signal processing F. Pascal SONDRA/Supelec GDR ISIS Journée Estimation et traitement statistique en grande dimension May 16 th, 2013 FP (SONDRA/Supelec)

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Asymptotic Analysis of the Generalized Coherence Estimate

Asymptotic Analysis of the Generalized Coherence Estimate IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001 45 Asymptotic Analysis of the Generalized Coherence Estimate Axel Clausen, Member, IEEE, and Douglas Cochran, Senior Member, IEEE Abstract

More information

Evaluation of Suburban measurements by eigenvalue statistics

Evaluation of Suburban measurements by eigenvalue statistics Evaluation of Suburban measurements by eigenvalue statistics Helmut Hofstetter, Ingo Viering, Wolfgang Utschick Forschungszentrum Telekommunikation Wien, Donau-City-Straße 1, 1220 Vienna, Austria. Siemens

More information

Robust multichannel sparse recovery

Robust multichannel sparse recovery Robust multichannel sparse recovery Esa Ollila Department of Signal Processing and Acoustics Aalto University, Finland SUPELEC, Feb 4th, 2015 1 Introduction 2 Nonparametric sparse recovery 3 Simulation

More information

A significance test for the lasso

A significance test for the lasso 1 First part: Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Second part: Joint work with Max Grazier G Sell, Stefan Wager and Alexandra

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

Exceedance Control of the False Discovery Proportion Christopher Genovese 1 and Larry Wasserman 2 Carnegie Mellon University July 10, 2004

Exceedance Control of the False Discovery Proportion Christopher Genovese 1 and Larry Wasserman 2 Carnegie Mellon University July 10, 2004 Exceedance Control of the False Discovery Proportion Christopher Genovese 1 and Larry Wasserman 2 Carnegie Mellon University July 10, 2004 Multiple testing methods to control the False Discovery Rate (FDR),

More information

Announcements. Proposals graded

Announcements. Proposals graded Announcements Proposals graded Kevin Jamieson 2018 1 Hypothesis testing Machine Learning CSE546 Kevin Jamieson University of Washington October 30, 2018 2018 Kevin Jamieson 2 Anomaly detection You are

More information

Hunting for significance with multiple testing

Hunting for significance with multiple testing Hunting for significance with multiple testing Etienne Roquain 1 1 Laboratory LPMA, Université Pierre et Marie Curie (Paris 6), France Séminaire MODAL X, 19 mai 216 Etienne Roquain Hunting for significance

More information

Robust Subspace DOA Estimation for Wireless Communications

Robust Subspace DOA Estimation for Wireless Communications Robust Subspace DOA Estimation for Wireless Communications Samuli Visuri Hannu Oja ¾ Visa Koivunen Laboratory of Signal Processing Computer Technology Helsinki Univ. of Technology P.O. Box 3, FIN-25 HUT

More information

Statistical Inference

Statistical Inference Statistical Inference J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France SPM Course Edinburgh, April 2011 Image time-series Spatial

More information

Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and the Bootstrap

Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and the Bootstrap University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No. 254 Multiple Testing of One-Sided Hypotheses: Combining Bonferroni and

More information

STEPUP PROCEDURES FOR CONTROL OF GENERALIZATIONS OF THE FAMILYWISE ERROR RATE

STEPUP PROCEDURES FOR CONTROL OF GENERALIZATIONS OF THE FAMILYWISE ERROR RATE AOS imspdf v.2006/05/02 Prn:4/08/2006; 11:19 F:aos0169.tex; (Lina) p. 1 The Annals of Statistics 2006, Vol. 0, No. 00, 1 26 DOI: 10.1214/009053606000000461 Institute of Mathematical Statistics, 2006 STEPUP

More information

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University Tweedie s Formula and Selection Bias Bradley Efron Stanford University Selection Bias Observe z i N(µ i, 1) for i = 1, 2,..., N Select the m biggest ones: z (1) > z (2) > z (3) > > z (m) Question: µ values?

More information

Probabilistic Inference for Multiple Testing

Probabilistic Inference for Multiple Testing This is the title page! This is the title page! Probabilistic Inference for Multiple Testing Chuanhai Liu and Jun Xie Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: chuanhai,

More information

Generalization Propagator Method for DOA Estimation

Generalization Propagator Method for DOA Estimation Progress In Electromagnetics Research M, Vol. 37, 119 125, 2014 Generalization Propagator Method for DOA Estimation Sheng Liu, Li Sheng Yang, Jian ua uang, and Qing Ping Jiang * Abstract A generalization

More information

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Progress In Electromagnetics Research C, Vol. 6, 13 20, 2009 FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Y. Wu School of Computer Science and Engineering Wuhan Institute of Technology

More information

Censoring for Type-Based Multiple Access Scheme in Wireless Sensor Networks

Censoring for Type-Based Multiple Access Scheme in Wireless Sensor Networks Censoring for Type-Based Multiple Access Scheme in Wireless Sensor Networks Mohammed Karmoose Electrical Engineering Department Alexandria University Alexandria 1544, Egypt Email: mhkarmoose@ieeeorg Karim

More information

Technical Report 1004 Dept. of Biostatistics. Some Exact and Approximations for the Distribution of the Realized False Discovery Rate

Technical Report 1004 Dept. of Biostatistics. Some Exact and Approximations for the Distribution of the Realized False Discovery Rate Technical Report 14 Dept. of Biostatistics Some Exact and Approximations for the Distribution of the Realized False Discovery Rate David Gold ab, Jeffrey C. Miecznikowski ab1 a Department of Biostatistics,

More information

ENHANCED TRACKING OF RADIO PROPAGATION PATH PARAMETERS USING STATE-SPACE MODELING

ENHANCED TRACKING OF RADIO PROPAGATION PATH PARAMETERS USING STATE-SPACE MODELING Jussi Salmi, Andreas Richter, and Visa Koivunen. 2006. Enhanced tracking of radio propagation path parameters using state space modeling. In: Proceedings of the 14th European Signal Processing Conference

More information

PASSIVE array signal processing has gained considerable

PASSIVE array signal processing has gained considerable IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 11, NOVEMBER 2002 2617 General Asymptotic Analysis of the Generalized Likelihood Ratio Test for a Gaussian Point Source Under Statistical or Spatial

More information

Statistical Inference

Statistical Inference Statistical Inference Jean Daunizeau Wellcome rust Centre for Neuroimaging University College London SPM Course Edinburgh, April 2010 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES

FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES FDR-CONTROLLING STEPWISE PROCEDURES AND THEIR FALSE NEGATIVES RATES Sanat K. Sarkar a a Department of Statistics, Temple University, Speakman Hall (006-00), Philadelphia, PA 19122, USA Abstract The concept

More information

BIBLE CODE PREDICTION. and multiple comparisons problem

BIBLE CODE PREDICTION. and multiple comparisons problem BIBLE CODE PREDICTION and multiple comparisons problem Equidistant Letter Sequences in the Book of Genesis Doron Witztum, Eliyahu Rips, and Yoav Rosenberg Statistical Science, Vol. 9 (1994) 429-438. Bible

More information