Volume Scattering. Our challenge is to determine how a monochromatic plane wave might scatter and propagate through such a medium.

Size: px
Start display at page:

Download "Volume Scattering. Our challenge is to determine how a monochromatic plane wave might scatter and propagate through such a medium."

Transcription

1 11/3/4 Volum Scattrng 1/4 Volum Scattrng In many radar rmot nng applcaton, th llumnatd targt a random collcton of rrgular partcl or lmnt, dprd throughout om 3- dmnonal volum. Our challng to dtrmn how a monochromatc plan wav mght cattr and propagat through uch a mdum. I. lctromagntc Scattrng Frt, lt rvw om background matral, nvolvng th lctromagntc Scattrng from a ngl objct or partcl. * W fnd that th cattrd far-fld from any objct can b xprd n trm of t Scattrng Matrx. * W can lkw dcrb th cattrd powr dnty (or ntnty) from an objct n trm of t Scattrng Cro Scton.

2 11/3/4 Volum Scattrng /4 II. Scattrng from a Random Mda Now, lt condr th ca whr multpl cattrr ar prnt. * Wth knowldg of th cattrng matrx and locaton of ach partcl, w can, provdd w condr all Multpl Scattrng Mchanm, dtrmn th farfld cattrng from th collcton. * For many (or mot!) applcaton, our cattrng volum cont of a random collcton of cattrr, dcrbd wth tattcal maur. Thu, w mut lkw charactrz th Scattrng from Random Mda wth tattcal maur. * Although a cattrng volum can cont many dffrnt typ, hap, and z of random cattrr, w fnd that th tattc of th cattrd fld can uually b wll dcrbd n trm of Raylgh Fadng Stattc.

3 11/3/4 Volum Scattrng 3/4 III. Propagaton through a Random Mda Whn a plan wav ntract wth a partcl, t rduc th nrgy n th wav. * Th rat at whch a ngl partcl rmov nrgy from a plan wav pcfd by t xtncton Cro- Scton. * Th wav attnuaton xhbtd by a collcton of partcl dcrbd by an xtncton Coffcnt. * Ung th Optcal Thorm, w can lkw dtrmn th ffctv propagaton contant for a collcton of random partcl. * W mut account for xtncton f w wh to accuratly dtrmn th avrag cattrng from a larg volum of cattrng partcl. W can accomplh th by mplmntng th Dtortd Born Approxmaton.

4 11/3/4 Volum Scattrng 4/4 IV. Volum Scattrng from Collcton of Raylgh Scattrr * Scattrng from partcl that ar mall wth rpct to a wavlngth dcrbd by a thory known a Raylgh Scattrng. * A Raylgh Scattrr compltly charactrzd by a Polarzablty Tnor. * Th propagaton through a random volum of Raylgh cattrr can b dcrbd n trm of an quvalnt dlctrc contant drvd from Mxng Modl. * W can apply all of our acqurd knowldg to dtrmn th Volum Scattrng from a Layr of Raylgh Scattrr.

5 1/5/4 lctromagntc Scattrng 1/5 lctromagntc Scattrng Condr om known lctromagntc fld, xtng throughout mpty pac: ( r,t ), ( r,t) H ε,µ If w nrt om objct nto th pac, th lctromagntc fld ar modfd: ( r,t ), ( r,t) H σ 1,ε,µ ε,µ

6 1/5/4 lctromagntc Scattrng /5 Th dffrnc btwn th ntal fld ( r,t ), ( r,t) and th modfd fld ( r,t ), ( r,t) cattrd fld ( r,t ), H ( r,t) : H, H, ar dfnd a th ( r,t) ( r,t) ( r,t) ( r,t) ( r,t) ( r,t) H H H Rarrangng, w can altrnatvly tat that: ( r,t) ( r,t) + ( r,t) ( r,t) ( r,t) + ( r,t) H H H Thu, th modfd fld ar formd whn th cattrd r,t, H r,t ar addd to th orgnal (ncdnt) fld ( ) ( ) fld ( r,t ), ( r,t) mot oftn rfrrd to a total fld ( r,t ), ( r,t) H. A a rult, th modfd fld ar H : ( r,t) ( r,t) + ( r,t) ( r,t) ( r,t) + ( r,t) H H H σ 1,ε 1,µ 1 ε,µ

7 1/5/4 lctromagntc Scattrng 3/5 Q: Why ar th ncdnt fld modfd? Whr do th cattrd fld com from? A: Th ncdnt fld nduc currnt (conducton, polarzaton, and/or magntzaton) wthn th objct th currnt n turn crat nw (.., cattrd) fld! W fnd that th total fld can b rlatd to th cattrd fld a: r,t G r,t ; r,t r,t dv dt ( ) ( ) ( ) H r,t G r,t ; r,t H r,t dv dt ( ) ( ) ( ) whr G ( r,t;r,t ) and ( r,t;r,t ) G m Grn functon (not mportant!). m ar calld dyadc Not n th xpron, th cattrd fld ar dpndnt on th total fld (th charg and dpol wthn th objct can t tll th dffrnc btwn a cattrd and ncdnt fld!). But rcall w lkw dtrmnd that total fld ar dpndnt on th cattrd fld: ( r,t) ( r,t) + ( r,t) ( r,t) ( r,t) + ( r,t) H H H

8 1/5/4 lctromagntc Scattrng 4/5 Th crcular logc xprd whn w combn th rult: ( r,t) ( ) + G ( ) ( r,t ) ( t) H ( r,t) + G ( r,t ) H( r,t ) Hr, r,t r,t ; r,t dv dt m ; r,t dv dt Th quaton dmontrat th dffculty n fndng mcrowav cattrng oluton not th unknown total fld ar lkw part of th ntgraton! Th xpron ar thrfor known a ntgral quaton, and fndng thr oluton ar xcdngly dffcult. In fact, human hav found oluton only for th mplt of objct (.g., phr, cylndr)! Q: So thn, how do w dtrmn lctromagntc cattrng? A: Thr ar bacally thr mthod: numrcal approxmaton, aymptotc approxmaton, and drct maurmnt. Numrcal Approxmaton - Gvn th computatonal rourc avalabl today, th mthod ha bcom th mot popular mthod. Tchnqu uch a th momnt mthod allow

9 1/5/4 lctromagntc Scattrng 5/5 u to numrcally approxmaton th ntgraton (.g., a a ummaton). Th rult ar oftn vry accurat, although nc thy ar numrc, thy do not provd much paramtrc nght (.g., th cattrng varaton wth rpct to dlctrc contant), unl w run multpl ca. Aymptotc Approxmaton - Oftn, w fnd that w can olv th ntgral quaton f on or mor of th phycal charactrtc of th objct tak om xtrm valu. For xampl, f th volum of th cattrng objct zro, thn ( r ) and ( r ) ( r ). Although th xact oluton (lk th xampl) ar gnrally not partcularly uful, w can oftn dtrmn from thm approxmat oluton, vald whn th cattrng problm approach th xtrm ca. Accordngly, from th abov xampl, w mght dtrmn an approxmaton that accurat whn th cattrng objct vry mall. Drct Maurmnt - Som cattrng objct ar o complx (.g. arcraft) that cattrng oluton can only b dtrmnd by drct maurmnt n an anchoc chambr. Addtonally, w oftn mak drct maurmnt of mplr objct, o a to valdat a numrc or aymptotc approxmaton.

10 1/5/4 Th Scattrng Matrx 1/8 Th Scattrng Matrx Th ncdnt fld for mot cattrng problm aumd to b a monochromatc plan wav of th form: whr { jω t } ( ) ( ) r,t R r + ( r ) j k r ( ) v v ˆ ˆ h h + j k r and: π k k ˆ k k ˆ λ v ˆ h ˆ k ˆ v ˆ h ˆ Th complx valu v and h thu dfn wav polarzaton, and th unt vctor ˆk dcrb th propagaton drcton. Say now w plac a fnt objct n th ncdnt fld and locat t at th orgn. A cattrd fld mut b gnratd!

11 1/5/4 Th Scattrng Matrx /8 ˆv ĥ ˆk z y If th cattrng objct mad of mpl (.., lnar) matral, and tm nvarant (.., t not movng!), thn th cattrd fld wll hav th form: whr: x { jω t } ( ) ( ) r,t R r + j r ( r ) ( k ) k d k Th mply tat that th cattrd fld a uprpoton of plan wav, propagatng n all pobl drcton k ˆ. Th cattrr multanouly cattr n all drcton! Howvr, th cattrr wll not cattr qually n all drcton, nor wth th am polarzaton. Th dtrbuton of cattrd nrgy acro drcton and polarzaton

12 1/5/4 Th Scattrng Matrx 3/8 dcrbd by th cattrng pctrum ( k ). Th cattrng, a t (ung th ba pctrum complt dcrb th cattrd fld ( r ) ntally th Fourr tranform of ( r ) functon j k r ). Not that th ncdnt fld can lkw b dcrbd n trm of a cattrng pctrum. Snc: ( ) ( ) ( ) k ˆ + ˆ h r k d k v h j r j k r v t apparnt that: ( ) ( ) ( ) ˆ + ˆ ˆ ˆ h δ k v h k k v ( ˆ ˆ ) δ k k Th of cour mpl tat what w alrady know: th ncdnt fld pctrum cont of prcly on plan wav! Q: So w can xpr th ncdnt fld a ( k ) cattrd fld a ( k ) two functon?, and th. I thr om way to rlat th S : A: Y! Thy ar rlatd by th cattrng tnor ( k ; k ) k k ; k k d k ( ) S ( ) ( )

13 1/5/4 Th Scattrng Matrx 4/8 Ung th pctrum of our ngl ncdnt plan wav, th bcom: k k k k k ( ) S ( ; ) ( ) d S ( ) ( ) S ( k ; k ) Th cattrng tnor ( k ; k ) k ; k δ k k d k S ntrly dpndnt on th cattrng objct (but th nclud z, hap, orntaton and matral!). Thu, f w know th cattrng tnor S ( k ; k ) mply fnd th cattrd fld a: ( ) ( ) j k r r k d k S k k k ( ˆ ) j k r ; d Q: Yk! Th don t look mpl at all!, w can A: Actually, valuatng th ntgral typcally mpobl at lat wthout th ad of thr numrc or aymptotc approxmaton!

14 1/5/4 Th Scattrng Matrx 5/8 So hr w wll apply our frt aymptotc approxmaton. Condr th cattrd fld at a pont dnotd a r r k ˆ (.., at a dtanc r from th orgn, n th drcton ˆk ). W wll dtrmn th cattrd fld a th pont approach an nfnt dtanc from th cattrng objct (.., a r r approach ): lm r r k lm k ; k d k ˆ r whr k k ˆ k. ( ˆ ) S ( ) j k ˆ r k r j k r S ( k; k ) r W u th rult to approxmatly dtrmn th cattrd fld at pont a gnfcant dtanc from th cattrng objct. Not th approxmaton ay that th cattrd fld at th dtant pont appar to b a plan wav of th form: j k r k k r j k r r ( r ) S ( ; ) Th approxmaton mply th far-fld approxmaton!

15 1/5/4 Th Scattrng Matrx 6/8 W can furthr xpr th cattrd fld a: ( r ) j k r r j k r + r ( ) v v ˆ ˆ h h whr v ˆ ˆ ˆ h k and v ˆ ˆ h. Thrfor: S ( k; k ) ( ) ( ) ( ) v ˆ + v h h ˆ S k ; k v ˆ + ˆ v h h It vdnt that th far-fld cattrng tnor can b xprd a: Q: Huh? S ( ; ) S vh ( ; ) ˆ ˆ + S hh ( ; ) + S ( ; ) ˆˆ + S hv ( ; ) k k k k v h k k h ˆ h ˆ k k v v k k h ˆ v ˆ vv A: At th pont, t mplr to jut to u matrx notaton. W frt dfn th cattrng matrx: ( k ˆ k ˆ ) ( ) vh k ˆ k ˆ ( k ˆ ˆ ) ( ˆ ˆ ) k hh k k S ; S ; ( ˆ ˆ ) S k ; k S vh ; S ; vv

16 1/5/4 Th Scattrng Matrx 7/8 whr th valu S vv,s vh,s hh,s hv ar complx cattrng coffcnt. Th coffcnt compltly dcrb th farfld cattrng n drcton ˆk, gvn om ncdnt fld of drcton ˆk. Now, xprng and a vctor: v v and h h w can ay: ( k ˆ k ˆ ) ( ) vh k ˆ k ˆ ( k ˆ ˆ ) ( ˆ ˆ ) k hh k k v S vv ; S ; v S h vh ; S ; h S Thrfor, th far-fld cattrd fld xprd a: j k r ( r ) r j k r r S

17 1/5/4 Th Scattrng Matrx 8/8 Q: What f th cattrr not locatd at th orgn? Say t locatd at th pont dnotd by r? A: In that ca, th cattrd far-fld : ( r ) ( ) j k r r r j k r r j k r ( ) ( ( ) ) k k S j r

18 1/5/4 Radar Cro Scton 1/3 Radar Cro Scton From th Poyntng vctor, w can how that th powr dnty of th ncdnt wav n fr-pac : ( ˆ Wk) k ˆ η W m whl th powr dnty of a cattrd fld : 1 ( ˆ ) k ˆ r η W k 1 S ˆ W k r η m W can lkw dfn th cattrd powr dnty of on polarzaton componnt ˆp (.g., p ˆ h ˆ or p ˆ v ˆ ) a: W p 1 r p ˆ S T η k ˆ Th cattrng cro cton σ of an objct can b dfnd a: W ( ) k ˆ ( ˆ, ˆ S σ k k) lm r m r ( ˆ Wk)

19 1/5/4 Radar Cro Scton /3 Not th valu dpndnt on th ncdnt wav polarzaton, a wll a th cattrng objct. Accordngly, w typcally dfn cattrng cro cton n trm of an xplct ncdnt wav polarzaton, a wll a on polarzaton componnt of cattrd fld. For xampl, th four tandard cro-cton valu ar: W ( k ˆ ) v σ lm r v T ˆ S vv ( k ˆ, k ˆ ) whr v v ˆ r Wk ( ˆ ) ( ) W ( k ˆ ) v σ ( k ˆ, k ˆ ) lm r whr h ˆ vh v T ˆ S r Wk ( ˆ ) ( ) h v T W ( k ˆ ) h ˆ S hv ( k ˆ, k ˆ ) whr ˆ v v r Wk ( ˆ ) ( ) σ lm r σ v T W ( k ˆ ) h ˆ S hh ( k ˆ, k ˆ ) lm r whr h ˆ r Wk ( ˆ ) ( ) h Of partcular rlvanc to radar problm th backcattrng cro-cton. Th back cattrng crocton mply th cattrng cro-cton valuatd for th ca whn: k ˆ k ˆ (backcattrng condton)

20 1/5/4 Radar Cro Scton 3/3 In othr word, th ca whn th cattrd wav travlng back toward th ourc of th ncdnt wav. Bcau of t rlvanc to th radar problm, th backcattrng cro-cton oftn rfrrd to a th radar cro cton.

21 1/5/4 Multpl Scattrng and th Born Approxmaton 1/7 Multpl Scattrng and th Born Approxmaton Now, lt condr th ca whr w hav two cattrng objct (at locaton 1 r and r ), ach llumnatd by th am ncdnt wav. Q: So n t th rultng cattrd fld jut th um of th cattrd fld from ach: j k r ( ) ( ) ( ) ( ) j 1 r j r 1( ˆ ˆ k k r ; ) ( ˆ ˆ k k S k k + S k; k)??? r 1 1 t -ordr cattrng mchanm

22 1/5/4 Multpl Scattrng and th Born Approxmaton /7 A: NO! If t wr only that ay! Th problm that th cattrd fld from objct 1 crat a cond ncdnt fld at objct, and th cattrd fld from objct crat a cond ncdnt fld at objct 1. 1 ˆk 1 ˆk 1 nd -ordr cattrng mchanm ( ) ( ) ( ) j k r ( ) 1 1( ˆ ˆ k r ; ) ( ˆ ˆ k k k S k k + S k; k) r j r j r j k r + ; ; r r r jkˆ k1 ( r 1 r) j 1 r + k j r 1( ˆ ˆ ; 1) ( ˆ ˆ k + S k k S k 1; k) 1 r r jkk ˆ 1 ( r 1 r) + j k r j 1 r ( ˆ ˆ 1) 1( ˆ ˆ k S k k S k1 k) 1 + But wat that not all! Th nw cattrd fld from objct 1 crat a thrd ncdnt fld on objct, and vc vra.

23 1/5/4 Multpl Scattrng and th Born Approxmaton 3/7 1 ˆk 1 ˆk 1 3 rd -ordr cattrng mchanm ( r ) j k r ( ( ) ( ) ) k 1 1( ˆ ˆ k k k ; k) + ( k ˆ ˆ k S S ; k) r + j k r j r j r ; ; r r r jkk ˆ 1 ( r 1 r) + j k r j 1 r ( ˆ ˆ 1) 1( ˆ ˆ k S k k S k1 k) 1 jkk ˆ 1 ( 1 r r ) j 1 r + k j r 1( ˆ ˆ ; 1) ( ˆ ˆ k + S k k S k 1; k) 1 r r j k ˆ r jk 1( 1 r r) k + j k 1 r + S1( k ˆ ˆ ; k1) S( k ˆ ˆ 1; k1) r 1 r r j k k ˆ r r j k ˆ r r ( ) k ( ) ˆ ˆ ˆ ˆ ; + ; r r r r j k 1 r + j k r S ( k k ) S ( k k ) jkk ˆ 1 ( 1 r r ) 1( ˆ j r 1; ˆ 1) ( ˆ ˆ k S k k S k1; k ) ) r r 1 +

24 1/5/4 Multpl Scattrng and th Born Approxmaton 4/7 Hopfully, you can that th analy can contnu forvr. Thr ar an nfnt numbr of cattrng mchanm, and all of thm ar rqurd to provd th prc cattrng oluton. Of cour, th xampl ncludd only two cattrr magn th m w would crat tryng to dtrmn all th cattrng mchanm aocatd wth multpl cattrr! ( ) r?? Fortunatly, w gnrally fnd that ach uccv cattrng ordr (trm) l gnfcant than th prvou on. Thrfor, w vntually fnd that w can truncat th nfnt ummaton (calld th Born Sr), wll lttl mpact on th oluton accuracy w don t hav to condr an nfnt numbr of cattrng trm!

25 1/5/4 Multpl Scattrng and th Born Approxmaton 5/7 In fact, w oftn nd to condr only a fw cattrng trm to gt accptabl accuracy. Th numbr of rqurd trm dpnd on vral thng, but motly on th cattrng ntnty and dnty of th partcl. If th partcl ar lghtly cattrng and parly populatd, thn w can aum th total fld at ach partcl approxmatly that of th orgnal ncdnt fld only. Th approxmaton known a th Born approxmaton, and t rult n th cattrd fld bng approxmatd by th frt-ordr cattrng trm only. Thu, for a collcton of N cattrr: N n ( r ) ( r ) n 1 j k r N ( k k ) n n( ˆ ˆ S k; k) r n 1 j r Q: So, do th man that th cattrng cro-cton of th collcton of cattrr lkw th ummaton of th cro-cton of ach cattrr: N σ σ??? n 1 n A: NO! Th dfntly not tru. Th cattrd powr dnty from th collcton of objct :

26 1/5/4 Multpl Scattrng and th Born Approxmaton 6/7 N 1 1 ( ) ( ˆ j k k rn W k) ( ˆ ˆ Sn k; k) r η n 1 N 1 1 ( ˆ ˆ ) Sn k ; k r η n 1 N n 1 1 j ( k k ) ( rn rm) H H n ( ˆ ˆ ) m( ˆ ˆ + R S k ; k S k; k) r η n 1 m 1 N 1 1 n r η n 1 N n 1 1 j ( k k ) ( rn rm) H + R n m r η n 1 m 1 Not that th frt trm rprnt th um of powr dnty from ach cattrr. Howvr, thr cond trm n th xpron! Th trm known a th cohrnt trm. It a ral valu, but t can b potv or ngatv. A a rult, th total cattrd powr dnty can b much gratr, or much l, than mply th um of th cattrd powr from ach objct. In fact, th total powr dnty can vn b zro! Th total cattrng cro-cton for th collcton of cattrr thrfor: n m N N n 1 j ( k k ) ( r r ) H σ σn + R n m n 1 n 1 m 1

27 1/5/4 Multpl Scattrng and th Born Approxmaton 7/7 Agan, w that th cro-cton can b much mallr, or much largr, that mply th um of ndvdual cattrng cro-cton.

28 11/3/4 Scattrng from Random Mda 1/5 Scattrng from Random Mda * Typcally, f w ar ntrtd n dtrmnng th cattrng from a larg collcton of dcrt objct, w dcrb th charactrtc of th collcton wth tattcal maur. * That, w trat om, mot, or vn all of th phycal dcrptor a random varabl. Th random varabl can nclud partcl locaton, orntaton, matral, z, and hap. * W can xplctly dcrb th random varabl wth a jont probablty dnty functon (pdf), or mor mply n trm of tattcal momnt uch a man, varanc, and covaranc. Q: How can w dtrmn cattrng from a collcton of cattrr f w don t know prcly what th collcton?? A: W hav to dcrb th cattrd fld n th am way w dcrb th collcton of cattr ung tattcal maur! In othr word, w mut lkw trat th cattrd fld tlf a a random proc (ovr 3-dmnon of pac).

29 11/3/4 Scattrng from Random Mda /5 Typcally, w mply dcrb th random fld n trm of thr frt two tattcal momnt: ( r ) th valu of ( r ) man ( r ) th of ( r ) varanc Not that th varanc ha a mor phycal ntrprtaton, a t proportonal to th avrag powr dnty of th wav. For xampl, condr a collcton of cattrr whr th Born approxmaton applcabl. W know that th cattrd fld approxmatly: N n ( r ) ( r ) n 1 ˆ ( k k ) jk k r N jk ˆ ˆ rn ˆ ˆ r n 1 S ( k ; k ) n Aumng th random varabl of dmlar lmnt ar ndpndnt, th man cattrd fld : N n ( r ) ( r ) n 1 ˆ ( k k ) jk k r N jk ˆ ˆ rn ˆ ˆ Sn( k; k) r n 1 Th valu S ( k ˆ ; k ˆ ) th cattrng matrx avragd n acro th dtrbuton of partcl z, hap, matral, tc.

30 11/3/4 Scattrng from Random Mda 3/5 Th valu ( kˆ ˆ k ) jk rn dpndnt on th dtrbuton of partcl poton r n (hr t ha bn aumd that partcl poton lkw ndpndnt of othr paramtr uch a z and hap). It turn out, f th partcl ar dtrbutd throughout om volum that, n ach dmnon, gratr than a wavlngth (.., k V ), thn: 3 1 jk ( kˆ ˆ k ) n r and thrfor: ( r ) In othr word, th cattrd fld from a random cattrng mdum typcally on avrag zro. Not th do not man that th cattrd fld tlf typcally zro t almot nvr! Not thn that th avrag total fld n/from a random cattrng mda : ( r ) ( r ) + ( r ) jk k r + ˆ jk kˆ r

31 11/3/4 Scattrng from Random Mda 4/5 In othr word, th avrag total fld mply qual to th ncdnt fld. Not that th ncdnt fld not a random fld! Now lt condr th varanc of th cattrd fld: N nh m ( r ) ( r ) ( r ) n 1 m 1 1 r 1 r N n 1 m 1 n 1 1 r n ( k k ) ( n m) N N jk ˆ ˆ r r N ( k k ) n ( k k ) N n 1 jk ˆ ˆ r + jk ˆ ˆ r m H + R n m n 1 m n Hr w hav aumd that: H n ( kˆ ˆ ) ( ) ˆ ˆ ˆ ˆ k ( k k ) ( k k ) jk r r jk r + jk r f n m n m n m m In othr word, w hav aumd that th locaton of dmlar partcl ar ndpndnt. Th actually cannot b tru! Th raon for th that two partcl cannot occupy th am locaton. Howvr, for parly dtrbutd partcl, w fnd that th ndpndnt aumpton approxmatly tru.

32 11/3/4 Scattrng from Random Mda 5/5 At any rat, w hav alrady dtrmnd that f th cattrng volum uffcntly larg, thn: ( kˆ ˆ ˆ ˆ k ) n ( k k ) jk r + jk r m and thu: ( r ) 1 r N n 1 n ( k k ) n ( k k ) 1 R r n 1 m n N 1 n r N n 1 jk ˆ ˆ r + jk ˆ ˆ r m H + n m n 1 Th ay that th total avrag cattrd powr dnty mply th um of th avrag cattrd powr from ach partcl. Th man that th avrag cattrng cro-cton from th collcton of partcl lkw mply th um of th avrag cattrng cro-cton of ach partcl: σ N n 1 σ n But b carful! Th rult ar only tru for a larg volum of par, ndpndnt cattrr.

33 11/3/4 Raylgh Fadng Stattc 1/5 Raylgh Fadng Stattc Q: So w now know th avrag (.., man) valu of th cattrng cro-cton of a collcton of cattrng partcl. But what about th varanc of σ? Can w dcrb σ wth mor tattcal pcfcty? A: A a mattr of fact, w can dtrmn (approxmatly) th ntr probablty dnty functon (pdf) of σ! Condr jut on calar componnt of th cattrd fld v r r ): ( )( ay ( ) v n Now, rcall that ( ) ( ) v ˆ ( ) r r v ˆ N n 1 N n 1 N n 1 vn n v ˆ n ( r ) ( r ) ( r ) r a complx functon, that can b xprd n trm of t ral and magnary part: ( ) ( ) + ( ) r r j r v r v v N N nr v n 1 n 1 n ( ) ( ) r + j r v

34 11/3/4 Raylgh Fadng Stattc /5 In othr word th ral part of th cattrd fld th um of th ral part of th cattrd fld from ach ndvdual cattrr! Oh, by th way, th am tru for th magnary part. Now watch out, hr com th tattc! From th cntral lmt thorm, f N (th numbr of r cattrng partcl) larg, thn th pdf of v ( r ) and v ( r ) ar dntcal, ndpndnt Gauan probablty dnty functon! W hav alrady dtrmnd th man valu ar zro (rcall ), o th pdf ar: ( r ) vr ( ) p 1 πσ vr ( ) σ whr: v ( ) p 1 πσ vr vr ( ) ( ) v ( ) σ σ Snc th two dtrbuton ar ndpndnt, w can wrt th jont dtrbuton a:

35 11/3/4 Raylgh Fadng Stattc 3/5 vr v vr v ( ) ( ) ( ) p, p p 1 πσ vr v ( ) ( ) + σ But rcall: ( ) ( ) v vr v + and thu t can b hown that: v ( ) p 1 σ v σ From th pdf, w can dtrmn that: o thrfor: and thu: v σ σ v v ( ) p 1 v v v Snc v σ, w can conclud that:

36 11/3/4 Raylgh Fadng Stattc 4/5 p ( σ ) 1 σ σ σ Th dtrbuton calld th xponntal dtrbuton. p ( σ ) σ σ Th dtrbuton how th wd varanc n pobl valu of cattrng cro-cton σ. Thu, although w mght know th avrag valu of th cattrng cro-cton of a random collcton of cattrr, th actual valu of σ oftn vry dffrnt than th man valu!

37 11/3/4 Raylgh Fadng Stattc 5/5 Th tattcal dcrpton know a Raylgh Fadng Stattc, a nam drvd from th pdf of th valu σ : ( ) σ σ σ p σ σ A probablty dnty functon known a th Raylgh dtrbuton.

38 11/3/4 Th xtncton Cro Scton 1/ Th xtncton Cro-Scton Say a loy partcl llumnatd by a plan wav wth powr dnty W ( r ): W( r ) η k ˆ ˆk Th partcl wll: 1. Aborb nrgy at a rat P a Watt.. Scattr nrgy (n all drcton) at a rat P Watt. Bcau of conrvaton of nrgy, th powr dnty of th ncdnt wav mut b dmnhd aftr ntractng wth th partcl: ˆk ˆk P a W( r ) η k ˆ P W( r + r ) < η k ˆ

39 11/3/4 Th xtncton Cro Scton / W can thrfor dfn th aborpton cro-cton of th partcl a: σ a Pa W ( r ) m and lkw th total cattrng cro-cton a: σ P W ( r ) m Not that ung th dfnton w fnd that: ( ) and ( ) P σ W r P σ W r a a W can lkw dfn a partcl xtncton cro-cton a: P + P P P σ σ σ m a a + a + W ( r ) W ( r ) W ( r ) Th xtncton cro cton (a wll a a σ and σ ), dpnd on th phycal proprt (z, hap, matral) of th partcl.

40 11/3/4 Th xtncton Cofcnt 1/6 Th xtncton Coffcnt Condr a plan wav that propagat a dtanc x through a thn volum wth cro-ctonal ara A. Ara A W ( x + x) ˆx ˆx W( x ) η x ˆ Volum of rgon x V A x

41 11/3/4 Th xtncton Cofcnt /6 Say that th volum flld wth N partcl. Th partcl dnty n o thrfor dfnd a: N N partcl no 3 V A x m Now, w know that nrgy flowng nto th front of th volum at a rat of: n ( ) [ ] P W x A W whl th powr of th plan wav xtng th back of th volum : P W x + x A W n ( ) [ ] Of cour, th partcl wthn th volum wll xtract powr from th plan wav (du to aborpton and cattrng). Thu, th powr lot du to xtncton can b wrttn a: P P P out n ( ) W( ) W x + x A x A W A Whr W W( x + x) W( x ). Not nc P out < P n, both P and W wll b ngatv valu (.., th powr dcra a t pa through th volum).

42 11/3/4 Th xtncton Cofcnt 3/6 Q: What happnd to th mng nrgy? A: Th partcl wthn th volum xtract th nrgy by aborbng or cattrng th ncdnt plan wav. If P n th rat at whch nrgy xtractd by th n-th partcl, thn th total rat of nrgy xtncton by th ntr collcton : P N n 1 N n 1 P σ n n W ( x ) By conrvaton of nrgy, w can conclud that: P P P P n out And thrfor: P P N σ n 1 n W ( x ) Q: Yk! How ar w uppod to know σ for ach and vry on of th N partcl? A: Look clor at th quaton! W don t nd to all th valu σn --w mply nd to know th um of all th valu N (.., σn )! n 1

43 11/3/4 Th xtncton Cofcnt 4/6 To dtrmn th um, w jut nd to know th avrag valu of th xtncton cro-cton ( σ ), dfnd a: Thrfor: σ N 1 N n 1 N σ n P σ W ( x ) n 1 W W n ( x ) N n 1 σ ( x) ( N σ ) N W ( x) σ n Rcall, howvr, that: N n V n A x o o Thrfor: P N W ( x) σ naw( x) σ x o and thu: P W o W A n ( x) σ x Fnally (whw!) w can ay: W o ( ) x n W x σ

44 11/3/4 Th xtncton Cofcnt 5/6 And takng th lmt a x, w hav dtrmnd th followng dffrntal quaton: d W dx ( x) ( n σ ) W ( x ) o Th dffrntal quaton aly olvd: ( ) ( ) ( n σ ) o W x W x x And thu: ( ) ( ) ( n σ ) o W x W x x x ˆ Th valu n o σ obvouly vry mportant and calld th xtncton coffcnt κ of a random mdum κ noσ Thu, th powr dnty of a plan wav pang through a random collcton of partcl (wth partcl dnty n o and avrag xtncton cro-cton σ ) :

45 11/3/4 Th xtncton Cofcnt 6/6 ( r ) ( r ) κ ( η k ˆ r ) k ˆ r ) κ ( W W k ˆ k ˆ Thu, th powr dnty of th ncdnt fld wthn a collcton of cattrr wll dmnh xponntally wth propagaton dtanc! Th xponntal bhavor wll dpnd ntrly on th xtncton coffcnt κ, whch n turn dpnd on th dnty and avrag xtncton cro-cton of th partcl.

46 11/3/4 Th Optcal Thorm 1/6 Th Optcal Thorm Q: Now I m confud! W arlr concludd that th avrag fld n a collcton of random cattrr wa mply th ncdnt fld: j r r r k ( ) ( ) But th would rult n a contant powr dnty throughout th cattrng volum n othr word no xtncton! W ( r ) j k r ( r ) ˆ κ( k r ) η η η η??? η η or, η κ ( k ˆ r )? A: Rcall w concludd that th cohrnt (.., avrag) fld wa qual to th ncdnt fld ung th rult of th Born Approxmaton. It turn out that th Born Approxmaton gnrally a bad approxmaton whn appld to th propagaton problm!

47 11/3/4 Th Optcal Thorm /6 Rcall th Born Approxmaton condr only frt ordr cattrng mchanm. Th total oluton mply a uprpoton of all th ndvdual frt-ordr oluton and th frt-ordr oluton ffctvly aum that no othr partcl ar prnt. η η But f no othr partcl ar prnt, thn xtncton do not occur! In othr word, xtncton a dcddly multpl-ordr cattrng ffct th ncdnt wav ncountr many partcl a t propagat through th mdum. Q: So jut what th cohrnt wav ( r )? A: Ung an analy mlar to that whch arrvd at th xtncton coffcnt, w can dtrmn that th cohrnt wav mut atfy th dffrntal quaton:

48 11/3/4 Th Optcal Thorm 3/6 v ( x) dx h ( x) dx v j k ( x) ff v h j k ( x) ff h whr k ff th complx valu: v π no kff k + S, k ( k ˆ k ˆ ) vv h π no kff k + S hh, k ( k ˆ ˆ ) k Not that th complx valu S ( ) vv k ˆ ˆ, k and S ( ) hh k ˆ ˆ, k dcrb th forward cattrng coffcnt (.., k ˆ ˆ k ) of a partcl. Th xpron abov ar du to a rult known a th optcal thorm. Although th rult lkw an approxmaton vald only for a par collcton of ndpndnt cattrr t much mor accurat than th cohrnt wav oluton ung th Born approxmaton.

49 11/3/4 Th Optcal Thorm 4/6 Th optcal thorm thu provd th oluton: v ff ( x) ˆ + h v jk x h jkff x ˆ v h or mor gnrally: v ff ( ) ˆ + h v jk r h jkff r ˆ r v h whr: k k k ˆ and k k v v h h ff ff ff ff k ˆ Not that th powr dnty aocatd wth ach componnt of th cohrnt wav : v v ( ) v v v k + k Im{ kff } v r ˆ r ( ) ˆ j r j r ˆ k Wv r k ˆ k k η η η h h ( r ) h h h k + k Im{ kff } ˆ h j r j r k r Wh ( r ) k ˆ ˆ ˆ k k η η η whr dnot complx conjugat.

50 11/3/4 Th Optcal Thorm 5/6 Compar th wth th rult n trm of th xtncton coffcnt: W ( r ) κ ( k ˆ r ) η k ˆ It vdnt thn that w can u th optcal thorm to dtrmn th xtncton coffcnt of a collcton of cattrr: { ff } Im { kff } κ Im k and κ v v h h Addtonally, nc κ n o σ, and: w can conclud that: { } ( ) v π no ˆ ˆ Im kff Im S vv k, k k 4π n Im S, { ( ˆ ˆ ) } k k o vv k { ( ˆ ˆ ) } k k 4π σ Im S, v vv k { ( ˆ ˆ ) } hh k k 4π σ Im S, h k

51 11/3/4 Th Optcal Thorm 6/6 Or, mor pcfcally: { ( ˆ ˆ )} k k 4π σ Im S, v vv k { ( ˆ ˆ )} hh k k 4π σ Im S, h k Thu, w can u th optcal thorm to dtrmn th xtncton coffcnt of a collcton of cattrr, a wll a th xtncton cro-cton of an ndvdual partcl.

52 11/3/4 Th Dtortd Born Approxmaton 1/3 Th Dtortd Born Approxmaton Q: So, th Born Approxmaton do not account for xtncton wthn a collcton of partcl. Mut w compltly abandon th Born Approxmaton? A: Not ncarly! W can abandon th Born Approxmaton wth rpct to propagaton, but w can tll u t wth rpct to cattrng. In othr word, w can u th Optcal Thorm to account r, but for xtncton whn dtrmnng th man-fld ( ) thn only account for frt-ordr cattrng trm whn dtrmnng th avrag cattrd powr ( r ). Th approach known a th Dtortd Born Approxmaton, and thu th cattrd fld from th n-th partcl n th mdt of a collcton of N partcl pcfd a: 1 ff ( ) ( r ) S ( k ˆ ; k ˆ ) r ff j k r ff ff j( k k ) rn n r n j k r rn jk rn n whr n S n( k ˆ ˆ ; k ) and w hav aumd that v h k k. ff ff ff Jm Stl Th Unv. of Kana Dpt. of CS

53 11/3/4 Th Dtortd Born Approxmaton /3 Thu, th man cattrd fld : N n ( r ) ( r ) n 1 k r nc agan w fnd that: ff ff ff n j r N n 1 ( k k ) j r n ff ff j( ) rn k k. A a rult, th avrag total fld (.., cohrnt fld) : ( r ) ( r ) + ( r ) j k r + j k ff ff r Jm Stl Th Unv. of Kana Dpt. of CS

54 11/3/4 Th Dtortd Born Approxmaton 3/3 Lkw, th avrag cattrd powr thu: N nh m ( r ) ( r ) ( r ) n 1 m 1 + N ff ff ( k k ) j r r N n 1 m 1 ff ff ff ff ( k k ) ( k k ) ( k-k ) κ kˆ r N ˆ ˆ κ r n n r n 1 N κ kˆ r N n j rn j rm H 1 ( k k ) ( k k ) R n 1 m n ff ff ff ff n + m r + j r j r H n m n m But nc: ff ff j( ) rn k k W fnd that: ( r ) ( k-k ) κ k ˆ r N κ ˆ ˆ r n n r n 1 Not that th valu: ( k-k ) ˆ ˆ r κ n wll b ral and potv! Jm Stl Th Unv. of Kana Dpt. of CS

55 11/11/4 Raylgh Scattrng 1/4 Raylgh Scattrng Rcall that xact, prc, oluton to cattrng ntgral quaton: ( r,t) ( ) + G ( ) ( r,t ) ( t) H ( r,t) + G ( r,t ) H( r,t ) Hr, r,t r,t ; r,t dv dt m ; r,t dv dt ar vry dffcult to fnd ntally mpobl to dtrmn! In fact, about th only prfct oluton w hav for a fnt cattrr for that of a phr. Th oluton (.., for a phr), known a th M cattrng oluton. Although a phr a vry bac and mpl hap, t cattrng oluton nthr bac nor mpl! In fact, th oluton can only b wrttn a a wghtd uprpoton of an nfnt numbr of vctor ba functon ψ n ( r ): phr ( r ) an ψ n ( r ) n Th oluton altrnatvly rfrrd to a th M r.

56 11/11/4 Raylgh Scattrng /4 * Th vctor ba functon ψ ( r ) n ar vry complx functon, formd from phrcal Bl functon and Lgndr Polynomal (not mportant!). * Th r coffcnt a n ar known a M coffcnt, and thy dpnd on: 1) th ncdnt wav drcton and polarzaton (.., k ˆ, ), ) th matral proprt of th phr (..,σ,ε,µ), and 3) th lctrcal radu of th phr ka. Q: lctrcal radu? ka? What that? A: Th valu a mply th radu of th phr (.g., a.5 mtr). Th valu ka thu: π a ka a π λ λ Th valu ka ffctvly xpr th z (radu) of th phr wth rpct to on wavlngth. Th of cour frquntly th mportant dcrptor n lctromagntc t not how bg omthng, t how bg t compard to on wavlngth! Mor pcfcally, ka dcrb th radu n trm of lctrc pha. For xampl, f ka π radan, th radu of th phr λ.

57 11/11/4 Raylgh Scattrng 3/4 Q: So n ordr to gt th xact cattrng oluton, would w hav to add up an nfnt numbr of M cattrng trm? A: Yup! To gt an xact oluton, w mut condr an nfnt numbr of trm. Howvr, lk th Born r, w fnd that at om pont (.., om valu n) th M coffcnt wll bcom ngnfcant (.., narly zro). In othr word, th M r wll convrg, o that w can truncat th r and gt a vry good (although not prfct) cattrng oluton. Q: So, how many M cattrng trm mut w condr? A: It dpnd on two thng: 1) th matral proprt of th phr, and ) th z ka of th phr. A phr that hghly cattrng (.., a phr whr any of th matral proprt σ,ε, or µ ) rqur mor M cattrng trm than on that l cattrng. Lkw, a larg phr (.., ka 1) rqur many mor cattrng trm than a mall phr (.., ka 1). In fact, w can apply anothr aymptotc approxmaton: phr n n ka ka n ( ) ( ) ( ) lm r lm a ψ r a ψ r

58 11/11/4 Raylgh Scattrng 4/4 In othr word, for lctrcally mall phr (.., ka 1), th cattrd fld approxmatly qual to th frt M cattrng trm. Th approxmaton known a th Raylgh approxmaton, and gratly mplf th cattrng oluton not only for lctrcally mall phr, but for any lctrcally mall partcl! In fact, any lctrcally mall partcl (.., all partcl dmnon ar mall wth rpct to a wavlngth) condrd to b a Raylgh Scattrr, wth t cattrng oluton pcfd n trm of a polarzablty tnor.

59 11/11/4 Th Polarzablty Tnor 1/6 Th Polarzablty Tnor ntally, vry mall partcl (.., Raylgh Scattrr) cattrr lk a mpl lctrc dpol. p In othr word, th ncdnt fld wll polarz th partcl, cratng dpol wth momnt p. Th rlatonhp btwn p and pcfd wth th partcl polarzablty tnor P : p ε P Th polarzablty tnor of a partcl compltly dpndnt on partcl proprt uch a z, hap, and matral. Convrly, t compltly ndpndnt of ncdnt or cattrng drcton, or polarzaton, or vn frquncy ω! Th cattrng matrx for an lctrc dpol wth momnt p :

60 11/11/4 Th Polarzablty Tnor /6 k ˆ ˆ k ˆ ˆ ( k ) k p S 4πε ( ) k k P 4π Th lmnt of th cattrng matrx can b vn mor mply tatd a: S S k k ˆ 4π 4π ( v ˆ P v ˆ ) S ( ˆ ) hv h P v vv vh k 4π 4π ( ) k v ˆ ( ) P h ˆ ˆ ˆ Shh h P h Not that th cattrng matrx lmnt ar dpndnt on ncdnt and cattrng drcton ˆk and ˆk, but only bcau thy affct th drcton of polarzaton vctor h ˆ, v ˆ, tc. W now can conclud many thng about Raylgh cattr, bad on our prvou analy and dcuon.

61 11/11/4 Th Polarzablty Tnor 3/6 For xampl, th cattrng cro-cton of a Raylgh partcl : vv ( k ˆ, k ˆ ) 4 vv ( k ˆ, k ˆ ) ˆ ˆ v P v σ π S k σ ( k ˆ, k ˆ ) 4 π S ( k ˆ, k ˆ ) k v h ˆ vh vh ˆ P σ ( k ˆ, k ˆ ) 4 π S ( k ˆ, k ˆ ) k h ˆ v ˆ hv hv P σ ( k ˆ, k ˆ ) 4 π S ( k ˆ, k ˆ ) k h ˆ h ˆ hh hh P Whl th xtncton cro-cton approxmatly: 4π σ Im S ˆ, ˆ k Im ˆ ˆ { ( )} k k { v P v } v vv k 4π σ Im S ˆ, ˆ k Im ˆ ˆ { ( )} { } hh k k h P h h k And thu th ffctv propagaton contant n a random collcton of Raylgh Scattrr : π n ˆ ˆ nk k k + S k, k k + v ˆ P v ˆ ( ) v o o ff vv k π n ˆ ˆ nk k k + S k, k k + h ˆ P h ˆ ( ) h o o ff hh k

62 11/11/4 Th Polarzablty Tnor 4/6 Q: OK, I that th polarzaton tnor all w nd to dcrb Raylgh cattrng, but what th polarzaton tnor? A: For th mplt Raylgh Scattrr a dlctrc phr w fnd that th polarzablty tnor : P εr 1 vo 3 I ε + r 3 whr v o th volum of th phr ( vo 4π a 3), ε r th rlatv dlctrc of th phr, and I th dntty tnor. Th valu P, dfnd a: εr 1 P 3 ε + r th normalzd polarzablty of a phr (.., th polarzablty pr unt volum). Thrfor, w can conclud that: σ ˆ ˆ k ˆ ˆ k v P ˆ vv ( k, k ) v P v o v v σ ( k ˆ, k ˆ ) k v h ˆ k v P v h ˆ vh ˆ P ˆ o σ ( k ˆ, k ˆ ) k h ˆ v k v P h ˆ v hv P ˆ o σ ( k ˆ, k ˆ ) k h ˆ h ˆ k v P h ˆ h ˆ hh P o

63 11/11/4 Th Polarzablty Tnor 5/6 and that: v σ kim kvo Im P ka Im P 3π { } { } ( ) 3 λ v ˆ P v ˆ { } h λ σ kim kvo Im P ka Im P 3π Not that σ v { } h ˆ P h ˆ { } ( ) 3 { } σ, and that th xtncton coffcnt v ncra proportonally wth ( ka ) 3. W fnd that th propagaton contant of a collcton of phrcal cattrr thrfor: v nk o fv kff k + vop k 1 P + h nk o fv kff k + vop k 1 P + whr f v th fractonal volum, dfnd a: fv no vo Not that th valu approxmatly th fracton of th total volum that flld wth phr. Typcally, a cattrng mdum condrd to b par f f 1. (.., l than 1 % flld). v

64 11/11/4 Th Polarzablty Tnor 6/6 Q: OK, o w now know th cattrng oluton for phrcal Raylgh cattr, but what about non-phrcal partcl? A: W fnd that th polarzablty tnor for partcl that ar roughly phrcal (.g., an c crytal) typcally vry clo to that of a phr. A a rult, w oftn u th phrcal Raylgh cattrng oluton to approxmat th cattrng and xtncton of non-phrcal Raylgh cattrr!

65 11/11/4 Mxng Formula 1/ Mxng Formula Th propagaton contant for a wav propagatng n a homognou dlctrc mdum ε : ω k k ˆ ˆ ω εµ k v p Thu, for a random mdum wth ffctv propagaton contant k ff, w can dfn an ffctv prmttvty ε ff : k ff ω ε µ k ˆ ff For a random collcton of phrcal Raylgh cattrr, wth volum fracton f v, t can b hown that th ffctv prmttvty approxmatly: ε ff ( ) ( ) ( ) ( ) 1+ f v ε ε ε + ε ε 1 fv ε ε ε + ε whr ε th dlctrc contant of th phrcal cattrr, and ε th dlctrc of th background matral (.., th matral that th phrcal partcl) ar mbddd n).

66 11/11/4 Mxng Formula / Th prvou quaton an xampl of a dlctrc mxng formula. Th partcular formula vald whn th Raylgh cattrr ar par (.., f v < 1. ) and th Raylgh partcl ar vry mall ka 1. Thr ar othr mxng formula oluton, whch ar vald for mor dnly packd and/or largr cattrr.

67 11/11/4 Volum Scattrng from a Layr 1/ Volum Scattrng from a Layr of Scattrr Condr now th cattrng from a layr of Raylgh Scattrr abov a dlctrc half pac. d Γ Thr ar actually four frt-ordr cattrng mchanm aocatd wth th total cattrng from th layr.

68 11/11/4 Volum Scattrng from a Layr / d Γ W can u th optcal thorm or mxng formula to dtrmn th ffctv propagaton contant of th man fld n th cattrng layr. W can thn u th Dtortd Born approxmaton to dtrmn th avrag cattrd powr from th random cattrr, carfully condrng ach of th four frt-ordr cattrng mchanm. Typcally, w k to fnd th backcattrng coffcnt σ of th random mda, whch th backcattrng crocton of on quar mtr of th layr.

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors Dfnton Th nvr of an n by n atrx A an n by n atrx B whr, Not: nar Algbra Matrx Invron atrc on t hav an nvr. If a atrx ha an nvr, thn t call. Proprt of Matrx Invr. If A an nvrtbl atrx thn t nvr unqu.. (A

More information

Exercises for lectures 7 Steady state, tracking and disturbance rejection

Exercises for lectures 7 Steady state, tracking and disturbance rejection Exrc for lctur 7 Stady tat, tracng and dturbanc rjcton Martn Hromčí Automatc control 06-3-7 Frquncy rpon drvaton Automatcé řízní - Kybrnta a robota W lad a nuodal nput gnal to th nput of th ytm, gvn by

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Outline. Types of Experimental Designs. Terminology. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

Outline. Types of Experimental Designs. Terminology. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12 EEC 686/785 Modlng & Prformanc Evaluaton of Computr Sytm Lctur Outln Rvw of lctur r Factoral Dgn wth Rplcaton Dpartmnt of Elctrcal and Computr Engnrng Clvland Stat Unvrty wnbng@.org (bad on Dr. Ra Jan

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering Last Lcturs: Polaraton of Elctromagntc Wavs Phys 774: Nonlnar Spctroscopy: SHG and Scattrng Gnral consdraton of polaraton Jons Formalsm How Polarrs work Mullr matrcs Stoks paramtrs Poncar sphr Fall 7 Polaraton

More information

The Relationship Between Loss, Conductivity, and Dielectric Constant

The Relationship Between Loss, Conductivity, and Dielectric Constant Th Rlatonhp Btwn Lo, Conuctvty, an Dlctrc Contant Gnral xpron Th quton ha bn ak how lo, conuctvty, an lctrc contant ar ntrrlat. Anwrng th quton rqur a farly xtnv rvw of bac lctroagntc. Frt, au that on

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges Physcs of Vry Hgh Frquncy (VHF) Capactvly Coupld Plasma Dschargs Shahd Rauf, Kallol Bra, Stv Shannon, and Kn Collns Appld Matrals, Inc., Sunnyval, CA AVS 54 th Intrnatonal Symposum Sattl, WA Octobr 15-19,

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies.

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies. Unbound Stats OK, u untl now, w a dalt solly wt stats tat ar bound nsd a otntal wll. [Wll, ct for our tratnt of t fr artcl and w want to tat n nd r.] W want to now consdr wat ans f t artcl s unbound. Rbr

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas

Equil. Properties of Reacting Gas Mixtures. So far have looked at Statistical Mechanics results for a single (pure) perfect gas Shool of roa Engnrng Equl. Prort of Ratng Ga Mxtur So far hav lookd at Stattal Mhan rult for a ngl (ur) rft ga hown how to gt ga rort (,, h, v,,, ) from artton funton () For nonratng rft ga mxtur, gt mxtur

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

LINEAR SYSTEMS THEORY

LINEAR SYSTEMS THEORY Fall Introduton to Mdal Engnrng INEAR SYSTEMS THEORY Ho Kung Km Ph.D. houng@puan.a.r Shool of Mhanal Engnrng Puan Natonal Unvrt Evn / odd / prod funton Thn about on & n funton! Evn f - = ; Odd f - = -;

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 6: Heat Conduction: Thermal Stresses 16.512, okt Proulon Prof. Manul Martnz-Sanhz Ltur 6: Hat Conduton: Thrmal Str Efft of Sold or Lqud Partl n Nozzl Flow An u n hhly alumnzd old rokt motor. 3 2Al + O 2 Al 2 O 2 3 m.. 2072 C, b.. 2980 C In

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall

Y 0. Standing Wave Interference between the incident & reflected waves Standing wave. A string with one end fixed on a wall Staning Wav Intrfrnc btwn th incint & rflct wavs Staning wav A string with on n fix on a wall Incint: y, t) Y cos( t ) 1( Y 1 ( ) Y (St th incint wav s phas to b, i.., Y + ral & positiv.) Rflct: y, t)

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

JEE-2017 : Advanced Paper 2 Answers and Explanations

JEE-2017 : Advanced Paper 2 Answers and Explanations DE 9 JEE-07 : Advancd Papr Answrs and Explanatons Physcs hmstry Mathmatcs 0 A, B, 9 A 8 B, 7 B 6 B, D B 0 D 9, D 8 D 7 A, B, D A 0 A,, D 9 8 * A A, B A B, D 0 B 9 A, D 5 D A, B A,B,,D A 50 A, 6 5 A D B

More information

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e 8/7/018 Cours Instructor Dr. Raymond C. Rumpf Offic: A 337 Phon: (915) 747 6958 E Mail: rcrumpf@utp.du EE 4347 Applid Elctromagntics Topic 3 Skin Dpth & Powr Flow Skin Dpth Ths & Powr nots Flow may contain

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator Calculation of lctromotiv forc inducd by th lot harmonic and paramtr of th linar gnrator (*)Hui-juan IU (**)Yi-huang ZHANG (*)School of Elctrical Enginring, Bijing Jiaotong Univrity, Bijing,China 8++58483,

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

ATMO 551a Fall Water Vapor

ATMO 551a Fall Water Vapor Watr Vapor Introducton Th conttunt that mak Earth wathr and clmat o ntrtng and challngng to undrtand and modl watr. Watr xt on Earth n all thr pha: apor, lqud and old. Watr play many mportant rol many

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the Lctur 22-1 Byond Bohr Modl Unfortunatly, th classical visualization of th orbiting lctron turns out to b wrong vn though it still givs us a simpl way to think of th atom. Quantum Mchanics is ndd to truly

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Chapter 13 Laplace Transform Analysis

Chapter 13 Laplace Transform Analysis Chapr aplac Tranorm naly Chapr : Ouln aplac ranorm aplac Tranorm -doman phaor analy: x X σ m co ω φ x X X m φ x aplac ranorm: [ o ] d o d < aplac Tranorm Thr condon Unlaral on-dd aplac ranorm: aplac ranorm

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

ph People Grade Level: basic Duration: minutes Setting: classroom or field site ph Popl Adaptd from: Whr Ar th Frogs? in Projct WET: Curriculum & Activity Guid. Bozman: Th Watrcours and th Council for Environmntal Education, 1995. ph Grad Lvl: basic Duration: 10 15 minuts Stting:

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

Incorporating Subjective Characteristics in Product Design and Evaluations. Web Appendix

Incorporating Subjective Characteristics in Product Design and Evaluations. Web Appendix Incorporatng ubctv Charactrtc n Product Dgn and Evaluaton Lan Luo, P.K. Kannan, and Bran T. Ratchford Wb Appndx A. TEP I MARKOV CHAI MOTE CARLO IMULATIO Our MCMC procdur carrd out by quntally gnratng draw

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

ME 200 Thermodynamics I Spring 2014 Examination 3 Thu 4/10/14 6:30 7:30 PM WTHR 200, CL50 224, PHY 112 LAST NAME FIRST NAME

ME 200 Thermodynamics I Spring 2014 Examination 3 Thu 4/10/14 6:30 7:30 PM WTHR 200, CL50 224, PHY 112 LAST NAME FIRST NAME M 00 hrodynac Sprng 014 xanaton 3 hu 4/10/14 6:30 7:30 PM WHR 00, CL50 4, PHY 11 Crcl your dvon: PHY 11 WHR 00 WHR 00 CL50 4 CL50 4 PHY 11 7:30 Joglkar 9:30 Wagrn 10:30 Gor 1:30 Chn :30 Woodland 4:30 Srcar

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m hy3: Gnral hyscs III 4/0/008 haptr Worksht lctrc Flds: onsdr a fxd pont charg of 0 µ (q ) q = 0 µ d = 0 a What s th agntud and drcton of th lctrc fld at a pont, a dstanc of 0? q = = 8x0 ˆ o d ˆ 6 N ( )

More information

Topics to be discussed

Topics to be discussed Wav-matral Intracton n lctromagntcs: ffcts of homognzaton of mxturs and classfcaton of complx mda rsponss IAS Program HKUST Insttut of Advancd Study 6 Novmbr 1 Ar Shvola Aalto Unvrsty Dpartmnt of Rado

More information

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13)

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13) Pag- Econ7 Appld Economtrcs Topc : Dummy Dpndnt Varabl (Studnmund, Chaptr 3) I. Th Lnar Probablty Modl Suppos w hav a cross scton of 8-24 yar-olds. W spcfy a smpl 2-varabl rgrsson modl. Th probablty of

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

Linear Algebra Provides a Basis for Elasticity without Stress or Strain

Linear Algebra Provides a Basis for Elasticity without Stress or Strain Soft, 05, 4, 5-4 Publshd Onln Sptmbr 05 n ScRs. http://www.scrp.org/ournal/soft http://dx.do.org/0.46/soft.05.400 Lnar Algbra Provds a Bass for Elastcty wthout Strss or Stran H. H. Hardy Math/Physcs Dpartmnt,

More information

Laboratory associate professor Radu Damian Wednesday 12-14, II.12 odd weeks L 25% final grade P 25% final grade

Laboratory associate professor Radu Damian Wednesday 12-14, II.12 odd weeks L 25% final grade P 25% final grade ctur 8/9 C/, MDC Attndanc at mnmum 7 sssons (cours + laboratory) cturs- assocat profssor adu Daman Frday 9-,? III.34, II.3 E 5% fnal grad problms + (p attn. lct.) + (3 tsts) + (bonus actvty) 3p=+.5p all

More information

ANALYTICAL FUNCTIONAL FORM AND FITTING PROCEDURE

ANALYTICAL FUNCTIONAL FORM AND FITTING PROCEDURE Elctronc Supplmntary Matral (ESI) for Phycal Chmtry Chmcal Phyc. Th journal th Onr Soct 6 Supplmntary Informaton Ttl: at contant calculaton of th GH + OH/O GH + H O/HO racton ung an ab nto bad full-dmnonal

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8 CIVL 8/7 -D Boundar Valu Problm - rangular Elmn () /8 SI-ODE RIAGULAR ELEMES () A quadracall nrpolad rangular lmn dfnd b nod, hr a h vrc and hr a h mddl a ach d. h mddl nod, dpndng on locaon, ma dfn a

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Basic Electrical Engineering for Welding [ ] --- Introduction --- Basc Elctrcal Engnrng for Wldng [] --- Introducton --- akayosh OHJI Profssor Ertus, Osaka Unrsty Dr. of Engnrng VIUAL WELD CO.,LD t-ohj@alc.co.jp OK 15 Ex. Basc A.C. crcut h fgurs n A-group show thr typcal

More information

NOTES FOR CHAPTER 17. THE BOLTZMANN FACTOR AND PARTITION FUNCTIONS. Equilibrium statistical mechanics (aka statistical thermodynamics) deals with the

NOTES FOR CHAPTER 17. THE BOLTZMANN FACTOR AND PARTITION FUNCTIONS. Equilibrium statistical mechanics (aka statistical thermodynamics) deals with the OTE FOR CHAPTER 7. THE BOLTZMA FACTOR AD PARTITIO FUCTIO Equlbrum statstcal mchancs (aa statstcal thrmodynamcs) dals wth th prdcton of qulbrum thrmodynamc functon, (.g. nrgs, fr nrgs and thr changs) from

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time. Elctroncphalography EEG Dynamc Causal Modllng for M/EEG ampltud μv tm ms tral typ 1 tm channls channls tral typ 2 C. Phllps, Cntr d Rchrchs du Cyclotron, ULg, Blgum Basd on slds from: S. Kbl M/EEG analyss

More information

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

:2;$-$(01*%<*=,-./-*=0;%/;-* !"#$%'()%"*#%*+,-./-*+01.2(.*3+456789*!"#$%"'()'*+,-."/0.%+1'23"45'46'7.89:89'/' ;8-,"$4351415,8:+#9' Dr. Ptr T. Gallaghr Astrphyscs Rsarch Grup Trnty Cllg Dubln :2;$-$(01*%

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS It is not possibl to find flu through biggr loop dirctly So w will find cofficint of mutual inductanc btwn two loops and thn find th flu through biggr loop Also rmmbr M = M ( ) ( ) EDT- (JEE) SOLUTIONS

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

1- Summary of Kinetic Theory of Gases

1- Summary of Kinetic Theory of Gases Dr. Kasra Etmad Octobr 5, 011 1- Summary of Kntc Thory of Gass - Radaton 3- E4 4- Plasma Proprts f(v f ( v m 4 ( kt 3/ v xp( mv kt V v v m v 1 rms V kt v m ( m 1/ v 8kT m 3kT v rms ( m 1/ E3: Prcntag of

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

CLASSICAL STATISTICS OF PARAMAGNETISM

CLASSICAL STATISTICS OF PARAMAGNETISM Prof. Dr. I. assr Phys 530 8-Dc_0 CLASSICAL STATISTICS OF PARAMAGETISM Th most famous typs of Magntc matrals ar: () Paramagntc: A proprty xhbt by substancs whch, whn placd n a magntc fld, ar magntd paralll

More information

Properties of ferromagnetic materials, magnetic circuits principle of calculation

Properties of ferromagnetic materials, magnetic circuits principle of calculation Proprts of frromagntc matrals magntc crcuts prncpl of calculaton Frromagntc matrals Svral matrals rprsnt dffrnt macroscopc proprts thy gv dffrnt rspons to xtrnal magntc fld Th rason for dffrnc s crtan

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information