Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations

Size: px
Start display at page:

Download "Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations"

Transcription

1 Physis Notes Note 9 Marh 009 Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque New Mexio 873 Abstrat A lassial question in eletromagneti theory onerns the onstrution of a Lagrangian from whih the Maxwell equations an be derived. In this paper a Lagrangian is formulated for the (omplex) ombined Maxwell equation, inluding both eletri and magneti potentials. ` This work was sponsored in part by the Air Fore Offie of Sientifi Researh.

2 . Introdution One way to formulate the Maxwell equations is via a Lagrangion density, L, whih an be found in various tests, e.g., []. In this formalism the Lagrangian is a salar funtion of the various eletromagneti field omponents, urrent-density omponents, and potential (vetor and salar) omponents. A ertain ombination of these (forming L) is differentiated with respet to the oordinates (spae and time) and with respet to the spatial derivatives of the potentials, where the potential omponents and their derivatives (forming the fields) are regarded as separate variables for this purpose. (This is also referened as the Euler-Lagrange equation.) One an also write the Maxwell equations in ombined-field form, reduing these to a single url equation extended to the four-vetor form of the Maxwell equations, as well as the quaternion form []. In this paper we investigate the appliation of the Lagrangian to the four-vetor form of the ombined Maxwell equation.. Combined-Field Form of the Maxwell Equations. Three-vetor form The ombined Maxwell equation is [3] where jq Eq( r, t) jq Z J q( r, t) t Eq ( r, t) E( r, t) jq Z H( r, t) ombined field (.) Z jq J q( r, t) J ( r, t) J m( r, t) ombined urrent density Z / wave impedane of uniform, isotropi, frequeny-independent medium (e.g. free spae) / wave propagation speed (light speed in free spae) (.) q separation index Taking the divergene of (.) we have Eq( r, t) Dq( r, t) J q ( r, t) t t J q ( r, t) q ( r, t) t

3 jq q( r, t) ( r, t) m( r, t) ombined harge density (.3) Z This is extended to the potentials Aq ( r, t) A( r, t) jq Z Am ( r, t) q( r, t) ( r, t) jqq( r, t) (.) This gives the ombined field as Eq( r, t) q ( r, t) jq Aq( r, t) t (.5) with the integral representation r r J q ( r, t ) Aq ( r, t) dv r r V r r (, ) q r t q ( r, t) dv r r V (.6) These are related by the gauge ondition Aq ( r, t) (, ) 0 q r t (.7) t. Four-vetor form The spae-time oordinates take the form [3] 3

4 3 rp ( r, Tp) x, y, z, Tp r, r, r, r p x yx zx TpT p Tp jpt, p (.8) p additional separation index Here an overbar is used to indiate a -vetor. The del operator and laplaian beome p, Tp p p Tp t (.9) Then we have J pq, ( rp) J q ( r, t), jpq( r, t) (-urrent density) J pq, ( rp) 0 J q ( r, t) q( r, t) t (ontinuity) (.0) p Apq, ( rp) Aq ( r, t), j q( r, t) (-potential) p Apq, ( r, t) Aq ( r, t) (, ) 0 q r t (Lorentz gauge) t p Apq, ( rp) Jpq, ( rp) Jpq, ( rp ) Apq, ( rp) dv, rp r, jpt r r r r V (.) This leads to the -vetor form of the ombined Maxwell equation as p E pq, ( r p) jqzj pq, ( r p)

5 Epq, ( rp) 0 Ez E q y pqe q xq Ez 0 E q x pqe q y q Ey Ex 0 pqe q q z q pqex pqey pqez 0 q q q E T pq, ( r p ) (skew symmetri) (.) We also have Epq, ( rp) Epq, ( rp) Epq, ( rp) Eq( r, t) Eq( r, t) (.3) Where Eq( r,) t Eq( r,) t E( r,) t E( r,) t Z H( r,) t H( r,) t j qz E( r,) t H( r,) t (.) whih is preserved under Lorentz transformation. Assuming that (.) is nonzero (whih is not the ase for a plane wave), then the field four-dyadi has an inverse as E pq, ( rp) Eq( r, t) Eq( r, t) Epq, ( rp) (.5) i.e., exept for a salar multiplier it is its own inverse. It has determinant and trae with eigenvalues det Epq, rp Eq( r, t) Eq( r, t), trepq, ( rp) 0 (.6) / qep, qrp Eq( r, t) Eq( r, t) (.7) with eah sign taken twie..3 Dual of a four-dyadi Define dnmn,,, m / for any even permutation of (,, 3, ) -/ for any odd permutation of (,, 3, ) 0 otherwise (any two indies equal) dnmn,,, m tetradi or fourth-rank tensor (.8) 5

6 For an antisymmetri dyadi X 0 X, X,3 X, X, 0 X,3 X, X,3 X,3 0 X 3, X, X, X3, 0 X T (.9) The dual dyadi is also antisymmetri as with dual nm nm 0 X3, X, X,3 X3, 0 X, X,3 X, X, 0 X, X,3 X,3 X, 0 X dnmnm,,, X, (.0) dual dual X X (.) Applying this to the ombined field dyadi gives [3] E, r pqe, r dual p q p p q p (.) whih, exept for a possible sign hange, makes the ombined-field four-dyadi self dual.. Four-dyadi field tensor related to potentials From [3] we have T T Ep, q( rp) jq pap, q( rp) pap, q( rp) p dual pap, q( rp) pap, q( rp) (.3) 3. Classial Lagrangian Formulation Following [] we have (in his units) 6

7 L F, J A, L F, r A r rv L J A (3.) giving the Maxwell equations F, r F, J 0 Bz By jex Bz 0 Bx jey By Bx 0 jez jex jey jez 0 (3.). Combined-Field Lagrangian So now let us try something of the form (in MKS units) L E ; pq, ( rp) Jpq, ( rp) Apq, ( rp) (.) onstant to be determined. First term ( An / rm terms) The first term involves the derivatives of the potentials with respet to the four oordinates. So we write L E ; pq, rp Eq( r, t) Eq( r, t) Eq ( r, t) (.) from (.) (or (.3)). This also takes the form in (.) in terms of E and H. 7

8 In terms of the potentials we have dual () () Epq, rp jqx jpx T () X papq, ( r p) papq, ( r p) () () X dual X () () Epq, rp jqx jqx pqepq, rp (.3) Where () X and () X are expliitely exhibited in [3]. For L we then have (suppressing the p, q subsripts on the vetor-potential omponents, and spae-time oordinates) L E ; pq, ( rp) () () jqxnm, jpx, nm () () () () X X pqx Xnm, () () (3) L L L () () () () L L Xnm, Xnm, A n An (zero for n = m, 6 nonzero terms) rm rn mn (3) A AA3 A L pq r r r r3 A A3 A A r3 r r r A A3 A A r3 r r r (.) Now we form the x dyadi 8

9 () () L L An / rm An / rm A A A 0 A3 A A r r r3 r r r A A A 0 A3 A A r r r3 r r r A 3 A A3 A A 0 3 A r r3 r r3 r r3 A A A A A A 3 0 r r r r r3 r () () T X X (.5) Similarly we form (3) L An / rm A3 A A A A A3 0 r r3 r r r3 r A A3 A 0 A A3 A r3 r r r r r3 pq A A A A A 0 A r r r r r r A3 A A A3 A A 0 r r3 r3 r r r () () T pqx pqx (.6) Summing these we have L () () X pqx An / r m jqe pq, ( rp) T q papq, ( rp) papq, ( rp) T pdual papq, ( rp) papq, ( rp) (.7) with the last result from (.3). 9

10 Now we have (from (.)) p L An / rm jq p Epq, ( rp) ZJ pq, ( rp) Jpq, ( rp) (.8). Seond term ( An terms) From (.) we have the seond term L Jpq, ( rp) Apq, ( rp) (.9) Taking the derivatives with respet to the A pq, four omponents gives a gradient as L An J pq, ( rp) (.0).3 Combining both terms Combining the An / rm and An derivatives of the Lagrangian to give the required zero variational form, we have p L L An / rm An Jpq, ( rp) Jpq, ( rp) 0 (.) This requires / (.) To give our Lagrangian 0

11 L Enmpq, ;, ( rp) Jpq, ( rp) Apq, ( rp) Eq( r,) t Eq( r,) t J q ( r,) t Aq( r,) t q( r,) t q( r,) t (.3) By our previous derivation this Lagrangian is differentiable in the usual Lagrangian way to give the Maxwell equation (.) in -vetor/tensor form. 5. Conluding Remarks It is thus possible to onstrut a Lagrangian for the ombined-field Maxwell equations, expressed in fourvetor/dyadi form. This works for all hoies of q (field-separation index) and p (time-separation index). Referenes. C. E. Baum, The Combined Field in Quaternian Form, Physis Note 3, Otober J. J. Sakurai, Advaned Quantum Mehanis, Addison-Wesley, C. E. Baum and H. N. Kritikos, Symmetry in Eletromagnetis, h., pp. -90, in C. E. Baum and H. N. Kritikos (eds.), Eletromagneti Symmetry, Taylor & Franis, 995.

Vector Field Theory (E&M)

Vector Field Theory (E&M) Physis 4 Leture 2 Vetor Field Theory (E&M) Leture 2 Physis 4 Classial Mehanis II Otober 22nd, 2007 We now move from first-order salar field Lagrange densities to the equivalent form for a vetor field.

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

The Unified Geometrical Theory of Fields and Particles

The Unified Geometrical Theory of Fields and Particles Applied Mathematis, 014, 5, 347-351 Published Online February 014 (http://www.sirp.org/journal/am) http://dx.doi.org/10.436/am.014.53036 The Unified Geometrial Theory of Fields and Partiles Amagh Nduka

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

Hamiltonian with z as the Independent Variable

Hamiltonian with z as the Independent Variable Hamiltonian with z as the Independent Variable 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 Marh 19, 2011; updated June 19, 2015) Dedue the form of the Hamiltonian

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Time Domain Method of Moments

Time Domain Method of Moments Time Domain Method of Moments Massahusetts Institute of Tehnology 6.635 leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Examples of Tensors. February 3, 2013

Examples of Tensors. February 3, 2013 Examples of Tensors February 3, 2013 We will develop a number of tensors as we progress, but there are a few that we an desribe immediately. We look at two ases: (1) the spaetime tensor desription of eletromagnetism,

More information

TENSOR FORM OF SPECIAL RELATIVITY

TENSOR FORM OF SPECIAL RELATIVITY TENSOR FORM OF SPECIAL RELATIVITY We begin by realling that the fundamental priniple of Speial Relativity is that all physial laws must look the same to all inertial observers. This is easiest done by

More information

Bäcklund Transformations: Some Old and New Perspectives

Bäcklund Transformations: Some Old and New Perspectives Bäklund Transformations: Some Old and New Perspetives C. J. Papahristou *, A. N. Magoulas ** * Department of Physial Sienes, Helleni Naval Aademy, Piraeus 18539, Greee E-mail: papahristou@snd.edu.gr **

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

Chapter 11. Maxwell's Equations in Special Relativity. 1

Chapter 11. Maxwell's Equations in Special Relativity. 1 Vetor Spaes in Phsis 8/6/15 Chapter 11. Mawell's Equations in Speial Relativit. 1 In Chapter 6a we saw that the eletromagneti fields E and B an be onsidered as omponents of a spae-time four-tensor. This

More information

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations.

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations. The Corpusular Struture of Matter, the Interation of Material Partiles, and Quantum Phenomena as a Consequene of Selfvariations. Emmanuil Manousos APM Institute for the Advanement of Physis and Mathematis,

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Application of Bi-Quaternions in Physics

Application of Bi-Quaternions in Physics Appliation of Bi-Quaternions in Physis André Waser * First issued: 9.7. Last update: 6.5.7 This paper introdues a new bi-quaternion notation and applies this notation to eletrodynamis. A set of extended

More information

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006 Cherenkov Radiation Bradley J. Wogsland August 3, 26 Contents 1 Cherenkov Radiation 1 1.1 Cherenkov History Introdution................... 1 1.2 Frank-Tamm Theory......................... 2 1.3 Dispertion...............................

More information

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract

Spinning Charged Bodies and the Linearized Kerr Metric. Abstract Spinning Charged Bodies and the Linearized Kerr Metri J. Franklin Department of Physis, Reed College, Portland, OR 97202, USA. Abstrat The physis of the Kerr metri of general relativity (GR) an be understood

More information

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle

Brazilian Journal of Physics, vol. 29, no. 3, September, Classical and Quantum Mechanics of a Charged Particle Brazilian Journal of Physis, vol. 9, no. 3, September, 1999 51 Classial and Quantum Mehanis of a Charged Partile in Osillating Eletri and Magneti Fields V.L.B. de Jesus, A.P. Guimar~aes, and I.S. Oliveira

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

arxiv: v1 [math-ph] 13 Sep 2018

arxiv: v1 [math-ph] 13 Sep 2018 The method of Fourier transforms applied to eletromagneti knots arxiv:809.04869v [math-ph] 3 Sep 08. Introdution M Arrayás and J L Trueba Área de Eletromagnetismo, Universidad Rey Juan Carlos, Tulipán

More information

The concept of the general force vector field

The concept of the general force vector field The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. 22-79, Perm, Russia E-mail: intelli@list.ru A hypothesis is suggested that the lassial eletromagneti and gravitational

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

Theory of Dynamic Gravitational. Electromagnetism

Theory of Dynamic Gravitational. Electromagnetism Adv. Studies Theor. Phys., Vol. 6, 0, no. 7, 339-354 Theory of Dynami Gravitational Eletromagnetism Shubhen Biswas G.P.S.H.Shool, P.O.Alaipur, Pin.-7445(W.B), India shubhen3@gmail.om Abstrat The hange

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

arxiv:physics/ v1 14 May 2002

arxiv:physics/ v1 14 May 2002 arxiv:physis/0205041 v1 14 May 2002 REPLY TO CRITICISM OF NECESSITY OF SIMULTANEOUS CO-EXISTENCE OF INSTANTANEOUS AND RETARDED INTERACTIONS IN CLASSICAL ELECTRODYNAMICS by J.D.Jakson ANDREW E. CHUBYKALO

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

The concept of the general force vector field

The concept of the general force vector field OALib Journal, Vol. 3, P. 1-15 (16). http://dx.doi.org/1.436/oalib.11459 The onept of the general fore vetor field Sergey G. Fedosin PO box 61488, Sviazeva str. -79, Perm, Russia E-mail: intelli@list.ru

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

QUATERNION/VECTOR DUAL SPACE ALGEBRAS APPLIED TO THE DIRAC EQUATION AND ITS EXTENSIONS

QUATERNION/VECTOR DUAL SPACE ALGEBRAS APPLIED TO THE DIRAC EQUATION AND ITS EXTENSIONS Bulletin of the Transilvania University of Braşov ol 857), No. 1-215 Series III: Mathematis, Informatis, Physis, 27-42 QUATERNION/ECTOR DUAL SPACE ALGEBRAS APPLIED TO THE DIRAC EQUATION AND ITS EXTENSIONS

More information

Armenian Theory of Special Relativity (Illustrated) Robert Nazaryan 1 and Haik Nazaryan 2

Armenian Theory of Special Relativity (Illustrated) Robert Nazaryan 1 and Haik Nazaryan 2 29606 Robert Nazaryan Haik Nazaryan/ Elixir Nulear & Radiation Phys. 78 (205) 29606-2967 Available online at www.elixirpublishers.om (Elixir International Journal) Nulear Radiation Physis Elixir Nulear

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

A generalized equation of state with an application to the Earth s Mantle

A generalized equation of state with an application to the Earth s Mantle Geofísia Internaional 49 (), 77-8 (010) A generalized equation of state with an appliation to the Earth s Mantle J. A. Robles-Gutiérrez 1, J. M. A. Robles-Domínguez 1 and C. Lomnitz 1 Universidad Autónoma

More information

Complexity of Regularization RBF Networks

Complexity of Regularization RBF Networks Complexity of Regularization RBF Networks Mark A Kon Department of Mathematis and Statistis Boston University Boston, MA 02215 mkon@buedu Leszek Plaskota Institute of Applied Mathematis University of Warsaw

More information

Classical Trajectories in Rindler Space and Restricted Structure of Phase Space with PT-Symmetric Hamiltonian. Abstract

Classical Trajectories in Rindler Space and Restricted Structure of Phase Space with PT-Symmetric Hamiltonian. Abstract Classial Trajetories in Rindler Spae and Restrited Struture of Phase Spae with PT-Symmetri Hamiltonian Soma Mitra 1 and Somenath Chakrabarty 2 Department of Physis, Visva-Bharati, Santiniketan 731 235,

More information

Theoretical background of T.T. Brown Electro-Gravity Communication System

Theoretical background of T.T. Brown Electro-Gravity Communication System Theoretial bakground of T.T. Brown Eletro-Gravity Communiation System Algirdas Antano Maknikas Institute of Mehanis, Vilnius Gediminas Tehnial University September 1, 2014 Abstrat The author proposed theory

More information

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is

Dirac s equation We construct relativistically covariant equation that takes into account also the spin. The kinetic energy operator is Dira s equation We onstrut relativistially ovariant equation that takes into aount also the spin The kineti energy operator is H KE p Previously we derived for Pauli spin matries the relation so we an

More information

Temperature-Gradient-Driven Tearing Modes

Temperature-Gradient-Driven Tearing Modes 1 TH/S Temperature-Gradient-Driven Tearing Modes A. Botrugno 1), P. Buratti 1), B. Coppi ) 1) EURATOM-ENEA Fusion Assoiation, Frasati (RM), Italy ) Massahussets Institute of Tehnology, Cambridge (MA),

More information

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

Discrete Bessel functions and partial difference equations

Discrete Bessel functions and partial difference equations Disrete Bessel funtions and partial differene equations Antonín Slavík Charles University, Faulty of Mathematis and Physis, Sokolovská 83, 186 75 Praha 8, Czeh Republi E-mail: slavik@karlin.mff.uni.z Abstrat

More information

Electromagnetic Stress and Momentum in the Combined-Field Formalism

Electromagnetic Stress and Momentum in the Combined-Field Formalism Physics Notes Note 0 11 March 009 Electromagnetic Stress and Momentum in the Combined-Field Formalism Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract

An Effective Photon Momentum in a Dielectric Medium: A Relativistic Approach. Abstract An Effetive Photon Momentum in a Dieletri Medium: A Relativisti Approah Bradley W. Carroll, Farhang Amiri, and J. Ronald Galli Department of Physis, Weber State University, Ogden, UT 84408 Dated: August

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

arxiv: v1 [physics.class-ph] 12 Mar 2012

arxiv: v1 [physics.class-ph] 12 Mar 2012 Relativisti Dynamis of a Charged Partile in an Eletrosalar Field D.V. Podgainy 1, O.A. Zaimidoroga 2 arxiv:1203.2490v1 [physis.lass-ph] 12 Mar 2012 Joint Institute for Nulear Researh 141980, Dubna, Russia

More information

1 Summary of Electrostatics

1 Summary of Electrostatics 1 Summary of Eletrostatis Classial eletrodynamis is a theory of eletri and magneti fields aused by marosopi distributions of eletri harges and urrents. In these letures, we reapitulate the basi onepts

More information

Vector Analysis in Three Dimensions

Vector Analysis in Three Dimensions Appendix 1 etor Analysis in Three Dimensions MULTIPLICATIE RELATIONHIP a (b ) = (a b) = b ( a) (A1.1) a (b ) = b(a ) (a b) (A1.2) a (b ) (b a) = b (a ) (A1.3) (a b) ( d) = (a )(b d) (a d)(b ) (A1.4) a

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Differential Forms and Electromagnetic Field Theory

Differential Forms and Electromagnetic Field Theory Progress In Eletromagnetis Researh, Vol. 148, 83 112, 2014 Differential Forms and Eletromagneti Field Theory Karl F. Warnik 1, * and Peter Russer 2 (Invited Paper) Abstrat Mathematial frameworks for representing

More information

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach

Measuring & Inducing Neural Activity Using Extracellular Fields I: Inverse systems approach Measuring & Induing Neural Ativity Using Extraellular Fields I: Inverse systems approah Keith Dillon Department of Eletrial and Computer Engineering University of California San Diego 9500 Gilman Dr. La

More information

Energy Gaps in a Spacetime Crystal

Energy Gaps in a Spacetime Crystal Energy Gaps in a Spaetime Crystal L.P. Horwitz a,b, and E.Z. Engelberg a Shool of Physis, Tel Aviv University, Ramat Aviv 69978, Israel b Department of Physis, Ariel University Center of Samaria, Ariel

More information

arxiv: v1 [math-ph] 14 Apr 2008

arxiv: v1 [math-ph] 14 Apr 2008 Inverse Vetor Operators Shaon Sahoo arxiv:0804.9v [math-ph] 4 Apr 008 Department of Physis, Indian Institute of Siene, Bangalore 5600, India. Abstrat In different branhes of physis, we frequently deal

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

The Thomas Precession Factor in Spin-Orbit Interaction

The Thomas Precession Factor in Spin-Orbit Interaction p. The Thomas Preession Fator in Spin-Orbit Interation Herbert Kroemer * Department of Eletrial and Computer Engineering, Uniersity of California, Santa Barbara, CA 9306 The origin of the Thomas fator

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Phys 561 Classical Electrodynamics. Midterm

Phys 561 Classical Electrodynamics. Midterm Phys 56 Classial Eletrodynamis Midterm Taner Akgün Department of Astronomy and Spae Sienes Cornell University Otober 3, Problem An eletri dipole of dipole moment p, fixed in diretion, is loated at a position

More information

A note on a variational formulation of electrodynamics

A note on a variational formulation of electrodynamics Proeedings of the XV International Workshop on Geometry and Physis Puerto de la Cruz, Tenerife, Canary Islands, Spain September 11 16, 006 Publ. de la RSME, Vol. 11 (007), 314 31 A note on a variational

More information

As Regards the Speed in a Medium of the Electromagnetic Radiation Field

As Regards the Speed in a Medium of the Electromagnetic Radiation Field Journal of Modern Physis, 6, 7, 3-33 Published Online July 6 in SiRes. http://www.sirp.org/journal/jmp http://dx.doi.org/.436/jmp.6.78 As Regards the Speed in a Medium of the letromagneti Radiation Field

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Gyrokinetic calculations of the neoclassical radial electric field in stellarator plasmas

Gyrokinetic calculations of the neoclassical radial electric field in stellarator plasmas PHYSICS OF PLASMAS VOLUME 8, NUMBER 6 JUNE 2001 Gyrokineti alulations of the neolassial radial eletri field in stellarator plasmas J. L. V. Lewandowski Plasma Physis Laboratory, Prineton University, P.O.

More information

Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data

Comparison of Alternative Equivalent Circuits of Induction Motor with Real Machine Data Comparison of Alternative Equivalent Ciruits of Indution Motor with Real Mahine Data J. radna, J. auer, S. Fligl and V. Hlinovsky Abstrat The algorithms based on separated ontrol of the motor flux and

More information

Quaternions in Electrodynamics

Quaternions in Electrodynamics Quaternions in Eletrodynamis André Waser * Issued: 9.07.000 Last modifiation: 04.07.001 At the advent of MAXWELL s eletrodynamis the quaternion notation was often used, but today this is replaed in all

More information

Lecture 15 (Nov. 1, 2017)

Lecture 15 (Nov. 1, 2017) Leture 5 8.3 Quantum Theor I, Fall 07 74 Leture 5 (Nov., 07 5. Charged Partile in a Uniform Magneti Field Last time, we disussed the quantum mehanis of a harged partile moving in a uniform magneti field

More information

Classical Field Theory

Classical Field Theory Preprint typeset in JHEP style - HYPER VERSION Classial Field Theory Gleb Arutyunov a a Institute for Theoretial Physis and Spinoza Institute, Utreht University, 3508 TD Utreht, The Netherlands Abstrat:

More information

Physics; Watching the Game From the Outside

Physics; Watching the Game From the Outside Physis; Wathing the Game From the Outside Roald C. Maximo Feb It is a good thing to have two ways of looking at a subjet, and also admit that there are two ways of looking at it. James Clerk Maxwell, on

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

Nonreversibility of Multiple Unicast Networks

Nonreversibility of Multiple Unicast Networks Nonreversibility of Multiple Uniast Networks Randall Dougherty and Kenneth Zeger September 27, 2005 Abstrat We prove that for any finite direted ayli network, there exists a orresponding multiple uniast

More information

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties

Robust Flight Control Design for a Turn Coordination System with Parameter Uncertainties Amerian Journal of Applied Sienes 4 (7): 496-501, 007 ISSN 1546-939 007 Siene Publiations Robust Flight ontrol Design for a urn oordination System with Parameter Unertainties 1 Ari Legowo and Hiroshi Okubo

More information

A 4 4 diagonal matrix Schrödinger equation from relativistic total energy with a 2 2 Lorentz invariant solution.

A 4 4 diagonal matrix Schrödinger equation from relativistic total energy with a 2 2 Lorentz invariant solution. A 4 4 diagonal matrix Shrödinger equation from relativisti total energy with a 2 2 Lorentz invariant solution. Han Geurdes 1 and Koji Nagata 2 1 Geurdes datasiene, 2593 NN, 164, Den Haag, Netherlands E-mail:

More information

[Khalid, 5(3): March 2018] ISSN DOI /zenodo Impact Factor

[Khalid, 5(3): March 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES LORENZ TRANSFORMATION FOR FREE SPACE AND FIELDS USING MAXWELL S EQUATIONS AND NEWTON'S LAWS Nuha Abdelrahman Khalid*, Mubarak Dirar Abdallah, Zoalnoon

More information

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Eigenvectors and eigenvalues of a matrix MODELING MATTER AT NANOSCALES 4 Introdution to quantum treatments 403 Eigenvetors and eigenvalues of a matrix Simultaneous equations in the variational method The problem of simultaneous equations in the

More information

arxiv: v1 [physics.plasm-ph] 5 Aug 2012

arxiv: v1 [physics.plasm-ph] 5 Aug 2012 Classial mirosopi derivation of the relativisti hydrodynamis equations arxiv:1208.0998v1 [physis.plasm-ph] 5 Aug 2012 P. A. Andreev Department of General Physis, Physis Faulty, Mosow State University,

More information

Classical Diamagnetism and the Satellite Paradox

Classical Diamagnetism and the Satellite Paradox Classial Diamagnetism and the Satellite Paradox 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 (November 1, 008) In typial models of lassial diamagnetism (see,

More information

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves The Conept of the Effetive Mass Tensor in GR The Gravitational Waves Mirosław J. Kubiak Zespół Szkół Tehniznyh, Grudziądz, Poland Abstrat: In the paper [] we presented the onept of the effetive mass tensor

More information

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS Journal of Optoeletronis and Advaned Materials Vol. 5, o. 5,, p. 4-4 RADIATIO POWER SPECTRAL DISTRIBUTIO OF CHARGED PARTICLES MOVIG I A SPIRAL I MAGETIC FIELDS A. V. Konstantinovih *, S. V. Melnyhuk, I.

More information

Bäcklund Transformations and Explicit Solutions of (2+1)-Dimensional Barotropic and Quasi-Geostrophic Potential Vorticity Equation

Bäcklund Transformations and Explicit Solutions of (2+1)-Dimensional Barotropic and Quasi-Geostrophic Potential Vorticity Equation Commun. Theor. Phys. Beijing, China) 53 010) pp. 803 808 Chinese Physial Soiety and IOP Publishing Ltd Vol. 53, No. 5, May 15, 010 Bäklund Transformations and Expliit Solutions of +1)-Dimensional Barotropi

More information

Long time stability of regularized PML wave equations

Long time stability of regularized PML wave equations Long time stability of regularized PML wave equations Dojin Kim Email:kimdojin@knu.a.kr Yonghyeon Jeon Email:dydgus@knu.a.kr Philsu Kim Email:kimps@knu.a.kr Abstrat In this paper, we onsider two dimensional

More information

New Potential of the. Positron-Emission Tomography

New Potential of the. Positron-Emission Tomography International Journal of Modern Physis and Appliation 6; 3(: 39- http://www.aasit.org/journal/ijmpa ISSN: 375-387 New Potential of the Positron-Emission Tomography Andrey N. olobuev, Eugene S. Petrov,

More information

Effect of Rotation, Magnetic Field and Initial Stresses on Propagation of Plane Waves in Transversely Isotropic Dissipative Half Space

Effect of Rotation, Magnetic Field and Initial Stresses on Propagation of Plane Waves in Transversely Isotropic Dissipative Half Space Applied Mathematis 4 7- http://dx.doi.org/.436/am..48a5 Published Online August (http://www.sirp.org/journal/am) Effet of otation Magneti Field and Initial Stresses on Propagation of Plane Waves in Transversely

More information

Finite Formulation of Electromagnetic Field

Finite Formulation of Electromagnetic Field Finite Formulation o Eletromagneti Field Enzo TONTI Dept.Civil Engin., Univ. o Trieste, Piazzale Europa 1, 34127 Trieste, Italia. e-mail: tonti@univ.trieste.it Otober 16, 2000 Abstrat This paper shows

More information