Time Domain Method of Moments

Size: px
Start display at page:

Download "Time Domain Method of Moments"

Transcription

1 Time Domain Method of Moments Massahusetts Institute of Tehnology leture notes 1 Introdution The Method of Moments (MoM) introdued in the previous leture is widely used for solving integral equations in the frequeny domain. Yet, some attempts have been made reently at the use of the MoM in the time domain. We shall briefly expose this approah here. 2 Time domain equations The first step is of ourse to write Maxwell s equation and all other relations (onstitutive relations and ontinuity) in time domain: Ē( r, t) = t B( r, t) M( r, t), H( r, t) = t D( r, t) + J( r, t), (1a) B( r, t) = m( r, t), D( r, t) = ρ( r, t), (1b) D( r, t) = ɛē( r, t), B( r, t) = µ H( r, t), (1) J( r, t) + ρ( r, t) =, t M( r, t) + m( r, t) =. t (1d) For the time-domain MoM, it is easier to work with the potentials, and make use of the well-known retarded potentials theory. In view of doing this, we write the definition: H( r, t) = 1 Ā( r, t) µ (2a) Ē( r, t) = φ( r, t) tā( r, t). (2b) Both the vetor potential Ā and the salar potential φ satisfy the wave equation whih, in time-domain domain, writes: 2 2 Ā( r, t) ɛ µ t 2 Ā( r, t) = µ J( r, t), (3a) 2 2 t) φ( r, t) ɛ µ φ( r, t) = ρ( r,. t2 ɛ (3b) These potentials are linked by the time-domain Lorentz gauge: Ā( r, t) + ɛ µ φ( r, t) =. (4) t 1

2 2 Setion 2. Time domain equations We an defined also a time-domain Green s funtion whih satisfies the time-domain salar equation: ( t 2 )g( r, r, t, t ) = δ( r r ) δ(t t ), (5) whih solution is (in free-spae): 1 g( r, r, t, t r r ) = δ(t t r r ) t > t, (6) t < t. From this, the solution to the wave equation for Ā and φ an be written as: Ā( r, t) =µ dv dt J( r, t ) g( r, r, t, t ) = µ dv J( r, t R/) R, (7a) φ( r, t) = dv ρ( r, t R/), (7b) ɛ R where R = r r. These wave equations are known as the time retarded potentials, and essentially say that the potential (either Ā or φ) an be alulated at a given point in spae r and given time t from all previous times. From these equations, we an alulate the spae-time eletromagneti fields: H( r, t) = 1 dv J( r, τ), τ = t R/, (8a) R Ē( r, t) = 1 dv ρ( r, τ) ɛ R µ J( r, τ) t R. (8b) Let us ontinue with the eletri field first: Ē( r, t) = 1 [ 1 dv ɛ R ρ( r, τ) + ρ( r, τ) 1 ] µ R R t J( r, τ). (9) At this point, we need to use the following relations: R = R R, 1 R = R R 3, ρ( r, τ) = τ ρ( r, τ) τ = 1 R τ ρ( r, τ) = 1 R ρ( r, τ). R τ (1) (1a) (1b) We an therefore ontinue with the eletri field as: Ē( r, t) = 1 [ 1 R ɛ R 2 τ ρ( r, τ) + R ] R 3 ρ( r, τ) µ R τ J( r, τ) = 1 [ 1 ɛ τ ρ( r, τ) + 1 ] R R ρ( r, τ) R 2 µ R τ J( r, τ). (11)

3 3 We an perform the same type of alulations for the magneti field using the relation J( r, τ) = 1 R R τ J( r, τ). (12) We get: H( r, t) = 1 dv [ 1 R R 2 τ J( r, τ) R ] R 3 J( r, τ). (13) Upon gathering the expressions for the eletri and magneti field, we eventually get: Ē( r, t) = 1 H( r, t) = 1 {[ 1 τ ρ( r, τ) + 1 ] R R ρ( r, τ) ɛ R 2 µ } R τ J( r, τ) [ 1 τ J( r, τ) + 1 ] R J( r, τ) R R 2. (14a) (14b) Upon using the boundary onditions for the eletri and magneti field, we onstrut the integral equations in a standard way: EFIE: ˆn (Ēi + Ēsat ) = on PEC surfae ˆn Ēi ( r, t) + 1 ˆn ds [...] (15) MFIE: ˆn ( H i + H sat ) = J s. As we have seen before (in a previous lass), this integral equation is expressed in terms of the prinipal value of the integral with a 1/2 additional fator. Thus: 1 2 J( r, t) = ˆn H i ( r, t) + 1 ˆn P ds [...] (16) For the sake of omparison, we an write the MFIE in the frequeny domain and in the time domain: J( r) = 2ˆn H i ( r) + 2ˆn P ds J( r ) g( r, r ) r S, (17a) J( r, t) = 2ˆn H i ( r) + 1 [ 1 2π ˆn P ds τ J( r, τ) + 1 ] R J( r, τ) R R 2. (17b) Note that in the prinipal value, we essentially exlude the part for whih R =. Sine τ = t R/ and R, we always have that τ < t. The time domain equations therefore state that the urrent at loation r and time t is equal to a known term 2ˆn H i ( r, t) plus a term (integral) known from the past history of J. This is the basis for solving the time domain integral equation by iterative methods, the most well-known one being the marhing-on-in-time.

4 4 Setion 3. The marhing-on-in-time tehnique 3 The marhing-on-in-time tehnique 3.1 General equations The integral equation an often be ast in the following form: τ J( r, t) = J i ( r, t) + dv dt K( r, r, t t ) J( r, t ). (18) eq.1 S Note that we have a time integral also as in Eq. ( eq.1 18), J( r, t ) has not yet been set to satisfy any ausality ondition. Hene, we must then impose J i ( r, t) = for t <, r S. In order to apply the MoM, we disretize the urrent both in spae and in time: J( r, t ) = M m =1 n = J p (m, n ) P s ( r r m ) P t (t t n ), (19) where P denotes the simple pulse funtion. In addition, we also apply point-mathing, whih means that we take the following testing funtions: W mn ( r m, t n ) = δ( r r m ) δ(t n t) = δ( r r m ) δ(t t n ), (2) where we take t = min{r mm /}, R mm following example. = r m r m. The method is best illustrated on the 3.2 Example Let us onsider a 1D example governed by the following integral equation: g(x, t) = x K(x, x ) f(x, τ)dx, x [ x, x ], τ = τ(x, x, t) = t x x x Let us hose the following expansion for f:. (21) f(x, τ) a i j P i j (x, τ), (22) where the pulse basis funtions are defined as P i j = 1 for x [x i dx 2, x i + dx 2 ] and t [t j dt 2, t j + dt elsewhere. 2 ] (23) Note that we use the definitions: x i = i d x, t j = j d t, and d x = d t. In order to apply point mathing, we take the following testing funtions: w ij (x, t) = δ(x x i ) δ(t t j ). (24)

5 5 Upon expanding and testing, we get: g(x i, t j ) = g ij = = x x K(x i, x ) (i )dx (i 1 2 )dx dx a i j P i j (x, τ)δ(t t j ) a i j P i j (x, τ)k(id x, x )δ(t t j ). (25) Coming bak to the definition of τ, we write (with the test and the expansion): suh that the oeffiient a i j τ = t j x i x i = jd t i i d x = (j i i )d t, (26) beomes a i,j i i. The integral equation beomes: g ij = a i,j i i (i )dx (i 1 2 )dx dx K(id x, x ). (27) We an define the term and rewrite the previous system as g ij = Z ii a i,j i i Z ii = (i )dx (i 1 2 )dx dx K(id x, x ) (28) = Z ii a ij + Z i,i 1 a i 1,j 1 + Z i,i 2 a i 2,j Z i1 a 1,j i+1 + Z i,i+1 a i+1,j 1 + Z i,i+2 a i+2,j Z 1,N a N,j N+i. (29) In this equation, only the first term involves time step j, all the others terms being at j 1, j 2,... Therefore, we an solve for a ij : a ij = 1 Z ii [ g ij ] Z ii a i,j i i. (3) i i The value of all a ik are known for k < j, so that a ij is ompletely speified in losed form by those and the present value of g ij. This proess is known as a 1D marh-on-in-time approah. Time-domain MoM is nowadays in its early stage and, although it has been suessfully applied to various simple situations, still suffers from numerial instabilities. More work is in progress...

Study of EM waves in Periodic Structures (mathematical details)

Study of EM waves in Periodic Structures (mathematical details) Study of EM waves in Periodi Strutures (mathematial details) Massahusetts Institute of Tehnology 6.635 partial leture notes 1 Introdution: periodi media nomenlature 1. The spae domain is defined by a basis,(a

More information

Advances in Radio Science

Advances in Radio Science Advanes in adio Siene 2003) 1: 99 104 Copernius GmbH 2003 Advanes in adio Siene A hybrid method ombining the FDTD and a time domain boundary-integral equation marhing-on-in-time algorithm A Beker and V

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Ayan Kumar Bandyopadhyay

Ayan Kumar Bandyopadhyay Charaterization of radiating apertures using Multiple Multipole Method And Modeling and Optimization of a Spiral Antenna for Ground Penetrating Radar Appliations Ayan Kumar Bandyopadhyay FET-IESK, Otto-von-Guerike-University,

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Control Theory association of mathematics and engineering

Control Theory association of mathematics and engineering Control Theory assoiation of mathematis and engineering Wojieh Mitkowski Krzysztof Oprzedkiewiz Department of Automatis AGH Univ. of Siene & Tehnology, Craow, Poland, Abstrat In this paper a methodology

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

Integral Equations in Electromagnetics

Integral Equations in Electromagnetics Integral Equations in Electromagnetics Massachusetts Institute of Technology 6.635 lecture notes Most integral equations do not have a closed form solution. However, they can often be discretized and solved

More information

Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations

Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations Physis Notes Note 9 Marh 009 Lagrangian Formulation of the Combined-Field Form of the Maxwell Equations Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Hankel Optimal Model Order Reduction 1

Hankel Optimal Model Order Reduction 1 Massahusetts Institute of Tehnology Department of Eletrial Engineering and Computer Siene 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Hankel Optimal Model Order Redution 1 This leture overs both

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Lecture 13 Bragg-Williams Theory

Lecture 13 Bragg-Williams Theory Leture 13 Bragg-Williams Theory As noted in Chapter 11, an alternative mean-field approah is to derive a free energy, F, in terms of our order parameter,m, and then minimize F with respet to m. We begin

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Bäcklund Transformations: Some Old and New Perspectives

Bäcklund Transformations: Some Old and New Perspectives Bäklund Transformations: Some Old and New Perspetives C. J. Papahristou *, A. N. Magoulas ** * Department of Physial Sienes, Helleni Naval Aademy, Piraeus 18539, Greee E-mail: papahristou@snd.edu.gr **

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

Using the Green s Function to find the Solution to the Wave. Equation:

Using the Green s Function to find the Solution to the Wave. Equation: Using the Green s Funtion to find the Soution to the Wave Exampe 1: 2 1 2 2 t 2 Equation: r,t q 0 e it r aẑ r aẑ r,t r 1 r ; r r,t r 1 r 2 The Green s funtion soution is given by r,t G R r r,t t Fr,t d

More information

General Closed-form Analytical Expressions of Air-gap Inductances for Surfacemounted Permanent Magnet and Induction Machines

General Closed-form Analytical Expressions of Air-gap Inductances for Surfacemounted Permanent Magnet and Induction Machines General Closed-form Analytial Expressions of Air-gap Indutanes for Surfaemounted Permanent Magnet and Indution Mahines Ronghai Qu, Member, IEEE Eletroni & Photoni Systems Tehnologies General Eletri Company

More information

Temperature-Gradient-Driven Tearing Modes

Temperature-Gradient-Driven Tearing Modes 1 TH/S Temperature-Gradient-Driven Tearing Modes A. Botrugno 1), P. Buratti 1), B. Coppi ) 1) EURATOM-ENEA Fusion Assoiation, Frasati (RM), Italy ) Massahussets Institute of Tehnology, Cambridge (MA),

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

Vector Field Theory (E&M)

Vector Field Theory (E&M) Physis 4 Leture 2 Vetor Field Theory (E&M) Leture 2 Physis 4 Classial Mehanis II Otober 22nd, 2007 We now move from first-order salar field Lagrange densities to the equivalent form for a vetor field.

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

EE 321 Project Spring 2018

EE 321 Project Spring 2018 EE 21 Projet Spring 2018 This ourse projet is intended to be an individual effort projet. The student is required to omplete the work individually, without help from anyone else. (The student may, however,

More information

Nonreversibility of Multiple Unicast Networks

Nonreversibility of Multiple Unicast Networks Nonreversibility of Multiple Uniast Networks Randall Dougherty and Kenneth Zeger September 27, 2005 Abstrat We prove that for any finite direted ayli network, there exists a orresponding multiple uniast

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2 Sensor and Simulation Notes Note 53 3 May 8 Combined Eletri and Magneti Dipoles for Mesoband Radiation, Part Carl E. Baum University of New Mexio Department of Eletrial and Computer Engineering Albuquerque

More information

Examples of Tensors. February 3, 2013

Examples of Tensors. February 3, 2013 Examples of Tensors February 3, 2013 We will develop a number of tensors as we progress, but there are a few that we an desribe immediately. We look at two ases: (1) the spaetime tensor desription of eletromagnetism,

More information

11 Radiation in Non-relativistic Systems

11 Radiation in Non-relativistic Systems Radiation in Non-relativisti Systems. Basi equations This first setion will NOT make a non-relativisti approximation, but will examine the far field limit. (a) We wrote down the wave equations in the ovariant

More information

Signals & Systems - Chapter 6

Signals & Systems - Chapter 6 Signals & Systems - Chapter 6 S. A real-valued signal x( is knon to be uniquely determined by its samples hen the sampling frequeny is s = 0,000π. For hat values of is (j) guaranteed to be zero? From the

More information

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2

EECS 120 Signals & Systems University of California, Berkeley: Fall 2005 Gastpar November 16, Solutions to Exam 2 EECS 0 Signals & Systems University of California, Berkeley: Fall 005 Gastpar November 6, 005 Solutions to Exam Last name First name SID You have hour and 45 minutes to omplete this exam. he exam is losed-book

More information

Current density and forces for a current loop moving parallel over a thin conducting sheet

Current density and forces for a current loop moving parallel over a thin conducting sheet INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 5 (4) 655 666 EUROPEAN JOURNAL OF PHYSICS PII: S43-87(4)77753-3 Current density and fores for a urrent loop moving parallel over a thin onduting sheet BSPalmer

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non relativisti ase 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials in Lorentz Gauge Gaussian units are: r 2 A 1 2 A 2 t = 4π 2 j

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

Electromagnetic radiation

Electromagnetic radiation 5584 5585 8 Eletromagneti radiation 5586 5587 5588 5589 8. Solution of Maxwell equations with external urrent The eletromagneti field generated by an external (expliitly given) four-urrent J µ (x) is given

More information

Green s Function for Potential Field Extrapolation

Green s Function for Potential Field Extrapolation Green s Funtion for Potential Field Extrapolation. Soe Preliinaries on the Potential Magneti Field By definition, a potential agneti field is one for whih the eletri urrent density vanishes. That is, J

More information

Differential Equations 8/24/2010

Differential Equations 8/24/2010 Differential Equations A Differential i Equation (DE) is an equation ontaining one or more derivatives of an unknown dependant d variable with respet to (wrt) one or more independent variables. Solution

More information

FINITE WORD LENGTH EFFECTS IN DSP

FINITE WORD LENGTH EFFECTS IN DSP FINITE WORD LENGTH EFFECTS IN DSP PREPARED BY GUIDED BY Snehal Gor Dr. Srianth T. ABSTRACT We now that omputers store numbers not with infinite preision but rather in some approximation that an be paed

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION

EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION Journal of Mathematial Sienes: Advanes and Appliations Volume 3, 05, Pages -3 EXACT TRAVELLING WAVE SOLUTIONS FOR THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION JIAN YANG, XIAOJUAN LU and SHENGQIANG TANG

More information

Theory. Coupled Rooms

Theory. Coupled Rooms Theory of Coupled Rooms For: nternal only Report No.: R/50/TCR Prepared by:. N. taey B.., MO Otober 00 .00 Objet.. The objet of this doument is present the theory alulations to estimate the reverberant

More information

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite.

Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function V ( x ) to be positive definite. Leture Remark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the funtion V ( x ) to be positive definite. ost often, our interest will be to show that x( t) as t. For that we will need

More information

6 Dynamic Optimization in Continuous Time

6 Dynamic Optimization in Continuous Time 6 Dynami Optimization in Continuous Time 6.1 Dynami programming in ontinuous time Consider the problem Z T max e rt u (k,, t) dt (1) (t) T s.t. k ú = f (k,, t) (2) k () = k, (3) with k (T )= k (ase 1),

More information

Determining both sound speed and internal source in thermo- and photo-acoustic tomography

Determining both sound speed and internal source in thermo- and photo-acoustic tomography Inverse Problems Inverse Problems (05) 05005 (0pp) doi:0.088/06656//0/05005 Determining both sound speed and internal soure in thermo and photoaousti tomography Hongyu Liu,,5 and Gunther Uhlmann,4 Department

More information

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings Supplementary information for: All-optial signal proessing using dynami Brillouin gratings Maro Santagiustina, Sanghoon Chin 2, Niolay Primerov 2, Leonora Ursini, Lu Thévena 2 Department of Information

More information

1 Josephson Effect. dx + f f 3 = 0 (1)

1 Josephson Effect. dx + f f 3 = 0 (1) Josephson Effet In 96 Brian Josephson, then a year old graduate student, made a remarkable predition that two superondutors separated by a thin insulating barrier should give rise to a spontaneous zero

More information

New Potential of the. Positron-Emission Tomography

New Potential of the. Positron-Emission Tomography International Journal of Modern Physis and Appliation 6; 3(: 39- http://www.aasit.org/journal/ijmpa ISSN: 375-387 New Potential of the Positron-Emission Tomography Andrey N. olobuev, Eugene S. Petrov,

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

CMSC 451: Lecture 9 Greedy Approximation: Set Cover Thursday, Sep 28, 2017

CMSC 451: Lecture 9 Greedy Approximation: Set Cover Thursday, Sep 28, 2017 CMSC 451: Leture 9 Greedy Approximation: Set Cover Thursday, Sep 28, 2017 Reading: Chapt 11 of KT and Set 54 of DPV Set Cover: An important lass of optimization problems involves overing a ertain domain,

More information

Study on the leak test technology of spacecraft using ultrasonic

Study on the leak test technology of spacecraft using ultrasonic SINCE2013 Singapore International NDT Conferene & Exhibition 2013, 19-20 July 2013 Study on the test tehnology of spaeraft using ultrasoni Yan Rongxin, Li Weidan Beijing Institute of Spaeraft Environment

More information

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates Exerpt from the Proeedings of the COMSOL Conferene 9 Boston MultiPhysis Analysis of Trapped Field in Multi-Layer YBCO Plates Philippe. Masson Advaned Magnet Lab *7 Main Street, Bldg. #4, Palm Bay, Fl-95,

More information

A NONLILEAR CONTROLLER FOR SHIP AUTOPILOTS

A NONLILEAR CONTROLLER FOR SHIP AUTOPILOTS Vietnam Journal of Mehanis, VAST, Vol. 4, No. (), pp. A NONLILEAR CONTROLLER FOR SHIP AUTOPILOTS Le Thanh Tung Hanoi University of Siene and Tehnology, Vietnam Abstrat. Conventional ship autopilots are

More information

Singular Event Detection

Singular Event Detection Singular Event Detetion Rafael S. Garía Eletrial Engineering University of Puerto Rio at Mayagüez Rafael.Garia@ee.uprm.edu Faulty Mentor: S. Shankar Sastry Researh Supervisor: Jonathan Sprinkle Graduate

More information

Time-Domain Developments in the Singularity Expansion Method. Douglas J. Riley. Thesis submitted to the Faculty of the

Time-Domain Developments in the Singularity Expansion Method. Douglas J. Riley. Thesis submitted to the Faculty of the Time-Domain Developments in the Singularity Expansion Method by Douglas J. Riley Thesis submitted to the Faulty of the Virginia Polytehni Institute and State University in partial fulfillment of the requirements

More information

Some facts you should know that would be convenient when evaluating a limit:

Some facts you should know that would be convenient when evaluating a limit: Some fats you should know that would be onvenient when evaluating a it: When evaluating a it of fration of two funtions, f(x) x a g(x) If f and g are both ontinuous inside an open interval that ontains

More information

1 Summary of Electrostatics

1 Summary of Electrostatics 1 Summary of Eletrostatis Classial eletrodynamis is a theory of eletri and magneti fields aused by marosopi distributions of eletri harges and urrents. In these letures, we reapitulate the basi onepts

More information

Tests of fit for symmetric variance gamma distributions

Tests of fit for symmetric variance gamma distributions Tests of fit for symmetri variane gamma distributions Fragiadakis Kostas UADPhilEon, National and Kapodistrian University of Athens, 4 Euripidou Street, 05 59 Athens, Greee. Keywords: Variane Gamma Distribution,

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3

Chapter 3 Lecture 7. Drag polar 2. Topics. Chapter-3 hapter 3 eture 7 Drag polar Topis 3..3 Summary of lift oeffiient, drag oeffiient, pithing moment oeffiient, entre of pressure and aerodynami entre of an airfoil 3..4 Examples of pressure oeffiient distributions

More information

Process engineers are often faced with the task of

Process engineers are often faced with the task of Fluids and Solids Handling Eliminate Iteration from Flow Problems John D. Barry Middough, In. This artile introdues a novel approah to solving flow and pipe-sizing problems based on two new dimensionless

More information

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA HDRONIC JOURNL 24, 113-129 (2001) THE REFRCTION OF LIGHT IN STTIONRY ND MOVING REFRCTIVE MEDI C. K. Thornhill 39 Crofton Road Orpington, Kent, BR6 8E United Kingdom Reeived Deember 10, 2000 Revised: Marh

More information

Math 2374: Multivariable Calculus and Vector Analysis

Math 2374: Multivariable Calculus and Vector Analysis Math 2374: Multivariable Calulus and Vetor Analysis Part 26 Fall 2012 The integrals of multivariable alulus line integral of salar-valued funtion line integral of vetor fields surfae integral of salar-valued

More information

Chapter 8 Hypothesis Testing

Chapter 8 Hypothesis Testing Leture 5 for BST 63: Statistial Theory II Kui Zhang, Spring Chapter 8 Hypothesis Testing Setion 8 Introdution Definition 8 A hypothesis is a statement about a population parameter Definition 8 The two

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilisti Graphial Models David Sontag New York University Leture 12, April 19, 2012 Aknowledgement: Partially based on slides by Eri Xing at CMU and Andrew MCallum at UMass Amherst David Sontag (NYU)

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Discrete Bessel functions and partial difference equations

Discrete Bessel functions and partial difference equations Disrete Bessel funtions and partial differene equations Antonín Slavík Charles University, Faulty of Mathematis and Physis, Sokolovská 83, 186 75 Praha 8, Czeh Republi E-mail: slavik@karlin.mff.uni.z Abstrat

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined How should a snake turn on ie: A ase study of the asymptoti isoholonomi problem Jianghai Hu, Slobodan N. Simić, and Shankar Sastry Department of Eletrial Engineering and Computer Sienes University of California

More information

Growing Evanescent Envelopes and Anomalous Tunneling in Cascaded Sets of Frequency-Selective Surfaces in Their Stop Bands

Growing Evanescent Envelopes and Anomalous Tunneling in Cascaded Sets of Frequency-Selective Surfaces in Their Stop Bands Growing Evanesent Envelopes and Anomalous Tunneling in Casaded Sets of Frequeny-Seletive Surfaes in Their Stop ands Andrea Alù Dept. of Applied Eletronis, University of Roma Tre, Rome, Italy. Nader Engheta

More information

ON THE MOVING BOUNDARY HITTING PROBABILITY FOR THE BROWNIAN MOTION. Dobromir P. Kralchev

ON THE MOVING BOUNDARY HITTING PROBABILITY FOR THE BROWNIAN MOTION. Dobromir P. Kralchev Pliska Stud. Math. Bulgar. 8 2007, 83 94 STUDIA MATHEMATICA BULGARICA ON THE MOVING BOUNDARY HITTING PROBABILITY FOR THE BROWNIAN MOTION Dobromir P. Kralhev Consider the probability that the Brownian motion

More information

Techniques for Including Dielectrics when Extracting Passive Low-Order Models of High Speed Interconnect

Techniques for Including Dielectrics when Extracting Passive Low-Order Models of High Speed Interconnect Tehniques for Inluding Dieletris when Extrating Passive Low-Order Models of High Speed Interonnet Lua Daniel University of California, Berkeley dlua@ees.berkeley.edu Alberto Sangiovanni-Vinentelli Univ.

More information

A note on a variational formulation of electrodynamics

A note on a variational formulation of electrodynamics Proeedings of the XV International Workshop on Geometry and Physis Puerto de la Cruz, Tenerife, Canary Islands, Spain September 11 16, 006 Publ. de la RSME, Vol. 11 (007), 314 31 A note on a variational

More information

arxiv:physics/ v1 14 May 2002

arxiv:physics/ v1 14 May 2002 arxiv:physis/0205041 v1 14 May 2002 REPLY TO CRITICISM OF NECESSITY OF SIMULTANEOUS CO-EXISTENCE OF INSTANTANEOUS AND RETARDED INTERACTIONS IN CLASSICAL ELECTRODYNAMICS by J.D.Jakson ANDREW E. CHUBYKALO

More information

Transient wave propagation analysis of a pantograph- catenary system

Transient wave propagation analysis of a pantograph- catenary system Journal of Physis: Conferene Series PAPER OPEN ACCESS Transient wave propagation analysis of a pantograph- atenary system To ite this artile: Kyohei Nagao and Arata Masuda 216 J. Phys.: Conf. Ser. 744

More information

A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems

A new method of measuring similarity between two neutrosophic soft sets and its application in pattern recognition problems Neutrosophi Sets and Systems, Vol. 8, 05 63 A new method of measuring similarity between two neutrosophi soft sets and its appliation in pattern reognition problems Anjan Mukherjee, Sadhan Sarkar, Department

More information

Models for the simulation of electronic circuits with hysteretic inductors

Models for the simulation of electronic circuits with hysteretic inductors Proeedings of the 5th WSEAS Int. Conf. on Miroeletronis, Nanoeletronis, Optoeletronis, Prague, Czeh Republi, Marh 12-14, 26 (pp86-91) Models for the simulation of eletroni iruits with hystereti indutors

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

Phys 561 Classical Electrodynamics. Midterm

Phys 561 Classical Electrodynamics. Midterm Phys 56 Classial Eletrodynamis Midterm Taner Akgün Department of Astronomy and Spae Sienes Cornell University Otober 3, Problem An eletri dipole of dipole moment p, fixed in diretion, is loated at a position

More information

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves The Conept of the Effetive Mass Tensor in GR The Gravitational Waves Mirosław J. Kubiak Zespół Szkół Tehniznyh, Grudziądz, Poland Abstrat: In the paper [] we presented the onept of the effetive mass tensor

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

ELECTRODYNAMICS: PHYS 30441

ELECTRODYNAMICS: PHYS 30441 . Relativisti Eletromagnetism. Eletromagneti Field Tensor How do E and B fields transform under a LT? They annot be 4-vetors, but what are they? We again re-write the fields in terms of the salar and vetor

More information

To work algebraically with exponential functions, we need to use the laws of exponents. You should

To work algebraically with exponential functions, we need to use the laws of exponents. You should Prealulus: Exponential and Logisti Funtions Conepts: Exponential Funtions, the base e, logisti funtions, properties. Laws of Exponents memorize these laws. To work algebraially with exponential funtions,

More information