Black or White Video. Lecture 3: Face Detection. Face Detection. Why is Face Detection Difficult? Automated Face Detection Why is it Difficult?

Size: px
Start display at page:

Download "Black or White Video. Lecture 3: Face Detection. Face Detection. Why is Face Detection Difficult? Automated Face Detection Why is it Difficult?"

Transcription

1 Back or Whte Veo ecture : Face Detecto Reag: Egeaces oe paper FP pgs 55-5 Haouts: Course Descrpto P Assge Face Detecto Face ocazato egmetato Face rackg Faca eatures ocazato Faca eatures trackg orphg wwwyoutubecom/watch?vzi9oyrwq I I ook at your ace I mmeatey recogze that I have see t beore Yet there s o mache whch, wth that spee, ca take a pcture o a ace a say eve that t s a ma; a much ess that t s the same ma that you showe t beore uess t s eacty the same pcture I the ace s chage; I am coser to the ace; I am urther rom the ace; the ght chages I recogze t ayway ow, ths tte computer I carry my hea s easy abe to o that he computers that we bu are ot abe to o that Why s Face Detecto Dcut? evere umato chage Rchar P Feyma, Dec 9, 959 here's Pety o Room at the Bottom A Ivtato to Eter a ew Fe o Physcs Automate Face Detecto Why s t Dcut? Varyg vewpot, umato, etc Face Detecto

2 Coceta appearace o aces rock? Coceta appearace o ace proe rock? Face Detecto earest eghbor Caser Eucea stace: y ( ) y y c yc c ear oes Gve a put mage y (aso cae a probe), the casser w assg to y the abe assocate wth the cosest mage the trag set o, t happes to be cosest to aother ace t w be assge (ace), otherwse t w be assge (oace)

3 R k A mage s a pot mesoa space Images R k k I R pe pe k pe Image Represetato k k I ) ( k k by Ae O Vasescu pe vaue as represetg pe Image Represetato k O Bass atr, B vector o coecets, c by Ae O Vasescu Bc k k I ) ( k Represetato F a ew bass matr that resuts a compact represetato oy Eampe - Represetato Heurstc Coser a set o mages o peope uer the same vewpot a ghtg Each mage s mae up o pes a pe has the same vaue as pe or a mages pe pe pe a st by Ae O Vasescu oy Eampe - Represetato Heurstc Coser a set o mages o peope uer the same vewpot a ghtg Each mage s mae up o pes a pe has the same vaue as pe or a mages pe pe pe a st by Ae O Vasescu Bass atr, B

4 oy Eampe - Represetato Heurstc Coser a set o mages o peope uer the same vewpot a ghtg Each mage s mae up o pes a pe has the same vaue as pe or a mages pe ew bass by Ae O Vasescu pe pe st a Bc ew Bass atr, B pe oy Eampe-Recogto ove or a store the coecet matr C: c D, ata matr C, coecet matr C B D Gve a ew mage, ew : pe 5 5 ew ew ew c B ew pe ew et, compare c ew a reuce mesoaty represetato o ew agast a coecet vectors c c c Oe possbe casser: earest-eghbor casser Prcpa Compoet Aayss: Egeaces Empoys seco orer statstcs to compute a prcpe way a ew bass matr Varabes Respose Varabes are recty measurabe, they measure the outcome o a stuy Pes are respose varabes that are recty measurabe rom a mage Epaatory Varabes, Factors epa or cause chages the respose varabe Pe vaues chage wth scee geometry, umato ocato, camera ocato whch are kow as the epaatory varabes Respose vs Epaatory Varabes Pes (respose varabes, recty measurabe rom ata) chage wth chages vew a umato, the epaatory varabes (ot recty measurabe but o actua terest) he Prcpe Beh Prcpa Compoet Aayss Aso cae: - Hotteg rasorm or the - Karhue-oeve etho F a orthogoa coorate system such that ata s appromate best a the correato betwee eret as s mmze IJoe; Prcpe Compoet Aayss; 986 RCGozaas, PAWtz; Dgta Image Processg; 987 KKarhue; Uber eare ethoe er Wahrschechkets Rechug; 946 oeve; Probabty heory; 955

5 PCA: heory PCA Dee a ew org as the mea o the ata set F the recto o mamum varace the sampes (e ) a ag t wth the rst as (y ), Cotue ths process wth orthogoa rectos o ecreasg varace, agg each wth the et as hus, we have a rotato whch mmzes the covarace y e e y PCA-Dmesoaty Reucto Coser a set o mages, & each mage s mae up o pes a pe has the same vaue as pe or a mages [ ] st a PCA chooses as the recto o hghest varabty o the ata, mamum scatter pe st as pe as pe ata matr, D c Each mage coecets D UV Bc c c s ow represete by a vector o a reuce mesoaty space (sv o D) B mmze the oowg ucto set B U E B B such that B B Ietty he Covarace atr Dee the covarace (scatter) matr o the put sampes: ( µ)( (where µ s the sampe mea) µ µ µ) ( D )( D ) where [ µ µ ] µ µ µ µ PCA: ome Propertes o the Covarace/catter atr he matr s symmetrc he agoa cotas the varace o each parameter (e eemet, s the varace the th recto) Each eemet,j s the co-varace betwee the two rectos a j, represets the eve o correato (e a vaue o zero cates that the two mesos are ucorreate) catter o matr: VD o a atr ( D ) UΣV by sv o ( D- ) ( D )( D ) UΣ U (sv o ) ( D )( D ) set B U set B U ook or: -B uch that: PCA: Goa Revste [c c ] B [ ] correato s mmze Cov(C) s agoa ote that Cov(C) ca be epresse va Cov(D) a B : CC B ( D )( D ) B B B

6 eectg the Optma B Data Reucto: heory How o we such B? ( D µ )( D µ ) b λ b B ΛB B opt cotas the egevectors o the covarace o D Each egevaue represets the the tota varace ts meso hrowg away the east sgcat egevectors B opt meas throwg away the east sgcat varace ormato Bopt [b b] Coser the set o mages PCA or Recogto [ ] a st PCA chooses as the recto o hghest varabty o the ata Data a Egeaces Data s compose o 8 aces photographe uer same ghtg a vewg cotos Gve a ew mage,, compute the vector o coecets assocate wth the ew bass, B ew c ew pe st as pe as c B B B ew ew c ew et, compare a reuce mesoaty represetato o ew agast a coecet vectors c Oe possbe casser: earest-eghbor casser Each mage beow s a coum vector the bass matr B pe by Ae O Vasescu by Ae O Vasescu Egemages Prcpa compoets (egevectors) o mage esembe pe k 55 ear Represetato: c c c9 55 pe pe k 55 c c 55 c pe c8 55 pe pe 55 Uc Uc Rug um: term terms 9 terms 8 terms Egevectors are typcay compute usg the guar Vaue Decomposto (VD) agorthm

7 he Covarace atr PIE Database (Wezma) Dee the covarace (scatter) matr o the put sampes: ( µ)( µ) (where µ s the sampe mea) EgeImages-Bass Vectors PCA Casser Dstace to Face ubspace: Each mage beow s a coum vector the bass matr B PCA ecoes ecoes the varabty across mages wthout stgushg betwee varabty peope, vewpots a umato by Ae O Vasescu ( y) y U U y kehoo rato (R) test to cassy a probe y as ace or oace Itutvey, we epect (y) > (y) to suggest that y s a ace he R or PCA s ee as: ( y) ( y) > < η

Face Recognition. Face Recognition. Why is Face Recognition. Automated Face Recognition Difficult? Why is it Difficult?

Face Recognition. Face Recognition. Why is Face Recognition. Automated Face Recognition Difficult? Why is it Difficult? Face Recogto Face Recogto If I ook at your face I mmedatey recogze that I have see t before Yet there s o mache whch, wth that speed, ca take a pcture of a face ad say eve that t s a ma; ad much ess that

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) BBM0 - Itroduc0o to ML Sprg 0 Prcpa Compoet Aayss PCA Mo0va0o PCA agorthms Appca0os PCA shortcomgs ere PCA oday Ayut Erdem Dept. of Computer Egeerg HaceDepe Uversty Sdes adopted from Barabás Póczos ar

More information

Computational learning and discovery

Computational learning and discovery Computatoa earg ad dscover CSI 873 / MAH 689 Istructor: I. Grva Wedesda 7:2-1 pm Gve a set of trag data 1 1 )... ) { 1 1} fd a fucto that ca estmate { 1 1} gve ew ad mmze the frequec of the future error.

More information

Statistics. Correlational. Dr. Ayman Eldeib. Simple Linear Regression and Correlation. SBE 304: Linear Regression & Correlation 1/3/2018

Statistics. Correlational. Dr. Ayman Eldeib. Simple Linear Regression and Correlation. SBE 304: Linear Regression & Correlation 1/3/2018 /3/08 Sstems & Bomedcal Egeerg Departmet SBE 304: Bo-Statstcs Smple Lear Regresso ad Correlato Dr. Ama Eldeb Fall 07 Descrptve Orgasg, summarsg & descrbg data Statstcs Correlatoal Relatoshps Iferetal Geeralsg

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher

More information

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier Aoucemets Recogto II H3 exteded to toght H4 to be aouced today. Due Frday 2/8. Note wll take a whle to ru some thgs. Fal Exam: hursday 2/4 at 7pm-0pm CSE252A Lecture 7 Example: Face Detecto Evaluatg a

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Analysis of error propagation in profile measurement by using stitching

Analysis of error propagation in profile measurement by using stitching Ay o error propgto proe eureet y ug ttchg Ttuy KUME, Kzuhro ENAMI, Yuo HIGASHI, Kej UENO - Oho, Tuu, Ir, 35-8, JAPAN Atrct Sttchg techque whch ee oger eureet rge o proe ro eer eure proe hg prty oerppe

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Landé interval rule (assignment!) l examples

Landé interval rule (assignment!) l examples 36 - Read CTD, pp. 56-78 AT TIME: O H = ar s ζ(,, ) s adé terva rue (assgmet!) ζ(,, ) ζ exampes ζ (oe ζfor each - term) (oe ζfor etre cofgurato) evauate matrx eemets ater determata bass ad may-e M or M

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 675 Itroucto to ache Learg Lecture Dmesoalty reucto Feature selecto los Hauskrecht mlos@cs.ptt.eu 539 Seott Square Dmesoalty reucto. otvato. L methos are sestve to the mesoalty of ata Questo: Is there

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

Linear models for classification

Linear models for classification CS 75 Mache Lear Lecture 9 Lear modes for cassfcato Mos Hausrecht mos@cs.ptt.edu 539 Seott Square ata: { d d.. d} d Cassfcato represets a dscrete cass vaue Goa: ear f : X Y Bar cassfcato A speca case he

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Band structure calculations

Band structure calculations Bad structure cacuatos group semar 00-0 Georg Wrth Isttut für Laser Physk Jauary 00 Motvato attce ad stab. aser are outcouped from SM-PM-fber Mcheso terferometer braches overap uder 90 attce forms overappg

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE Joural o Mathematcs ad tatstcs 9 (3): 49-55, 03 I: 549-3644 03 cece Publcatos do:0.3844/jmssp.03.49.55 Publshed Ole 9 (3) 03 (http://www.thescpub.com/jmss.toc) ADAPTIVE CLUTER AMPLIG UIG AUXILIARY VARIABLE

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

Hamilton s principle for non-holonomic systems

Hamilton s principle for non-holonomic systems Das Hamltosche Przp be chtholoome Systeme, Math. A. (935), pp. 94-97. Hamlto s prcple for o-holoomc systems by Georg Hamel Berl Traslate by: D. H. Delphech I the paper Le prcpe e Hamlto et l holoomsme,

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0 Chapter 5 a glace: Let e a lear operator whose stadard matrx s wth sze x. he, a ozero vector x s sad to e a egevector of ad f there exsts a scalar sch that (x) x x. he scalar s called a egevale of (or

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Lear Regresso wth Oe Regressor AIM QA.7. Expla how regresso aalyss ecoometrcs measures the relatoshp betwee depedet ad depedet varables. A regresso aalyss has the goal of measurg how chages oe varable,

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Statistical modelling and latent variables (2)

Statistical modelling and latent variables (2) Statstcal modellg ad latet varables (2 Mxg latet varables ad parameters statstcal erece Trod Reta (Dvso o statstcs ad surace mathematcs, Departmet o Mathematcs, Uversty o Oslo State spaces We typcally

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

f X (x i ;θ) = n ( n logx i = 0 = θml = n/ n logx i 1 θ +1 n n 2 < 0 for all θ (θ +1) n logx i 1 ESTIMATOR: = logx i θ n for all θ θ 2 < 0 2θ 2 x 3

f X (x i ;θ) = n ( n logx i = 0 = θml = n/ n logx i 1 θ +1 n n 2 < 0 for all θ (θ +1) n logx i 1 ESTIMATOR: = logx i θ n for all θ θ 2 < 0 2θ 2 x 3 MATH 557 - EXERCISES SOLUTIONS 1 The lkelhoo the orgal parameterzato s ( ( 1 L (θ 1,θ x 1,x = θ x 1 1 x (1 θ 1 1 x 1 θ x 1 x (1 θ x If φ = θ /(1 θ, the θ = φ/(1+φ θ 1 = (φψ/(1+φψ. Ether by wrtg out the

More information

Supervised Learning! B." Neural Network Learning! Typical Artificial Neuron! Feedforward Network! Typical Artificial Neuron! Equations!

Supervised Learning! B. Neural Network Learning! Typical Artificial Neuron! Feedforward Network! Typical Artificial Neuron! Equations! Part 4B: Neura Networ earg 10/22/08 Superved earg B. Neura Networ earg Produce dered output for trag put Geeraze reaoaby appropratey to other put Good exampe: patter recogto Feedforward mutayer etwor 10/22/08

More information

Lecture 2: Linear Least Squares Regression

Lecture 2: Linear Least Squares Regression Lecture : Lear Least Squares Regresso Dave Armstrog UW Mlwaukee February 8, 016 Is the Relatoshp Lear? lbrary(car) data(davs) d 150) Davs$weght[d]

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Simple Linear Regression and Correlation.

Simple Linear Regression and Correlation. Smple Lear Regresso ad Correlato. Correspods to Chapter 0 Tamhae ad Dulop Sldes prepared b Elzabeth Newto (MIT) wth some sldes b Jacquele Telford (Johs Hopks Uverst) Smple lear regresso aalss estmates

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Singular Value Decomposition: Principles and Applications in Multiple Input Multiple Output Communication system

Singular Value Decomposition: Principles and Applications in Multiple Input Multiple Output Communication system Iteratoa Joura of Computer Networks & Commucatos (IJCNC) Vo.9, No., Jauary 07 Sguar Vaue Decomposto: Prcpes ad Appcatos Mutpe Iput Mutpe Output Commucato system Wae Abu Shehab ad Zouhar A-qudah Departmet

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Bounds for block sparse tensors

Bounds for block sparse tensors A Bouds for bock sparse tesors Oe of the ma bouds to cotro s the spectra orm of the sparse perturbato tesor S The success of the power teratos ad the mprovemet accuracy of recovery over teratve steps of

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

4 Round-Off and Truncation Errors

4 Round-Off and Truncation Errors HK Km Slgtly moded 3//9, /8/6 Frstly wrtte at Marc 5 4 Roud-O ad Trucato Errors Errors Roud-o Errors Trucato Errors Total Numercal Errors Bluders, Model Errors, ad Data Ucertaty Recallg, dv dt Δv v t Δt

More information

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

residual. (Note that usually in descriptions of regression analysis, upper-case

residual. (Note that usually in descriptions of regression analysis, upper-case Regresso Aalyss Regresso aalyss fts or derves a model that descres the varato of a respose (or depedet ) varale as a fucto of oe or more predctor (or depedet ) varales. The geeral regresso model s oe of

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Regresso What s a Model? 1. Ofte Descrbe Relatoshp betwee Varables 2. Types - Determstc Models (o radomess) - Probablstc Models (wth radomess) EPI 809/Sprg 2008 9 Determstc Models 1. Hypothesze

More information

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150 St Joh s College Prelmar Eamatos Jul 04 Mathematcs Paper Eamer: G Evas Tme: 3 hrs Moderator: D Grgoratos Marks: 50 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Ths questo paper cossts of pages, cludg

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Chapter Two. An Introduction to Regression ( )

Chapter Two. An Introduction to Regression ( ) ubject: A Itroducto to Regresso Frst tage Chapter Two A Itroducto to Regresso (018-019) 1 pg. ubject: A Itroducto to Regresso Frst tage A Itroducto to Regresso Regresso aalss s a statstcal tool for the

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

Naïve Bayes MIT Course Notes Cynthia Rudin

Naïve Bayes MIT Course Notes Cynthia Rudin Thaks to Şeyda Ertek Credt: Ng, Mtchell Naïve Bayes MIT 5.097 Course Notes Cytha Rud The Naïve Bayes algorthm comes from a geeratve model. There s a mportat dstcto betwee geeratve ad dscrmatve models.

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number. A umber of the form y, where & y are tegers ad s called a comple umber. Dfferet Forms )Cartesa Form y )Polar Form ( cos s ) r or r cs )Epoetal Form r e Demover s Theorem If s ay teger the cos s cos s If

More information

Section l h l Stem=Tens. 8l Leaf=Ones. 8h l 03. 9h 58

Section l h l Stem=Tens. 8l Leaf=Ones. 8h l 03. 9h 58 Secto.. 6l 34 6h 667899 7l 44 7h Stem=Tes 8l 344 Leaf=Oes 8h 5557899 9l 3 9h 58 Ths dsplay brgs out the gap the data: There are o scores the hgh 7's. 6. a. beams cylders 9 5 8 88533 6 6 98877643 7 488

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

Machine Learning. Topic 4: Measuring Distance

Machine Learning. Topic 4: Measuring Distance Mache Learg Topc 4: Measurg Dstace Bra Pardo Mache Learg: EECS 349 Fall 2009 Wh measure dstace? Clusterg requres dstace measures. Local methods requre a measure of localt Search eges requre a measure of

More information

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use. INTRODUCTORY NOTE ON LINEAR REGREION We have data of the form (x y ) (x y ) (x y ) These wll most ofte be preseted to us as two colum of a spreadsheet As the topc develops we wll see both upper case ad

More information

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences *

A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences * Appe Matheatcs 0 5 598-608 Pubshe Oe Jue 0 ScRes http://wwwscrporg/joura/a http://xoorg/06/a0505 A Note o the Aost Sure Cetra Lt Theore the Jot Verso for the Maxa a Parta Sus of Certa Statoary Gaussa Sequeces

More information

MARKOV CHAIN AND HIDDEN MARKOV MODEL

MARKOV CHAIN AND HIDDEN MARKOV MODEL MARKOV CHAIN AND HIDDEN MARKOV MODEL JIAN ZHANG JIANZHAN@STAT.PURDUE.EDU Markov chan and hdden Markov mode are probaby the smpest modes whch can be used to mode sequenta data,.e. data sampes whch are not

More information

Homework Assignment Number Eight Solutions

Homework Assignment Number Eight Solutions D Keer MSE 0 Dept o Materals Scece & Egeerg Uversty o Teessee Kovlle Homework Assgmet Number Eght Solutos Problem Fd the soluto to the ollowg system o olear algebrac equatos ear () Soluto: s Sce ths s

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information : Markku Jutt Overvew Te basc cocepts o ormato teory lke etropy mutual ormato ad EP are eeralzed or cotuous-valued radom varables by troduc deretal etropy ource Te materal s maly based o Capter 9 o te

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Lecture 5: Interpolation. Polynomial interpolation Rational approximation Lecture 5: Iterpolato olyomal terpolato Ratoal appromato Coeffcets of the polyomal Iterpolato: Sometme we kow the values of a fucto f for a fte set of pots. Yet we wat to evaluate f for other values perhaps

More information

Wavelet Basics. (A Beginner s Introduction) J. S. Marron Department of Statistics University of North Carolina

Wavelet Basics. (A Beginner s Introduction) J. S. Marron Department of Statistics University of North Carolina Wavelet Bascs (A Beger s Itroducto) J. S. Marro Departmet o Statstcs Uversty o North Carola Some reereces: Marro, J. S. (999) Spectral vew o wavelets ad olear regresso, Bayesa Ierece Wavelet-Based Models,

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information