Bounds for block sparse tensors

Size: px
Start display at page:

Download "Bounds for block sparse tensors"

Transcription

1 A Bouds for bock sparse tesors Oe of the ma bouds to cotro s the spectra orm of the sparse perturbato tesor S The success of the power teratos ad the mprovemet accuracy of recovery over teratve steps of RTD requres ths boud Lemma 4 Spectra orm bouds for bock sparse tesors Let M R satsfy the bock sparsty assumpto S The M = Od 15 M 10 Proof Let Ψ R be a tesor that ecodes the sparsty of M e Ψ,j,k = 1 ff S,j,k 0 for a, j, k [] We have that M = max M,j,k uujuk u: u =1,j,k = max u: u =1,j,k max u: u =1,j,k M M,j,k Ψ,j,k uujuk M,j,k Ψ,j,k uujuk max u: u =1,j,k Ψ,j,k uujuk = M Ψ, where the ast equaty s from Perro Frobeus theorem for o-egatve tesors [9] Note that Ψ s oegatve by defto Now we boud Ψ o es of [3, Lemma 4] Reca that [B], j [], Ψ = B ψ ψ ψ, ψ 0 d, ψ j = 0 or 1 =1 By defto ψ = d Defe ormazed vectors ψ := ψ / ψ We have Ψ = d 15 B =1 ψ ψ ψ Defe matrx ψ := [ ψ 1 ψ, ψb ] Note that ψ ψ R B B s a matrx wth ut dagoa etres ad absoute vaues of off-dagoa etres bouded by η, by assumpto From Gershgor Dsk Theorem, every subset of L coums ψ has sguar vaues wth 1 ± o1, where L < 1 η Moreover, from Gershgor Dsk Theorem, ψ < 1 + Bη For ay ut vector u, et S be the set of L dces that are argest ψ u By the argumet above we kow ψ S u ψ S u 1 + o1 I partcuar, the smaest etry ψ S u s at most / L By costructo of S ths mpes for a ot S, ψ u s at most / L Now we ca wrte the 3 orm of ψ u as ψ u 3 3 = S S ψ u 3 + S ψ u 3 ψ u + / L 3 S 1 + η ψ 1 + Bη 15 ψ u Here the frst equaty uses that every etry outsde S s sma, ad ast equaty uses the boud argued o ψ S u, the spectra orm boud s assumed o A S c Sce B = Oη 15, we have the resut Aother mportat boud requred s -orm of certa cotractos of the ormazed sparse tesor ad ts powers, whch we deote by M beow We use a oose boud based o spectra orm ad we requre M < 1/ However, ths costrat w aso be eeded for the power teratos to succeed ad s ot a addtoa requremet Thus, the oose boud beow w suffce for our resuts to hod Lemma 5 Ifty orm bouds Let M R satsfy the bock sparsty assumpto S Let u, v satsfy the assumpto u, v µ 1/ The, we have

2 Robust Tesor Decomposto uder Bock Sparse Perturbato 1 Mu, v, I κµ 1/ M, where κ := Bd µ [Mu, v, I] p κµ M M p 1 for p > 1 3 p 1 [Mu, I, I]p v κµ M M 1 M whe M < 1/ Proof We have from orm coverso Mu, v, I u v max MI, I, e j 1 11 j µ Bd M, 1 where 1 orm e sum of absoute vaues of etres of a sce MI, I, e j s Bd, sce the umber of o-zero etres oe bock a sce s d Let Z = Mu, I, I R Now, Mu, I, I p v = Z p v = Z p 1 a where a = Zv Now, Z p 1 a = max e T j Z p 1 a Z p 1 a Z p 1 a M p 1 a κµ M M p 1 j Hece, p 1 [Mu, I, I]p v κµ M M 1 M B Proof of Theorem 1 Lemma 6 Let L, S be symmetrc ad satsfy the assumptos of Theorem 1 ad et S t be the t th terate of the th stage of Agorthm 1 Let 1,, r be the egevaues of L, such that 1 r 0 ad λ 1,, λ r be the egevaues of T S t such that λ 1 λ r 0 Reca that E t := S S t Suppose further that 1 E t 8µ3 k 3/ supp E t supp S t 1, ad The, for some costat c [0, 1, we have t 1 1 c +1 + λ +1 + t 1 λ 1 + c t 13 Proof Note that T S t = L + E t Now, where γ t := So we have: λ +1 + λ+1 +1 E 8 t 8d 3/ E t 8µ3 rγ t 3/ d3/, t 1 That s, λ µ 3 r d t 1 λ +1 + t 1 8µ3 r 3/ γt Smary, λ 8µ3 r d 3/ γt 3/ d γ t 1 + 3/ d 16µ 3 r γ t t 1 c +1 +, t 1 /3 where the ast equaty foows from the boud d c µ 3 k for some costat c

3 Lemma 7 Assume the otato of Lemma 6 Aso, et L t, S t be the t th terates of r th stage of Agorthm 1 ad L t+1, S t+1 be the t + h terates of the same stage Aso, reca that E t := S S t ad E t+1 := S S t+1 Suppose further that 1 E t 8µ3 r 3/ supp E t supp S t 1, ad 3 E t < C, where C < 1/ s a suffcety sma costat The, we have: L t+1 L µ3 r 3/ t Proof Let L t+1 = =1 λ u t+1 be the ege decomposto obtaed usg the tesor power method o T S t at the t + h step of the th stage Aso, reca that T S t = L + E t where L = r j=1 j u 3 j Defe E t := S S t Defe E := E t u t+1, I, I Let E t := ɛ Cosder the egevaue equato T S t u t+1, u t+1, I = λ u t+1 L u t+1, u t+1, I + E t u t+1, u t+1, I = λ u t+1 r, u j uj + E t u t+1, u t+1, I = λ u t+1 j=1 u t+1 [λ I E t u t+1, I, I]u t+1 = u t+1 = r j=1 I + p 1 : u t+1, u j uj E p λ r j=1 λ u t+1, u j uj Now, L t+1 L [] λ u t+1 3 [] 3 u + λ u t u + [] r =+1 r =+1 3 u u 3 For a fxed, usg λ + ɛ [] ad usg Lemma 11, we obta λ u t u + ɛu t u u t u + ɛ u t u + ɛ [3 u t+1 + ɛ u t u t+1 u t+1 u t+1 u u + 3 u t u u + ɛ u t+1 3 u u + u t+1 u 3 ]

4 Robust Tesor Decomposto uder Bock Sparse Perturbato Now, u t+1 u = r r u t+1, u j uj u + λ j=1 j=1,p 1 1 u u t+1, u + λ λ j + u t+1 E p, u u + λ λ p 1 λ u t+1 p,j u t+1 λ, u j E p u j, u j uj u t+1 E p, u j u j λ For the frst term, we have 1 λ u t+1, u u where we substtute for ɛ the ast step For the secod term, we have λ j whch s a ower order term Next, λ p 1 u t+1 u t ɛ µ ɛ Cµ 1/, u j uj E p, u u λ ɛ 1 u ɛ ɛ µ ɛ u, 1/ p 1 E p u λ λ λ p 1 µ E t /λ λ 1 E t /λ κ t µ E t 1 C λ from Lemma 5, ad the assumpto o spectra orm of E t, where κ t := Bd µ 1 1 ɛ µ 1/ E p u λ For the remag terms, we have u t+1 E p, u j u j λ λ p,j j whch s a ower order term u t+1 λ, u j p 1 E λ p u 1 Combg the above ad recag ɛ, [] u t+1 8 κ t µ u E t 1 C λ Aso, from Lemma 1 λ 8 E t 8ɛ λ p 1 E λ p u 1 ɛ,

5 Thus, from the above two equatos, we obta the boud for the parameters egevectors ad egevaues of the ow-rak tesor u t+1 u ad λ We combe the dvdua parameter recovery bouds as: λ u t u r[7 u t+1 u u + ɛ u t+1 3 ] [] [] ad the other term r =+1 Combg boud 14 wth the above, we have L t+1 L rµ κ t µ 3 r 1 C 15 Et 14 u 3 +1 rµ C κ t E t + +1 < 1 4 Et where the ast equaty comes from the fact that rµ Et 8 ad the assumpto that C < 1/, ad we ca choose B ad d st 448rµ 3 15 κ t < 1 8 Ths s possbe from assumpto S The foowg emma bouds the support of E t+1 ad E t+1, usg a assumpto o L t+1 L Lemma 8 Assume the otato of Lemma 7 Suppose The, we have: L t+1 L µ3 r 3/ 1 supp E t+1 supp S E t+1 7 µ3 r 3/ +1 +, ad Proof We frst prove the frst cocuso Reca that, t S t+1 = H ζ T L t+1 = H ζ L L t+1 + S, where ζ = 4 µ3 r λ 3/ +1 + λ s as defed Agorthm 1 ad λ 1,, λ are the egevaues of T S t such that λ 1 λ If S = 0 the Et+1 jk = 1 L L t+1 >ζ L Lt+1 The frst part of the emma ow foows by usg the assumpto that L t+1 L µ3 r 3/ +1 + ζ1 4 µ3 r λ 3/ +1 + λ = ζ, where ζ 1 foows from Lemma 6 We ow prove the secod cocuso We cosder the foowg two cases: 1 T L t+1 > ζ: Here, S t+1 µ3 r / T L t+1 ζ + L Lt+1 3/ = S + L Lt+1 Hece, S t+1 S L Lt+1 ζ: I ths case, S t+1 = 0 ad S + L Lt+1 ζ So we have, E t+1 7 µ3 r +1 + The ast equaty above foows from Lemma 6 = S

6 Robust Tesor Decomposto uder Bock Sparse Perturbato Ths proves the emma Theorem 9 Let L, S be symmetrc ad satsfy L ad S, ad β = 4 µ3 r The outputs L ad ts parameters 3/ û ad ˆλ ad Ŝ of Agorthm 1 satsfy whp: δ û u µ r 1/ m, ˆλ δ, [], L L F δ, Ŝ S δ, ad supp Ŝ supp 3/ S Proof Reca that the th stage, the update L t+1 s gve by: L t+1 = P T S t ad S t+1 s gve by: S t+1 = H ζ T L t+1 Aso, reca that E t := S S t ad E t+1 := S S t+1 We prove the emma by ducto o both ad t For the base case = 1 ad t = 1, we frst ote that the frst equaty o L 0 L s trvay satsfed Due to the threshodg step step 3 Agorthm 1 ad the coherece assumpto o L, we have: So the base case of ducto s satsfed 8µ 3 r 3/ E 0 8µ3 r 3/ + 1, ad supp E 0 supp S We frst do the ductve step over t for a fxed r By ductve hypothess we assume that: a E t , b supp E t supp S The by Lemma 7, we have: Lemma 8 ow tes us that 1 E t+1 8µ3 r 3/ +1 +, ad supp E t+1 supp S L t+1 L µ3 r 3/ t Ths fshes the ducto over t Note that we show a stroger boud tha ecessary o E t+1 We ow do the ducto over Suppose the hypothess hods for stage Let T deote the umber of teratos each stage We frst obta a ower boud o T Sce T S 0 L E 0 1 d 3/ E , we see that T 10 og 3µ 3 r 1/δ So, at the ed of stage r, we have: 1 E T 7µ3 r 3/ T supp E T supp S 7µ3 r +1 3/ + δ 10, ad Reca, r+1 T S T r+1 E T d µ 3 r r+1 + δ We w ow cosder two cases: 1 Agorthm ermates: Ths meas that β r+1 T S T < δ whch the mpes that 3/ r+1 < δ So we have: T L L = L T L µ3 r 1 3/ r+1 + r δ 5 3/ Ths proves the statemet about L ad ts parameters egevaues ad egevectors A smar argumet proves the cam o Ŝ S The cam o supp Ŝ foows sce supp ET supp S 6µ 3 r

7 Agorthm 1 cotues to stage r + 1: Ths meas that β r+1 L T δ r+1 > So we have: δ 8µ 3 r Smary for L T L Ths fshes the proof E T 8µ3 r 3/ r+1 + 8µ3 r 3/ 8µ3 r 3/ T r δ 10µ 3 r 3/ µ3 r 3/ / whch the mpes that B1 Short proof of Coroary 1 The state of art guaratees for robust matrx PCA requres that the overa sparsty aog ay row or coum of the put matrx be D = O rµ whe the put matrx s R Uder S, the tota sparsty aog ay row or coum of M s gve by D := db Now, Theorem 1 hods whe the sparsty codto 5 s satsfed That s, RTD succeeds whe 4/3 D = Od B = O m r 1/3 µ, /3 r /3 µ r 1/3 = O rµ Hece, RTD ca hade arger amout of corrupto tha the matrx methods ad the ga becomes more sgfcat for smaer η B Some auxary emmas We reca Theorem 51 from [] Let ɛ = 8 E t where E t := S S t Lemma 10 Let L t+1 = k =1 λ u t+1 be the ege decomposto obtaed usg Agorthm 1 o T S t The, 1 If u t+1 u ɛ, the dstu t+1 m, u ɛ m j u t+1, u j ɛ m 3 u t+1 µ + ɛ 1/ m 4 ɛ λ + ɛ Proof 1 Let z u ad z = 1 u t+1 = u t+1 u = u t+1, u u t+1, u dstu t+1, u u + dstu t+1, u z 1 u + dstu t+1, u z + 0 The usg Theorem 51 from [], we obta the resut Next, sce u t+1, u + dstu t+1, u = 1, we have u t+1, u ɛ 1 m

8 Robust Tesor Decomposto uder Bock Sparse Perturbato Note that u t+1 = k j=1 u t+1, u j u j + dstu t+1, Uz where z U such that z = 1 Usg u t+1 = 1 ad the Pythagoras theorem, we get 1 u t+1, u = u t+1 t+1, u j + dstu, U 1 u t+1, u j j j Usg part 1 of Lemma 10, we get j u t+1, u j ɛ m 3 We have u t+1 = u t+1 u t+1, u u + dstu t+1, u z u t+1, u u + dstu t+1 µ, u z 1 + 1/ ɛ m 4 Ths foows from Theorem 51 from [], e,, λ ɛ Lemma 11 Let a = b+ɛ 1 where a, b are ay vectors ad ɛ > 0 The, a 3 b 3 a b b +Oɛ Proof We have a 3 b 3 = b + ɛ 1 3 b 3 Let, j, k be the maxmum eemet Therefore, b + ɛ 1 3 b 3 = b + ɛb j + ɛb k + ɛ b b j b k = ɛb b j + b j b k + b k b + ɛ b + b j + b k + ɛ 3 Wth b c for some c > 0 ad ɛ = a b, we have a 3 b 3 3ɛc + Oɛ C Symmetrc embeddg of a asymmetrc tesor We use the symmetrc embeddg syml of a tesor L as defed Secto 3 of [4] We focus o thrd order tesors whch have ow CP-rak We have three propertes to derve that s reevat to us: 1 Symmetry: From Lemma of [4] we see that syml for ay tesor s symmetrc CP-Rak: From Equato 65 of [4] we see that CP-raksymL 6CP-rakL Sce ths s a costat, we see that the symmetrc embeddg s aso a ow-rak tesor 3 Icoherece: Theorem 47 of [4] says that f u 1, u ad u 3 are ut moda sguar vectors of T, the the vector ũ = 3 1/ [u 1 ; u ; u 3 ] s a ut egevector of symt Wthout oss of geeraty, assume that T s of sze 1 3 wth 1 3 I ths case, we have ũ µ 3 1 1/ 15 ad ũ µ / 16 for µ = cµ for some costat c to be cacuated Equatg the rght had sdes of Equatos 15 ad 16, we obta c = [ /3 1 ] 1/ Whe Θ 1 = Θ = Θ 3, we see that the egevectors ũ of symt as specfed above have the coherece-preservg property

9 D Proof of Theorem Let L be a symmetrc tesor whch s a perturbed verso of a orthogoa tesor L, L = L + E R, L = [r] u 3, where 1 r > 0 ad {u 1, u,, u r } form a orthoorma bass The aayss proceeds teratvey Frst, we prove covergece to egepar of L, whch s cose to top egepar 1, u 1 of L We the argue that the same hods o the defated tesor, whe the perturbato E satsfes 8 from Ths fshes the proof of Theorem To prove covergece for the frst stage, e covergece to egepar of L, whch s cose to top egepar 1, u 1 of L, we aayze two phases of the shfted power terato I the frst phase, we prove that wth N 1 tazatos ad N power teratos, we get cose to true top egepar of L, e 1, u 1 After ths, the secod phase, we prove covergece to a egepar of L The proof of the secod phase s outed the ma text Here, we ow provde proof for the frst phase D1 Aayss of frst phase of shfted power terato I ths secto, we prove that the output of shfted power method s cose to orga egepars of the uperturbed orthogoa tesor, e Theorem hods, except for the property that the output correspods to the egepars of the perturbed tesor We adapt the proof of tesor power terato from [] but here, sce we cosder the shfted power method, we eed to modfy t We adopt the otato of [] ths secto Reca the update rue used the shfted power method Let θ t = k =1 θ,tv R k be the ut vector at tme t The θ t+1 = k θ,t+1 v := T I, θ t, θ t + αθ t / T I, θ t, θ t + αθ t =1 I ths subsecto, we assume that T has the form where {v 1, v,, v k } s a orthoorma bass, ad, wthout oss of geeraty, T = k =1 λ v 3 + Ẽ 17 λ 1 θ 1,t = max λ θ,t > 0 [k] Aso, defe λ m := m{ λ : [k], λ > 0}, λmax := max{ λ : [k]} We assume the error Ẽ s a symmetrc tesor such that, for some costat p > 1, ẼI, u, u ɛ, u Sk 1 ; 18 ẼI, u, u ɛ/p, u Sk 1 st u v ɛ/ λ 1 19 I the ext two propostos Propostos D1 ad D ad Lemmas D1, we aayze the power method teratos usg T at some arbtrary terate θ t usg oy the property 18 of Ẽ But throughout, the quatty ɛ ca be repaced by ɛ/p f θ t satsfes θt v ɛ/ λ 1 as per property 19 Defe for τ {t, t + 1} θ 1,τ R τ := 1 θ1,τ γ τ := 1 1/, r,τ := λ 1 θ 1,τ λ θ,τ, 1 m 1 r,τ, δ τ := ɛ, κ := λ max λ 1 θ1,τ λ 1 0

10 Robust Tesor Decomposto uder Bock Sparse Perturbato Proposto D1 Proposto D m r,t R t 1 κ, γ t 1 κ, θ1,t = R t R t 1 + Rt r,t+1 r,t α λ 1 + κδ t r,t + α λ θ,t, [k], 1 R t+1 = R t 1 θ 1,t 1 γ t + δ t + α1 θ1,t1/ R λ 1θ1,t t κ R t α λ 1 θ 1,t + δ t + α1 θ1,t1/ λ 1θ 1,t Proof Let ˇθ t+1 := T I, θ t, θ t + αθ t, so θ t+1 = ˇθ t+1 / ˇθ t+1 Sce ˇθ,t+1 = T v, θ t, θ t = T v, θ t, θ t + αθ t + Ev, θ t, θ t, we have ˇθ,t+1 = λ θ,t + Ev, θ t, θ t + αθt v, [k] By defto, we have θ,t = θt v Usg the trage equaty ad the fact Ev, θ t, θ t ɛ, we have ˇθ,t+1 λ θ,t ɛ + αθ,t θ,t λ θ,t ɛ/ θ,t + α ad for a [k] Combg 3 ad 4 gves r,t+1 = λ 1 θ 1,t+1 λ θ,t+1 = λ 1 ˇθ1,t+1 ˇθ,t+1 λ θ,t + ɛ + αθ,t θ,t λ θ,t + ɛ/ θ,t + α λ ˇθ,t+1 r,t 1 + λ ɛ + α θ,t λ θ,t = r,t 1 + λ / λ 1 δ t r,t + θ,t Moreover, by the trage equaty ad Höder s equaty, 1/ 1/ [ˇθ,t+1 ] = λ θ,t + Ev, θ t, θ t + αθ,t = Combg 3 ad 5 gves = = 1/ λ θ,t 4 + max λ θ,t 1 = = 1 θ1,t 1/ θ 1,t+1 1 θ1,t+1 = ˇθ 1,t+1 1/ 1/ = [ˇθ,t+1 ] I terms of R t+1, R t, γ t, ad δ t, ths reads R t+1 1 γ t = 1 γ t R t + = θ,t 1/ + ɛ + max 1 1/ k Ev, θ t, θ t + α k = θ,t = 1/ r,t α θ,t κδ t r,t + θ,t 1/ λ θ,t + ɛ/1 θ1,t 1/ + α 5 θ 1,t 1 θ 1,t 1/ 1 θ 1,t 1/ + δt + α1 θ1,t1/ λ 1θ1,t 1 θ 1,t θ 1,t 1 θ 1,t δ t + α1 θ 1,t 1/ λ 1θ1,t κ R t λ 1 θ 1,t ɛ/ θ 1,t + α max 1 λ θ,t + ɛ/1 θ 1,t 1/ + α α = R t 1 γ t + α λ 1 θ 1,t + δ t + α1 θ 1,t 1/ λ 1θ 1,t λ 1 θ 1,t δ t + α1 θ 1,t 1/ λ 1θ 1,t R t where the ast equaty foows from Proposto D1

11 Lemma D1 Fx ay ρ > 1 Assume ad γ t > 1 + κρ δ t 1 If r,t ρ, the r,t+1 r,t 1 + γt Proof By 1 from Proposto D, r,t+1 r,t { 1 0 δ t < m 1 + κρ, 1 1/ρ } 1 + κρ α λ 1 + κδ t r,t + α λ θ,t r,t where the ast equaty s see as foows: Let ξ = 1 1 γ t 1 + κρ δ t + θ,t 1 + κρ δ t + r,t θ,t 1 + γ t The, we have γt + γ t + ξ 0 The postve root s 1+9 4ξ1/ Sce γ t 0, we have 9 4ξ 1/ 1, so α we assume ξ for the equaty to hod, e, 1 + κρ λ δ t θ,t The rest of the proof s aog the smar es of [], except that we use SVD tazato stead of radom tazato The proof of SVD tazato s gve [3]

Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations

Tensor vs Matrix Methods: Robust Tensor Decomposition under Block Sparse Perturbations Tesor vs Matrx Methods: Robust Tesor Decomposto uder Bock Sparse Perturbatos Amashree Aadkumar, Prateek Ja, Yag Sh, U. N. Nraja Apr 6, 016 Abstract Robust tesor CP decomposto voves decomposg a tesor to

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks

Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks Stochastc Gradet Descet Optmzes Over-parameterzed Deep ReLU Networks Dfa Zou ad Yua Cao ad Dogruo Zhou ad Quaqua Gu arxv:1811.08888v1 [cs.lg] 1 Nov 018 Abstract We study the probem of trag deep eura etworks

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic.

A stopping criterion for Richardson s extrapolation scheme. under finite digit arithmetic. A stoppg crtero for cardso s extrapoato sceme uder fte dgt artmetc MAKOO MUOFUSHI ad HIEKO NAGASAKA epartmet of Lbera Arts ad Sceces Poytecc Uversty 4-1-1 Hasmotoda,Sagamara,Kaagawa 229-1196 JAPAN Abstract:

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments.

Optimal Constants in the Rosenthal Inequality for Random Variables with Zero Odd Moments. Optma Costats the Rosetha Iequaty for Radom Varabes wth Zero Odd Momets. The Harvard commuty has made ths artce opey avaabe. Pease share how ths access beefts you. Your story matters Ctato Ibragmov, Rustam

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Rational Equiangular Polygons

Rational Equiangular Polygons Apped Mathematcs 03 4 460-465 http://dxdoorg/0436/am034097 Pubshed Oe October 03 (http://wwwscrporg/oura/am) Ratoa Equaguar Poygos Marus Muteau Laura Muteau Departmet of Mathematcs Computer Scece ad Statstcs

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Landé interval rule (assignment!) l examples

Landé interval rule (assignment!) l examples 36 - Read CTD, pp. 56-78 AT TIME: O H = ar s ζ(,, ) s adé terva rue (assgmet!) ζ(,, ) ζ exampes ζ (oe ζfor each - term) (oe ζfor etre cofgurato) evauate matrx eemets ater determata bass ad may-e M or M

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form Hypersurfaces wth Costat Scalar Curvature a Hyperbolc Space Form Lu Xm ad Su Wehog Abstract Let M be a complete hypersurface wth costat ormalzed scalar curvature R a hyperbolc space form H +1. We prove

More information

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation.

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation. Whe solvg a vetory repleshmet problem usg a MDP model, kowg that the optmal polcy s of the form (s,s) ca reduce the computatoal burde. That s, f t s optmal to replesh the vetory whe the vetory level s,

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS

INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS GARY L. MULLEN, DAQING WAN, AND QIANG WANG We dedcate ths paper to the occaso of Harad Nederreter s 70-th brthday. Hs work o permutato poyomas

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Hard Core Predicates: How to encrypt? Recap

Hard Core Predicates: How to encrypt? Recap Hard Core Predcates: How to ecrypt? Debdeep Mukhopadhyay IIT Kharagpur Recap A ecrypto scheme s secured f for every probablstc adversary A carryg out some specfed kd of attack ad for every polyomal p(.),

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

A Primer on Summation Notation George H Olson, Ph. D. Doctoral Program in Educational Leadership Appalachian State University Spring 2010

A Primer on Summation Notation George H Olson, Ph. D. Doctoral Program in Educational Leadership Appalachian State University Spring 2010 Summato Operator A Prmer o Summato otato George H Olso Ph D Doctoral Program Educatoal Leadershp Appalacha State Uversty Sprg 00 The summato operator ( ) {Greek letter captal sgma} s a structo to sum over

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i CHEMICAL EQUILIBRIA The Thermodyamc Equlbrum Costat Cosder a reversble reacto of the type 1 A 1 + 2 A 2 + W m A m + m+1 A m+1 + Assgg postve values to the stochometrc coeffcets o the rght had sde ad egatve

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Internet Electronic Journal of Molecular Design

Internet Electronic Journal of Molecular Design COEN IEJMAT ISSN 538 644 Iteret Eectroc Joura of Moecuar esg ecember 007 Voume 6 Number Pages 375 384 Edtor: Ovdu Ivacuc Further Resuts o the Largest Egevaues of the stace Matrx ad Some stace Based Matrces

More information

G S Power Flow Solution

G S Power Flow Solution G S Power Flow Soluto P Q I y y * 0 1, Y y Y 0 y Y Y 1, P Q ( k) ( k) * ( k 1) 1, Y Y PQ buses * 1 P Q Y ( k1) *( k) ( k) Q Im[ Y ] 1 P buses & Slack bus ( k 1) *( k) ( k) Y 1 P Re[ ] Slack bus 17 Calculato

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Lecture 3: Randomly Stopped Processes

Lecture 3: Randomly Stopped Processes STAT 498: Selected Topcs Stochastc Processes Wter 2018 Lecture 3: Radomly Stopped Processes Lecturer: Fag Ha Ja 29 Dsclamer: These otes have ot bee subjected to the usual scruty reserved for formal publcatos.

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

PPCP: The Proofs. 1 Notations and Assumptions. Maxim Likhachev Computer and Information Science University of Pennsylvania Philadelphia, PA 19104

PPCP: The Proofs. 1 Notations and Assumptions. Maxim Likhachev Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 PPCP: The Proofs Maxm Lkhachev Computer ad Iformato Scece Uversty of Pesylvaa Phladelpha, PA 19104 maxml@seas.upe.edu Athoy Stetz The Robotcs Isttute Carege Mello Uversty Pttsburgh, PA 15213 axs@rec.r.cmu.edu

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information