Fractal Tilings. Katie Moe and Andrea Brown. December 14, 2006

Size: px
Start display at page:

Download "Fractal Tilings. Katie Moe and Andrea Brown. December 14, 2006"

Transcription

1 Fractal Tilings Katie Moe and Andrea Brown December 4, 26 Abstract In this paper we will discuss how to create fractal tilings from a few simple matrices and formulas. We will do this by drawing several examples of the tilings and discussing how we got there. Introduction In this paper we will be generating tilings with tiles called fractiles whose boundaries are fractal curves. Fractal curves are objects or quantities that display self-similarity, in a somewhat technical sense, on all scales. This means that it looks the same at any scale. We will use an iterative process, involving repeated compositions of two or more functions and those, in turn, will generate the fractal tiling. Page of 9

2 Examples of Fractal Tilings a b When we start with a matrix M = where a and b are chosen so that b a a 2 + b 2 x a >. We must understand that and are points in the complex x 2 b x ax bx plane and M = 2 represents the complex multiplication of x 2 ax + bx 2 x + ix 2 by a + ib. Next, we must find a collection of vectors that will translate the copies of the fractile so that they are positioned correctly in the tiling. The unit square that is determined by the vectors and is mapped onto the a square S with area m = a 2 + b 2 and is spanned by the vectors v = and b b v 2 =. We will define the set ξ = {r a j } and the vectors in this set have integer coordinates that lie in or on S but not on the two outer edges that don t have the origin as a vertex. ξ has exactly m vectors. We will generate an example using the iterative process that will be explained in a later section. Example In this first example, let M = the m = 2. Using Figure, we can determine that the two translation vectors are r = and r 2 =. Now we Page 2 of 9

3 have ξ = {r, r 2 }. For z = (x, x 2 ), where z is our initial point of translation, we can define our mappings as f j (z) := r j + M (z) for j =, 2 That is, f := f 2 := [ x x 2 [ x x 2 ].5.5 x x 2 ].5.5 x The collections of functions {f j } is called an iterated function system. To initiated this process a initial point z o is randomly selected in the plane and is used to evaluate f (z o ) and f 2 (z o ). For n, we make sure to choose recursively and randomly so that z n ɛ{f (z n ), f 2 (z n )}. Points will be lying near the tiling after a few iterations, but thousands of iterations will be needed to generate the desired tiling. The set A of randomly selected points that result is called the attractor. A = A A 2, where A j = f j A. The result of the iterated function system for this example can be seen in Figure 2. Example 2 If we have M = 2 2 and r =, r 2 =, and r 3 =. These vectors, seen in Figure 3, will produce three tiles that are stacked horizontally in Figure 4. x 2 Page 3 of 9

4 (, ) r r 2 (, ) Figure : Finding Equivalent Residue Vectors. Figure 2: Snowflake Spiral. Page 4 of 9

5 (2, ) r r 2 r 3 (, ) Figure 3: Finding Equivalent Residue Vectors. Figure 4: Horizontal Tiling. Page 5 of 9

6 To generate a tiling we need a matrix to be an invertible integer matrix that is an expansive map, i.e. all eigenvalues have modulus larger than. The matrix a b we will choose will be M =. c d The translation vectors are chosen with the following process. For a matrix M as above, det(m) = [ ad ] bc = m is [ the ] area of parallelogram P spanned a b by the two vectors v = and v c 2 =. These vectors are called principal d residue vectors. The vectors in {r j } form a complete residue system for M. Let L be the lattice of points in the complex plane with integer coordinates (these points are known as Gaussian Integers). For j =,..., m, define L j := {r j + Mx : xɛl}. We see now, that the corner points of the parallelogram P are members of L and are linear combinations of each of the columns of our matrix M. These integer linear combinations form a subset G of L, which in turn forms a grid of parallelograms, and each are congruent to P. Each point r j of L inside P is equivalent to one point y j (r j y j ) inside each of these congruent parallelograms. Generally, as long as y = r = and y j r j for j = 2,...m, then the collection of vectors {y j } will also form a complete residue system for matrix M. The location of the residue vectors determines the locations of the fractiles but the shape of the tilings may change drastically with the different choices of residue systems. Page 6 of 9

7 Short Summary of Important Ideas M represents an expansive map, {y,...y m } is a complete residue system for M, and f j (z) := r j + M (z). The attractor set A = j= m A j is the tiling of m tiles A j. These tiles are now called m-rep tiles. These ideas will now be used to create a tiling of m-rep tiles. Example 3 [ 2 Let M = 2 r =, r 2 = ] ; then m = 5. Here the principal residue vectors are, r 3 =, r 4 =, and r 2 5 = For a more symmetric tiling, we choose the following equivalent residue vectors for our residue system out of the collection {y j }. The Figure 6 is created by using y = r, y 2 = r 2, y 3 = r 3, y 4 = The vectors {y, y 2, y 3, y 4, y 5 } are symmetric about r. Tiles with Radial Symmetry 2 r 4, and y 5 = r 5. When m = 2, 3, 4, 5, and 7, we are able to create a tiling that has radial symmetry. Page 7 of 9

8 (, 2) r 2 r 3 (2, ) y 3 r y 4 r 4 y 5 Figure 5: Finding Equivalent Residue Vectors. Figure 6: 5-rep tile. Page 8 of 9

9 Example Let our matrix M =. To get radial symmetry in our tiling we need 2 to generate a tiling using three vectors that are symmetrically located around r =. Our complete residue system for M is y = r, y 2 = r 2, y 3 = r 3, and y 4 = r 4 =. This residue system is shown in Figure 7 Even though they form a complete residue system, these vectors are not symmetric[ about ] r. However, we see [ that the ] complex third roots of unity are /2 v = /2, v 3/2 2 =, andv 3 = but these vectors are not Gaussian 3/2 /2 integers. If we then use the linear transformation of B = and we get 3/2 that By = y, By 2 = v 2, By 3 = v 3, andby 4 = v. This new iteration process is using the new function f j (z) = By j + h (z) [ ] /4 3/4 where h = BMB and h =. This transformation B is the 3/4 /4 change of basis matrix that converts the lattice formed by ξ into one formed by v andv 2. Here seen in Figure 8. Page 9 of 9

10 (2, 2) r 4 r 3 ( 2, ) r 2 r y 2 y 3 Figure 7: Finding Equivalent Residue Vectors. Example 5 Figure 8: 4-rep Tile with Symmetry. Here is an example[ of six] fractiles symmetrically located about the first and 2 center tile. M = and we have the vectors r 2 3 j as shown in Figure 9 but we can choose residue vectors y = r, y 2 = r 2, y 3 = r 3, y 4 = r 4, y 5 = r 5, y 6 = r 4 =, andy 7 = r 7. We set /2 B = and we iterate with the function f 3/2 j (z) = By j + h (z) for Page of 9

11 j =, 2,..., 7 where h = B M B = can be seen in Figure. [ ] 2/7 3/7. The resulting tiling 3/7 2/7 A similarity map g will satisfies g(x) g(y) = r x y, for r > and all x,y in the plane. Similarity maps, geometrically are a composition of any collection of four simple mappings: Scaling by a positive factor r Rotation about the origin Translation, and Reflection Our attractor A is self-similar if each mapping in the collection {f j } is a similarity map with < r <. To be self-similar, A is the union of m smaller copies of itself. The attractor has the same shape as the individual m-rep tiles. In examples 2,4,5, and 6, these rep-tiles are formed by the linear map: multiplication by a complex number. Page of 9

12 r 5 ( 2, 3) r 7 r 3 r 6 r 4 (, 2) y 3 r 2 y 4 r y 7 y 5 y 6 Figure 9: Finding Equivalent Residue Vectors. Figure : Gosper Snowflake. Page 2 of 9

13 Developing similarity maps In our Examples 4 and 5, there was a change of basis that was applied to M and that produced our similarity mappings and attractive tilings. This works if M satisfies either of two conditions M has two real eigenvalues with independent eigenvectors, or M has a pair of complex conjugate eigenvalues. If M satisfies the first condition, let λ and λ 2 (λ = ±λ 2 ) be real eigenvalues for M with corresponding eigenvectors v and v 2. We will let B = [v, v 2 ] be the matrix with column vectors v and v 2. Now then, MB = M[v, v 2 ] = [λ v, λ 2 v 2 ] = B λ λ 2 so that h := BMB λ = is a similarity map. This is needed because λ 2 then h is then used to create the tilings with the function f j = By j + h (z), where {y j } are residue vectors for M. With this information, we are able to determine that h only depends on the eigenvalues, while the translation vectors, and the tiling, vary with the eigenvectors. Page 3 of 9

14 Example In this example, the matrix M = has a determinant 6 and eigenvalues λ = ± 2 6. The eigenvectors of M are v = ( and v 6 2)/2 = [ ] [ ] ( which means that B = 6 + 2)/2 ( 6 2)/2 (. Then 6 + 2)/2 [ ] 6 the similarity map is h = The tiling generated using the functions 6 f j (z) = Br j + h (z) can been seen in Figure. The principal residue vectors are r =, r 2 =, r 3 =, r 4 =, r 5 =, r 6 = Example 7 Start with matrix M = 3/2±i 3/2. Because we have our B = h = BMB is given by the matrix. This M has a determinant 3 and eigenvalues 2 /2 2/2 [ 3/2 3/2 3/2 3/2, the our similarity mapping ]. Next, choose the residue Page 4 of 9

15 Page 5 of 9 Figure : Similarity Tiling using a change of basis.

16 vectors y =, y 2 =, and y 3 = and iterate with the functions f j = By j + h (z), andj =, 2, 3. The resulting tiling is a terdragon and is a 3-rep tile and is seen in Figure 2. When working with these fractal tilings, one is able to vary the look of the tiling by merely omitting a function with various residue vectors or changing the main matrix M but keeping the residue vectors. These small changes will create similar but different tilings. Example 8 We are able to generate the tiling in Figure 4 by using the function from Example 5 (Figure ) and simply removing the function that coincides with the residue vector r. In this paper, we ve discussed the different steps that needed to be taken in order to create different and beautiful fractal tilings in the plane. We ve given many examples of these tilings and have shown the different residue vectors and how to find them. This was an interesting paper to write and we hope that it was also interesting to read. Page 6 of 9

17 Page 7 of 9 Figure 2: The Tergragon(a 3-rep tile).

18 Figure 3: Gosper Snowflake. Figure 4: Modified Snowflake. Acknowledgements We would like to thank Dave Arnold for helping us get our feet off the ground in this project and also Richard Darst, Judith Palagallo, and Thomas Price for writing the paper Fractal Tilings in a Plane whom without, this paper and project would not have been possible. Lastly, Thank you, Ben, for ALWAYS answering our questions. Page 8 of 9

19 [] Darst, Richard, Palagallo, Judith, and Price, Thomas. Fractal Tilings in the Plane. Mathematics Magazine 7 (998): Nov. 26. Page 9 of 9

Introduction Examples of Fractal Tilings Creating the Tilings Tiles with Radial Symmetry Similarity Maps Variations.

Introduction Examples of Fractal Tilings Creating the Tilings Tiles with Radial Symmetry Similarity Maps Variations. Fractal Tilings Katie Moe and Andrea Brown December 13, 2006 Introduction Examples of Fractal Tilings Example 1 Example 2 Table of Contents Creating the Tilings Short Summary of Important Ideas Example

More information

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward.

The coordinates of the vertex of the corresponding parabola are p, q. If a > 0, the parabola opens upward. If a < 0, the parabola opens downward. Mathematics 10 Page 1 of 8 Quadratic Relations in Vertex Form The expression y ax p q defines a quadratic relation in form. The coordinates of the of the corresponding parabola are p, q. If a > 0, the

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

Practice problems for Exam 3 A =

Practice problems for Exam 3 A = Practice problems for Exam 3. Let A = 2 (a) Determine whether A is diagonalizable. If so, find a matrix S such that S AS is diagonal. If not, explain why not. (b) What are the eigenvalues of A? Is A diagonalizable?

More information

(A B) 2 + (A B) 2. and factor the result.

(A B) 2 + (A B) 2. and factor the result. Transformational Geometry of the Plane (Master Plan) Day 1. Some Coordinate Geometry. Cartesian (rectangular) coordinates on the plane. What is a line segment? What is a (right) triangle? State and prove

More information

Notes on Rauzy Fractals

Notes on Rauzy Fractals Notes on Rauzy Fractals It is a tradition to associate symbolic codings to dynamical systems arising from geometry or mechanics. Here we introduce a classical result to give geometric representations to

More information

Fractals and Linear Algebra. MAA Indiana Spring Meeting 2004

Fractals and Linear Algebra. MAA Indiana Spring Meeting 2004 Fractals and Linear Algebra MAA Indiana Spring Meeting 2004 Creation of a Fractal Fractal Fractal An object composed of smaller copies of itself Fractal An object composed of smaller copies of itself Iterated

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Questionnaire for CSET Mathematics subset 1

Questionnaire for CSET Mathematics subset 1 Questionnaire for CSET Mathematics subset 1 Below is a preliminary questionnaire aimed at finding out your current readiness for the CSET Math subset 1 exam. This will serve as a baseline indicator for

More information

through any three given points if and only if these points are not collinear.

through any three given points if and only if these points are not collinear. Discover Parabola Time required 45 minutes Teaching Goals: 1. Students verify that a unique parabola with the equation y = ax + bx+ c, a 0, exists through any three given points if and only if these points

More information

Math 1553, Introduction to Linear Algebra

Math 1553, Introduction to Linear Algebra Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has course-level learning goals that pertain to the entire course, and section-level

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

Section 8.4 Vector and Parametric Equations of a Plane

Section 8.4 Vector and Parametric Equations of a Plane Section 8.4 Vector and Parametric Equations of a Plane In the previous section, the vector, parametric, and symmetric equations of lines in R 3 were developed. In this section, we will develop vector and

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

PRACTICE TEST ANSWER KEY & SCORING GUIDELINES INTEGRATED MATHEMATICS I

PRACTICE TEST ANSWER KEY & SCORING GUIDELINES INTEGRATED MATHEMATICS I Ohio s State Tests PRACTICE TEST ANSWER KEY & SCORING GUIDELINES INTEGRATED MATHEMATICS I Table of Contents Questions 1 29: Content Summary and Answer Key... iii Question 1: Question and Scoring Guidelines...

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n.

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n. Vector Spaces Definition: The usual addition and scalar multiplication of n-tuples x = (x 1,..., x n ) R n (also called vectors) are the addition and scalar multiplication operations defined component-wise:

More information

GEOMETRY OF MATRICES x 1

GEOMETRY OF MATRICES x 1 GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The

More information

Diagonalization. MATH 1502 Calculus II Notes. November 4, 2008

Diagonalization. MATH 1502 Calculus II Notes. November 4, 2008 Diagonalization MATH 1502 Calculus II Notes November 4, 2008 We want to understand all linear transformations L : R n R m. The basic case is the one in which n = m. That is to say, the case in which the

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

BASIC MATRIX ALGEBRA WITH ALGORITHMS AND APPLICATIONS ROBERT A. LIEBLER CHAPMAN & HALL/CRC

BASIC MATRIX ALGEBRA WITH ALGORITHMS AND APPLICATIONS ROBERT A. LIEBLER CHAPMAN & HALL/CRC BASIC MATRIX ALGEBRA WITH ALGORITHMS AND APPLICATIONS ROBERT A. LIEBLER CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. Contents Preface Examples Major results/proofs

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Laplacians of Graphs, Spectra and Laplacian polynomials Lector: Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial

More information

New Jersey Quality Single Accountability Continuum (NJQSAC) A-SSE 1-2; A-CED 1,4; A-REI 1-3, F-IF 1-5, 7a

New Jersey Quality Single Accountability Continuum (NJQSAC) A-SSE 1-2; A-CED 1,4; A-REI 1-3, F-IF 1-5, 7a ALGEBRA 2 HONORS Date: Unit 1, September 4-30 How do we use functions to solve real world problems? What is the meaning of the domain and range of a function? What is the difference between dependent variable

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

A PLANAR INTEGRAL SELF-AFFINE TILE WITH CANTOR SET INTERSECTIONS WITH ITS NEIGHBORS

A PLANAR INTEGRAL SELF-AFFINE TILE WITH CANTOR SET INTERSECTIONS WITH ITS NEIGHBORS #A INTEGERS 9 (9), 7-37 A PLANAR INTEGRAL SELF-AFFINE TILE WITH CANTOR SET INTERSECTIONS WITH ITS NEIGHBORS Shu-Juan Duan School of Math. and Computational Sciences, Xiangtan University, Hunan, China jjmmcn@6.com

More information

Module 4: Equations and Inequalities in One Variable

Module 4: Equations and Inequalities in One Variable Module 1: Relationships between quantities Precision- The level of detail of a measurement, determined by the unit of measure. Dimensional Analysis- A process that uses rates to convert measurements from

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers, where a is the x-coordinate and b is the y-coordinate.

More information

Pre-AP Algebra II Summer Packet

Pre-AP Algebra II Summer Packet Summer Packet Pre-AP Algebra II Name Period Pre-AP Algebra II 2018-2019 Summer Packet The purpose of this packet is to make sure that you have the mathematical skills you will need to succeed in Pre-AP

More information

Problem Solving in Math (Math 43900) Fall 2013

Problem Solving in Math (Math 43900) Fall 2013 Problem Solving in Math (Math 43900) Fall 203 Week six (October ) problems recurrences Instructor: David Galvin Definition of a recurrence relation We met recurrences in the induction hand-out. Sometimes

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

MODULE 1: FOUNDATIONS OF MATHEMATICS

MODULE 1: FOUNDATIONS OF MATHEMATICS MODULE 1: FOUNDATIONS OF MATHEMATICS GENERAL OBJECTIVES On completion of this Module, students should: 1. acquire competency in the application of algebraic techniques; 2. appreciate the role of exponential

More information

Mathematics 1EM/1ES/1FM/1FS Notes, weeks 18-23

Mathematics 1EM/1ES/1FM/1FS Notes, weeks 18-23 2 MATRICES Mathematics EM/ES/FM/FS Notes, weeks 8-2 Carl Dettmann, version May 2, 22 2 Matrices 2 Basic concepts See: AJ Sadler, DWS Thorning, Understanding Pure Mathematics, pp 59ff In mathematics, a

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

Chapter 2. Matrix Arithmetic. Chapter 2

Chapter 2. Matrix Arithmetic. Chapter 2 Matrix Arithmetic Matrix Addition and Subtraction Addition and subtraction act element-wise on matrices. In order for the addition/subtraction (A B) to be possible, the two matrices A and B must have the

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Congratulations! You ve completed Practice Test 1! You re now ready to check your

Congratulations! You ve completed Practice Test 1! You re now ready to check your Practice Test 1: Answers and Explanations Congratulations! You ve completed Practice Test 1! You re now ready to check your answers to see how you fared. In this chapter, I provide the answers, including

More information

Discrete Math, Second Problem Set (June 24)

Discrete Math, Second Problem Set (June 24) Discrete Math, Second Problem Set (June 24) REU 2003 Instructor: Laszlo Babai Scribe: D Jeremy Copeland 1 Number Theory Remark 11 For an arithmetic progression, a 0, a 1 = a 0 +d, a 2 = a 0 +2d, to have

More information

Vector Basics, with Exercises

Vector Basics, with Exercises Math 230 Spring 09 Vector Basics, with Exercises This sheet is designed to follow the GeoGebra Introduction to Vectors. It includes a summary of some of the properties of vectors, as well as homework exercises.

More information

Calculus first semester exam information and practice problems

Calculus first semester exam information and practice problems Calculus first semester exam information and practice problems As I ve been promising for the past year, the first semester exam in this course encompasses all three semesters of Math SL thus far. It is

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Systems of Linear ODEs

Systems of Linear ODEs P a g e 1 Systems of Linear ODEs Systems of ordinary differential equations can be solved in much the same way as discrete dynamical systems if the differential equations are linear. We will focus here

More information

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow

Math 343 Midterm I Fall 2006 sections 002 and 003 Instructor: Scott Glasgow Math 343 Midterm I Fall 006 sections 00 003 Instructor: Scott Glasgow 1 Assuming A B are invertible matrices of the same size, prove that ( ) 1 1 AB B A 1 = (11) B A 1 1 is the inverse of AB if only if

More information

11. Periodicity of Klein polyhedra (28 June 2011) Algebraic irrationalities and periodicity of sails. Let A GL(n + 1, R) be an operator all of

11. Periodicity of Klein polyhedra (28 June 2011) Algebraic irrationalities and periodicity of sails. Let A GL(n + 1, R) be an operator all of 11. Periodicity of Klein polyhedra (28 June 2011) 11.1. lgebraic irrationalities and periodicity of sails. Let GL(n + 1, R) be an operator all of whose eigenvalues are real and distinct. Let us take the

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Average lattices for quasicrystals

Average lattices for quasicrystals Technische Fakultät Universität Bielefeld 23. May 2017 joint work with Alexey Garber, Brownsville, Texas Plan: 1. Lattices, Delone sets, basic notions 2. Dimension one 3. Aperiodic patterns 4. 5. Weighted

More information

Linear Algebra. Maths Preliminaries. Wei CSE, UNSW. September 9, /29

Linear Algebra. Maths Preliminaries. Wei CSE, UNSW. September 9, /29 September 9, 2018 1/29 Introduction This review focuses on, in the context of COMP6714. Key take-away points Matrices as Linear mappings/functions 2/29 Note You ve probability learned from matrix/system

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 27 June - 03 July 2015 1 / 30 Laplacians of Graphs, Spectra and Laplacian polynomials Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk

More information

Polymetric Brick Wall Patterns and Two-Dimensional Substitutions

Polymetric Brick Wall Patterns and Two-Dimensional Substitutions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.4 Polymetric Brick Wall Patterns and Two-Dimensional Substitutions Michel Dekking 3TU Applied Mathematics Institute and Delft

More information

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain. MODEL ANSWERS TO HWK #7 1. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above by c on the left, we get 0

More information

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 Handout V for the course GROUP THEORY IN PHYSICS Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROM su(2)

More information

Unit 9: Quadratics Intercept Form

Unit 9: Quadratics Intercept Form For Teacher Use Packet Score: Name: Period: Algebra 1 Unit 9: Quadratics Intercept Form Note & Homework Packet Date Topic/Assignment HW Page 9-A Graphing Parabolas in Intercept Form 9-B Solve Quadratic

More information

Tuesday, 3/28 : Ch. 9.8 Cubic Functions ~ Ch. 9 Packet p.67 #(1-6) Thursday, 3/30 : Ch. 9.8 Rational Expressions ~ Ch. 9 Packet p.

Tuesday, 3/28 : Ch. 9.8 Cubic Functions ~ Ch. 9 Packet p.67 #(1-6) Thursday, 3/30 : Ch. 9.8 Rational Expressions ~ Ch. 9 Packet p. Ch. 9.8 Cubic Functions & Ch. 9.8 Rational Expressions Learning Intentions: Explore general patterns & characteristics of cubic functions. Learn formulas that model the areas of squares & the volumes of

More information

Fractals and Dimension

Fractals and Dimension Chapter 7 Fractals and Dimension Dimension We say that a smooth curve has dimension 1, a plane has dimension 2 and so on, but it is not so obvious at first what dimension we should ascribe to the Sierpinski

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

Economics 204 Summer/Fall 2010 Lecture 10 Friday August 6, 2010

Economics 204 Summer/Fall 2010 Lecture 10 Friday August 6, 2010 Economics 204 Summer/Fall 2010 Lecture 10 Friday August 6, 2010 Diagonalization of Symmetric Real Matrices (from Handout Definition 1 Let δ ij = { 1 if i = j 0 if i j A basis V = {v 1,..., v n } of R n

More information

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature.

Chem Symmetry and Introduction to Group Theory. Symmetry is all around us and is a fundamental property of nature. Symmetry and Introduction to Group Theory Symmetry is all around us and is a fundamental property of nature. Symmetry and Introduction to Group Theory The term symmetry is derived from the Greek word symmetria

More information

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions Pre-Algebra and Elementary Algebra: 24 questions Basic operations using whole numbers, integers, fractions, decimals and percents Natural (Counting) Numbers: 1, 2, 3 Whole Numbers: 0, 1, 2, 3 Integers:

More information

Statistical Mechanics and Combinatorics : Lecture IV

Statistical Mechanics and Combinatorics : Lecture IV Statistical Mechanics and Combinatorics : Lecture IV Dimer Model Local Statistics We ve already discussed the partition function Z for dimer coverings in a graph G which can be computed by Kasteleyn matrix

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

Determinants. Artem Los February 6th, Artem Los Determinants February 6th, / 16

Determinants. Artem Los February 6th, Artem Los Determinants February 6th, / 16 Determinants Artem Los (arteml@kth.se) February 6th, 2017 Artem Los (arteml@kth.se) Determinants February 6th, 2017 1 / 16 Overview 1 What is a Determinant? 2 Rules and Theorems 3 Area of a Parallelogram

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

MODEL ANSWERS TO THE FIRST HOMEWORK

MODEL ANSWERS TO THE FIRST HOMEWORK MODEL ANSWERS TO THE FIRST HOMEWORK 1. Chapter 4, 1: 2. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

California Algebra 1

California Algebra 1 California Algebra 1 This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Lecture 2: Eigenvalues and their Uses

Lecture 2: Eigenvalues and their Uses Spectral Graph Theory Instructor: Padraic Bartlett Lecture 2: Eigenvalues and their Uses Week 3 Mathcamp 2011 As you probably noticed on yesterday s HW, we, um, don t really have any good tools for finding

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below.

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below. Weaving a Parabola Web with the Quadratic Transformer In this activity, you explore how the graph of a quadratic function and its symbolic expression relate to each other. You start with a set of four

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

Given the table of values, determine the equation

Given the table of values, determine the equation 3.1 Properties of Quadratic Functions Recall: Standard Form f(x) = ax 2 + bx + c Factored Form f(x) = a(x r)(x s) Vertex Form f(x) = a(x h) 2 + k Given the table of values, determine the equation x y 1

More information

Subtract 16 from both sides. Divide both sides by 9. b. Will the swing touch the ground? Explain how you know.

Subtract 16 from both sides. Divide both sides by 9. b. Will the swing touch the ground? Explain how you know. REVIEW EXAMPLES 1) Solve 9x + 16 = 0 for x. 9x + 16 = 0 9x = 16 Original equation. Subtract 16 from both sides. 16 x 9 Divide both sides by 9. 16 x Take the square root of both sides. 9 4 x i 3 Evaluate.

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T0 INTRODUCING PARABOLAS 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) QUADRATIC FUNCTION = a statement containing different kinds of variables where one variable lacks a visible exponent and

More information

Chapter 2. EXPLORING LINEAR RELATIONS

Chapter 2. EXPLORING LINEAR RELATIONS Chapter 2. EXPLORING LINEAR RELATIONS In this chapter we begin with a review of proportional relationships as discussed in seventh grade mathematics. In eighth grade we focus on the unit rate of change

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

Eigenvalues and Eigenvectors: An Introduction

Eigenvalues and Eigenvectors: An Introduction Eigenvalues and Eigenvectors: An Introduction The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application. For example, this problem is crucial in solving systems

More information

Common Core Edition Table of Contents

Common Core Edition Table of Contents Common Core Edition Table of Contents ALGEBRA 1 Chapter 1 Foundations for Algebra 1-1 Variables and Expressions 1-2 Order of Operations and Evaluating Expressions 1-3 Real Numbers and the Number Line 1-4

More information