Threshold Pion Production at Large Momentum Transfers V. M. BRAUN

Size: px
Start display at page:

Download "Threshold Pion Production at Large Momentum Transfers V. M. BRAUN"

Transcription

1 Threshold Pion Production at Large Momentum Transfers V. M. BRAU University of Regensburg based on V.M. Braun, D. Ivanov, A. Lenz and A. Peters, Phys.Rev.D75:040,007 V.M. Braun, D. Ivanov and A. Peters, Phys.Rev.D77:03406,008 PAIC 008, Eilat, 3..08

2 Electroproduction with Q in a few GeV range: Tradition: excitation of nucleon resonances (transition form factors) e(l) + p(p) e(l ) + (3)(P ) e(l) + p(p) e(l ) + (440)(P ) Proposal: pion electroproduction close to threshold W W th e(l) + p(p) e(l ) + π + (k) + n(p ) e(l) + p(p) e(l ) + π 0 (k) + p(p ) W = (P + k) W th = m + m π Q = = (l l ) Hard (pqcd) and soft (ChPT) physics meet together!

3 Generalized Form Factors = S-wave Multipoles at Threshold at the threshold ( π j em µ p = i (P )γ 5 γ µ µ f π m G π (Q ) iσµνν m G π (Q ) ) (P ) related to S-wave multipoles in the PWA, e.g. for m π = 0 E π 0+ (Q, W th) = 4παem Q Q + 4m 8π m 3 G π fπ L π 0+ (Q, W th) = 4παem Q Q + 4m 3π m 3 G π fπ e.g. the differential cross section at threshold is given by dσ γ = dω π th k f W h W m (E π 0+ ) + ǫ Q (ωγ th (Lπ 0+ )i )

4 Chiral rotation Spontaneous Breaking of Chiral Symmetry In the chiral limit, m π/m 0, the pion can be rotated away: p = φs(x) 6 u d u u u d d u u + φa(x) u u d d u u p π 0 = n π + = φ s(x) 6u d u + u u d + d u u φa(x) 6f π u u d d u u f π φ s(x) u d u 3u u d 3d u u φa(x) u u d d u u fπ f π Pobylitsa, Polyakov, Strikman; PRL87(00)000 allows one to look at the proton from a different angle The relevant degrees of freedom change with Q rich physics rich theory

5 Q < 0. GeV : Chiral Perturbation Theory local effective low-energy theory systematic expansion in powers of m π and applicable for m π < 300 MeV(?) Bernard, Kaiser, Meissner; IJMP, E4 (995)93 Drechsel, Tiator; J. Phys. G 8 (99) 449 Kroll, Ruderman µ = m π/m /7 E π+ n 0+ ( = 0, W th ) = eg» π 3 8πm µ + O(µ ln µ ) = /m π exp: 7.9 ± 0.5; 8.8 ± 0.7 «#) m ( " E π0 p 0+ ( = 0, W th ) = eg π µ µ 8πm (3 + κp) + 4f π Subtlety: 0 and m π 0 limits do not commute

6 Chiral Perturbation Theory continued ambu, Lurié, Shrauner E ( ) 0+ (mπ = 0, ) = eg A 8πf π ( + 6 r A + 4m «G A ( ) = g A + 6 r A +... Bernard, Kaiser, Meissner; PRL69 (99)877 κ v + «+ 8fπ «) π Experiment: r A = 0.65 ± 0.03 (elastic ep); r A = ± 0.05 (pion el.prod) S-wave cross section γ p π 0 p W = 074, ǫ = 0.58 Q

7 Q m 3 /m π: Low-Energy Theorems predate ChPT and QCD Chiral symmetry: pion mass m π 0 pion coupling k 0 Pion emission from external legs P P P P P P k k k Chiral Rotation c P P π a j em µ i f π [j em µ, Qa 5 ] k Kroll, Ruderman 54

8 Low-Energy Theorems continued PCAC + current algebra: Q m Q m G π0 p = g A Vainshtein, Zakharov, PB36(97)589 Scherer, Koch, PA534(99)46 Q (Q + m ) Gp M, 0 p Gπ = g Am (Q + m ) Gp E, G π+ n = g A Q (Q + m ) Gn M + G A, G π+ n = g A m (Q + m ) Gn E, Derivation does not imply Q m π! Threshold photoproduction of π 0 is suppressed compared to π + The π 0 /π + ratio is rapidly increasing with Q The O(m π) corrections can be added but, no systematic way to treat O(m π ) terms (ChPT)

9 Low-Energy Theorems continued (II) expected to fail for Q m3 m π since π cannot have small momentum w.r.t. the initial and final state protons simultaneously P P P k P P k k at threshold m (P k) = mπ h i Q + m m phenomenological Lagrangians to take into account nucleon resonances or go over to uark-gluon description

10 Q m 3 /m π: Perturbative QCD QCD factorization for Q Λ 3 QCD /mπ Pobylitsa, Polyakov, Strikman, PRL87(00)000: P P k soft hard soft p = φs(x) 6 u d u u u d d u u + φa(x) u u d d u u p π 0 = n π + = φ s(x) 6u d u + u u d + d u u φa(x) 6f π u u d d u u f π φ s(x) u d u 3u u d 3d u u φa(x) u u d d u u fπ f π Only for G π (E 0+) Probably unrealistic at reachable momentum transfers

11 Q m 3 /m π: Light Cone Sum Rules: Q 0 GeV normalized to the dipole formula G D = /( + Q /0.7) L π0 p 0+ /G D E π0 p 0+ /G D E π+ n 0+ /G D L π+ n 0+ /G D green dots: MAID; : W = 074 MeV, : W = 084 MeV, : W = 094 MeV solid curves: LCSRs using experimental elastic EM formfactors as input dashed curves: pure LCSRs, no experimental input

12 Light Cone Sum Rules continued Deviation from LET: (G π 0 p π ) QCD (G 0 p (G π 0 p ) QCD ) LET (G π 0 p 3 ) LET Q, GeV Q, GeV Reproduce LET for Q GeV Reproduce pqcd for Q (part of the LO α s contribution) o double counting of soft and hard contributions Tested: Electromagnetic and axial form factors, heavy meson decays, pion form factors

13 Moving away from threshold Higher partial waves P-wave dominated by pion emission from the final state P P k Energy dependence E 0+(W), L 0+(W), etc. due to final state interactions P k P = P k P

14 SLAC E36 P. E. Bosted et al.; PRD49(994) F p (W, Q ) F p (W, Q ) W, GeV W, GeV Figure: The structure function F p (W, Q ) as a function of W scaled by a factor 0 3 compared to the SLAC E36 data at the average value Q = 7.4 GeV (left panel) and Q = 9.43 GeV (right panel).

15 CLAS (preliminary) ep eπ + n MAID07 MAID07 Kijun Park; DP 008 Oakland, CA (Oct. 3-6) MAID07

16 Summary Use pion as a handle to rotate the nucleon wave function a novel object: generalized form factor; an overlap between usual and rotated WF check Low Energy Theorems (ambu,... ) and transition to QCD new scale in QCD: Q m 3 /mπ measure nucleon axial form factor (reuires π + ) theory progress feasible, large community (ChPT, pqcd, PWA) an (almost) untouched terrain...! no data at Q 0. GeV MAMI? Perfectly suited for the JLab GeV upgrade physics program

17 Supplementary Material

18 Q 0 GeV : Light Cone Sum Rules consider Z Tν π (P, ) = i Balitsky, V.B., Kolesnichenko d 4 x e ix (P )π a (k) T{j em ν (x) ηp(0)} 0 h i η p(x) = ǫ ijk u i (x)cγ µu j (x) γ 5γ µ d k (x), 0 η p (P) = λ pm (P) take P = P + k, P GeV and make a matching between (a) The Operator Product Expansion in terms of pion-nucleon DAs (P )π a (k) T{j em ν (x) ηp(0)} 0 = X H ν(x, px) 0 (x )(x )(x 3) (P )π a (k) twist (b) The dispersion representation in terms of hadronic states P π P P P Borel transformation to improve convergence

19 Light Cone Sum Rules continued Good things: Reproduce LET for Q GeV Reproduce pqcd for Q (part of the LO α s contribution) o double counting of soft and hard contributions Tested: Electromagnetic and axial form factors, heavy meson decays, pion form factors ot so good things: Use nucleon distribution amplitudes as input not so well known Calculation rather demanding, especially in LO Bad things: Approximation for the continuum contribution not improvable irreducible error of order 0% for all Q

20 Light Cone Sum Rules: ucleon Electromagnetic form factors G M / GD G E / GM choice of nucleon DAs: solid: BLW model long dashes: asymptotic short dashes: CZ model Braun, Lenz, Wittmann; PRD73(006)09409 A. Lenz; arxiv: v

21 Light Cone Sum Rules: Pion ucleon Intermediate States ew: Semidisconnected pion-nucleon contributions in the intermediate state P P P a) k k b) k c) Figure: Schematic structure of the pole terms in the correlation function b) and c) correspond to π coupling to the Ioffe current 0 η (P» p(0) k)π(k) = iλp m g A f π P m ( P k + m ) k γ 5(P k). In the threshold kinematics, with δ = m π/m 8 T π0 p ν (P, ) = iλp m < (( + δ) P + m )γ 5 f π : m P 4(γ ν ν ) Gπ0 p m + ( + δ)γ 5( P + m ) p iσνµµ»γ νf [m ( + F p δ) + δq ] P m»(γ ν ν )G ( + δ)ga( P + m)γ5 [m ( + δ) + δq ] P iσνµµ m pm iσνµµ 4m m Gp E 3 G π 0 p 5 ff (P)

22 Light Cone Sum Rules: Pion ucleon Intermediate States cont. The semidisconnected π contributions can be included in the continuum if m πq > m (s 0 m ) Q > 7 GeV [ Λ 3 QCD /mπ] Otherwise they have to be taken into account explicitly Q m G π0 p G π0 p Q m G π+ n = em /M " λ p B P [A π0 p ](M, Q ) e δ(m +Q )/M F p (Q ) g AQ # Q + m G p M (Q ) = em /M " λ p B P [B π0 p δ(m ](M, Q ) + e +Q )/M Fp (Q ) + g Am # Q + m G p E (Q ) /M " λ p B P [A π+ n ](M, Q ) e δ(m +Q )/M F n (Q ) g AQ # Q + m G n M (Q ) " B P [B π+ n δ(m ](M, Q ) + e +Q )/M F n (Q ) + g A m # Q + m G n E (Q ) = em G π+ n = em /M λ p where A(P, Q ) and A(P, Q ) are the invariant functions defined as z ν Λ + T π ν (P, ) = i n (pz + kz)γ 5 m A(P, Q )+ B(P, Q o ) + (P) f π

23 π scattering phases Figure from ozawa et al., PRC4(990)3

24 Including P-waves: for W W th m π accept (P )π(k) j em µ (0) p(p) = = i j (P )γ 5 γ µ µ f π m G π (Q ) iσµνν m j ic πg A + f π[(p +k) ) m ] (P ) k γ 5( P +m ) F p (Q ) γ µ µ ff G π (Q ) (P) «ff + iσµνν F p m (Q ) (P) S wave: generalized form factors from LCSR P wave: pion emission from the final state nucleon; exact in chiral limit Eventually can take into account the final state interactions G π (Q ) G π (Q, W) G π (Q )[ + i t π]

25 Structure Functions at x B F (W, Q ) = β(w) (4πf π) F (W, Q ) = β(w) (4πf π) g (W, Q ) = β(w) (4πf π) X ( Q + 4m π 0,π + m 4 ( X Q π 0,π + m 4 ( X Q π 0,π + m 4 g (W, Q ) = β(w) ( X Q (4πf π) π 0,π + m 4 Q G π + c π g A W β ) (W) 8(W m Q m ) G M! Q G π + m 4 Q G π + c π g A W β (W)Q m Q 4(W m ) h Q G π m Re(Q G π G,π h Q G π + 4 Q Re(Q G π G,π G M +4m!) G E Q +4m i ) + c π g A W β ) (W) 8(W m Q m ) G MF p i ) + c π g A W β ) (W) 3(W m Q4 G M F p ) β(w) = k f W, xb = Q Q + W m

26 Differential Cross Section For unpolarized protons, the virtual photon cross section is with M γ = M T + ǫ M L + dσ γ = αem 8π k f W dω π W m M γ ǫ( + ǫ) M LT cos(φ π) + ǫm TT cos(φ π) + λ ǫ( ǫ) M LT sin(φπ) f π MT = 4 k i Q m G π + c π g Ak f (W m Q m ) G M f π ML = k i Gπ + 4c π g A k f (W m ) m4 G E f π cπga ki kf cos θ W m cπga ki kf h i MLT = sin θ W m Qm G MRe G π + 4G ERe G π f π MTT = 0, f π M LT = sin θ cπga ki kf h i W m Qm G MIm G π 4G EIm G π cπga ki kf + cos θ W m 4Q G MRe G π 4m GERe Gπ M TT = 0: no D wave; tests uality of the approximation M LT : single spin asymmetry; arises because of FSI, calculable

27 Miscellaneous Results F γ p π 0 p /F γ p X W, GeV dσ γ p π 0 p /dω π, µb/ster cos θ Figure: The fraction of π 0 p in F p (W, Q ) for Q = 3 GeV (upper curve) and Q = 9 GeV (lower curve) Figure: Differential cross section dσ γ p π 0 p /dω π for φ π = 35 grad, Q = 4. GeV and W =. GeV p 0 F (W, Q ) W, GeV Figure: S-wave (solid) vs. P-wave (dashed) for F p (W, Q ) at Q = 7.4 GeV Q 6 σ γ p π 0 p Q, GeV Figure: Integrated cross section Q 6 σ γ p π 0 p for W =. GeV (lower curve) and W =.5 GeV (upper curve)

Near Threshold π 0 Electroproduction at High Q 2

Near Threshold π 0 Electroproduction at High Q 2 Near Threshold π 0 Electroproduction at High Q 2 Puneet Khetarpal Rensselaer Polytechnic Institute Troy, NY May 20, 2010 P. Stoler V. Kubarovsky V. Braun & The CLAS Collaboration Puneet Khetarpal (RPI)

More information

RESONANCE at LARGE MOMENTUM TRANSFERS

RESONANCE at LARGE MOMENTUM TRANSFERS 1 V. M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti µ ELECTROPRODUCTION

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 Real and virtual Compton scattering experiments at MAMI and Jefferson Lab S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 1 Reminder: polarizability of atoms and molecules Neutral atom in external

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS Volker Credé Florida State University, Tallahassee, FL JLab Users Group Workshop Jefferson Lab 6/4/24 Outline Introduction

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

Measurements of the Proton and Kaon Form Factors via ISR at BABAR Measurements of the Proton and Kaon Form Factors via ISR at BABAR Fabio Anulli INFN Sezione di Roma on behalf of the BABAR Collaboration HADRON 015 XVI International Conference on Hadron Spectroscopy 13

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Recent Results from Jefferson Lab

Recent Results from Jefferson Lab Recent Results from Jefferson Lab Strange quarks in the nucleon N- Deformation Latest on Pentaquarks Elton S. Smith Jefferson Lab XI International Conference on Hadron Spectroscopy Centro Brasilero Pesquisas

More information

Hadron Production Generators: Progress

Hadron Production Generators: Progress Rakitha S. Beminiwattha SoLID Collaboration Meeting January 12 th, 2016 1/19 Hadron Production Generators: Progress Rakitha S. Beminiwattha Department of Physics, Syracuse University January 12 th, 2016

More information

Nucleon EM Form Factors in Dispersion Theory

Nucleon EM Form Factors in Dispersion Theory Nucleon EM Form Factors in Dispersion Theory H.-W. Hammer, University of Bonn supported by DFG, EU and the Virtual Institute on Spin and strong QCD Collaborators: M. Belushkin, U.-G. Meißner Agenda Introduction

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

Measurement of the Charged Pion Form Factor to High Q 2

Measurement of the Charged Pion Form Factor to High Q 2 Measurement of the Charged Pion Form Factor to High Q 2 Dave Gaskell Jefferson Lab Hall C Users Meeting January 22, 2016 1 Outline 1. Motivation and techniques for measuring F π (Q 2 ) 2. Data àpre-jlab

More information

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz) Exciting Baryons with MAMI and MAID Lothar Tiator (Mainz) Nucleon Resonances: From Photoproduction to High Photon Virtualities Trento, October, 12-16, 2015 The Roper Resonance first baryon resonance discovered

More information

The γ γ π 0 form factor in QCD

The γ γ π 0 form factor in QCD The γ γ π 0 form factor in QCD Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg based on S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D83 (2011) 054020 Pion-photon

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Highlights on hadron physics at CLAS K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011 Outline Meson-Baryon Cloud (MBC) Effects New results on baryon photocouplings Need for coupled-channels analysis

More information

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS

A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS A Measurement of the Induced polarization of electro-produced Λ(1116) with CLAS Marianna Gabrielyan Florida International University HUGS 2008 Why study electromagnetic production of kaons? Formalism.

More information

arxiv:hep-ph/ v1 1 Jun 1995

arxiv:hep-ph/ v1 1 Jun 1995 CHIRAL PREDICTION FOR THE πn S WAVE SCATTERING LENGTH a TO ORDER O(M 4 π ) V. Bernard a#1#2, N. Kaiser b#3, Ulf-G. Meißner c#4 arxiv:hep-ph/9506204v1 1 Jun 1995 a Centre de Recherches Nucléaires, Physique

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

L-T Separation in Pseudoscalar Meson Production

L-T Separation in Pseudoscalar Meson Production L-T Separation in Pseudoscalar Meson Production Dave Gaskell Jefferson Lab Exclusive Meson Production and Short Range Hadron Structure January 23, 2014 1 Motivation for L-T separations Inclusive Deep Inelastic

More information

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary Outline Previous experiments. Evidence for a resonant structure at W=1.675 GeV in γn ηp data at GRAAL; Theoretical assumptions: D 15 (1675) or the nonstrange pentaquark? Comparison with MAID2000: Could

More information

Probing Nuclear Color States with J/Ψ and φ

Probing Nuclear Color States with J/Ψ and φ Probing Nuclear Color States with J/Ψ and φ Michael Paolone Temple University Next Generation Nuclear Physics with JLab12 and the EIC FIU - Miami, Florida February 12th 2016 J/Ψ and φ experiments at a

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections. INT Sept, A.M. Bernstein MIT

Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections. INT Sept, A.M. Bernstein MIT Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections INT Sept, 2009 A.M. Bernstein MIT spontaneous chiral symmetry breaking pions π 0 γ γ : axial anomaly, chiral corrections ~m d -m

More information

Hadron Propagation and Color Transparency at 12 GeV

Hadron Propagation and Color Transparency at 12 GeV Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium

More information

Challenges of the N* Program

Challenges of the N* Program Challenges of the N* Program Ralf W. Gothe The 8 th International Workshop on the Physics of Excited Nucleons May 17-20, 2011 Jefferson Lab, Newport News, VA gnn* Experiments: A Unique Window into the

More information

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park Extracting Resonance Parameters from γ p nπ + at CLAS Kijun Park Nov. 13-18, 2016 Overview 1 Introduction 2 Physics Result Highlight 3 New Interesting Results! 4 Summary K. Park (JLAB) INT 2016 Nov. 13-18,

More information

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University Chiral Dynamics with Pions, Nucleons, and Deltas Daniel Phillips Ohio University Connecting lattice and laboratory EFT Picture credits: C. Davies, Jefferson Lab. What is an Effective Field Theory? M=f(p/Λ)

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

arxiv: v1 [nucl-th] 17 Apr 2013

arxiv: v1 [nucl-th] 17 Apr 2013 arxiv:134.4855v1 [nucl-th] 17 Apr 13 The Upper Energy Limit of HBChPT in Pion Photoproduction Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas,

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

Pion Distribution Amplitude from Euclidean Correlation functions

Pion Distribution Amplitude from Euclidean Correlation functions Pion Distribution Amplitude from Euclidean Correlation functions Vladimir M. Braun Institut für Theoretische Physik Universität Regensburg November 17 RQCD Collaboration: G. Bali, V.M. Braun, M. Göckeler,

More information

arxiv:hep-ph/ v1 6 Oct 1993

arxiv:hep-ph/ v1 6 Oct 1993 CCUTH-93-1 arxiv:hep-ph/931231v1 6 Oct 1993 Stability Analysis of Sum Rules for pion Compton Scattering Claudio Corianò 1 and Hsiang-nan Li 2 1 Institute for Theoretical Physics, University of Stockholm,

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

arxiv: v1 [nucl-th] 1 Oct 2007

arxiv: v1 [nucl-th] 1 Oct 2007 EPJ manuscript No. (will be inserted by the editor) Unitary Isobar Model - MAID2007 D. Drechsel 1, S. S. Kamalov 2, L. Tiator 1 arxiv:0710.0306v1 [nucl-th] 1 Oct 2007 1 Institut für Kernphysik, Universität

More information

arxiv: v1 [nucl-th] 13 Apr 2011

arxiv: v1 [nucl-th] 13 Apr 2011 Photo- and electroproduction of the K Λ near threshold and effects of the K electromagnetic form factor T. Mart Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia (Dated: January 23,

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Compton Scattering from Low to High Energies

Compton Scattering from Low to High Energies Compton Scattering from Low to High Energies Marc Vanderhaeghen College of William & Mary / JLab HUGS 2004 @ JLab, June 1-18 2004 Outline Lecture 1 : Real Compton scattering on the nucleon and sum rules

More information

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory Volker Crede on behalf of the CLAS Collaboration Department of Physics Florida State University Tallahassee, FL 3236, USA Baryons

More information

A Dyson-Schwinger equation study of the baryon-photon interaction.

A Dyson-Schwinger equation study of the baryon-photon interaction. A Dyson-Schwinger equation study of the baryon-photon interaction. Diana Nicmorus in collaboration with G. Eichmann A. Krassnigg R. Alkofer Jefferson Laboratory, March 24, 2010 What is the nucleon made

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

The Fascinating Structure of Hadrons: What have we learned about excited protons?

The Fascinating Structure of Hadrons: What have we learned about excited protons? The Fascinating Structure of Hadrons: What have we learned about excited protons? Volker Credé Florida State University, Tallahassee, FL Physics Colloquium University of Georgia, 4/4/23 Outline Introduction

More information

Hadron Spectrospopy & Primakoff Reactions at COMPASS

Hadron Spectrospopy & Primakoff Reactions at COMPASS Hadron Spectrospopy & Primakoff Reactions at COMPASS Jan Friedrich TU München International Workshop on Hadron Structure and Spectroscopy Paris, 5. April 2011 E 1 8 COMPASS Outline Investigation of the

More information

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen Diffractive electroproduction of ρ and φ mesons at Universiteit Antwerpen E-mail: xavier.janssen@ua.ac.be Diffractive electroproduction of ρ and φ mesons is measured at HERA with the detector in the elastic

More information

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire

Nucleon Form Factors Measured with BLAST. John Calarco - University of New Hampshire Nucleon Form Factors Measured with BLAST John Calarco - University of New Hampshire HUGS June, 2006 Outline - Overview and Motivation - Introduction - Existing Methods & Data - Phenomenological Fits -

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Valence quark contributions for the γn P 11 (1440) transition

Valence quark contributions for the γn P 11 (1440) transition Valence quark contributions for the γn P 11 (144) transition Gilberto Ramalho (Instituto Superior Técnico, Lisbon) In collaboration with Kazuo Tsushima 12th International Conference on Meson-Nucleon Physics

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Dispersion theory in hadron form factors

Dispersion theory in hadron form factors Dispersion theory in hadron form factors C. Weiss (JLab), Reaction Theory Workshop, Indiana U., 1-Jun-17 E-mail: weiss@jlab.org Objectives Review hadron interactions with electroweak fields: currents,

More information

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA Study of Excited Baryons with the Crystal-Barrel Detector at ELSA V. Credé FSU, Tallahassee, Florida NSF Review Florida State University, 11/15/2007 Outline 1 Introduction 2 Proposal: Determination of

More information

Light Baryon Spectroscopy What have we learned about excited baryons?

Light Baryon Spectroscopy What have we learned about excited baryons? Light Baryon Spectroscopy What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL The 9th Particles and Nuclei International Conference MIT, Cambridge, USA, 7/27/2

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

The ππ and Kπ amplitudes from heavy flavor decays

The ππ and Kπ amplitudes from heavy flavor decays The ππ and Kπ amplitudes from heavy flavor decays Alberto Reis Centro Brasileiro de Pesquisas Físicas CBPF 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon Williamsburg,

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS

Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS Beam Asymmetry measurement in Pion Photoproduction on the neutron using CLAS University of Glasgow, UK on behalf of the CLAS Collaboration MENU2013, Rome, Italy 1st October 2013 Meson Photoproduction Meson

More information

Pion production in nucleon-nucleon collisions at low energies: status and perspectives

Pion production in nucleon-nucleon collisions at low energies: status and perspectives Pion production in nucleon-nucleon collisions at low energies: status and perspectives Vadim Baru Forschungszentrum Jülich, Institut für Kenphysik (Theorie), D-545 Jülich, Germany ITEP, B. Cheremushkinskaya

More information

Axial anomaly, vector meson dominance and mixing

Axial anomaly, vector meson dominance and mixing Axial anomaly, vector meson dominance and mixing Yaroslav Klopot 1, Armen Oganesian 1,2 and Oleg Teryaev 1 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

The transition from pqcd to npqcd

The transition from pqcd to npqcd The transition from pqcd to npqcd A. Fantoni (INFN - Frascati) First Workshop on Quark-Hadron Duality and the Transition to pqcd Laboratori Nazionali di Frascati, Italy June 6-8, 2005 Introduction Overview

More information

The π 0 Lifetime Experiment and Future Plans at JLab

The π 0 Lifetime Experiment and Future Plans at JLab The π 0 Lifetime Experiment and Future Plans at JLab North Carolina A&T State University, Greensboro, NC, USA (for the PrimEx Collaboration at JLab) Outline The PrimEx Experiment at JLab: Physics Motivation

More information

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab N and (1232) masses and the γn transition Marc Vanderhaeghen College of William & Mary / Jefferson Lab Hadron Structure using lattice QCD, INT, April 4, 2006 Outline 1) N and masses : relativistic chiral

More information

Spin Structure of the Proton and Deuteron

Spin Structure of the Proton and Deuteron Spin Structure of the Proton and Deuteron K. Griffioen College of William & Mary griff@physics.wm.edu Spin Structure at Long Distances Jefferson Lab 12 March 2009 Inelastic Scattering Q 2 increases 12

More information

Baryon Spectroscopy at ELSA

Baryon Spectroscopy at ELSA Baryon Spectroscopy at ELSA R. Beck, University Bonn CBELSA/TAPS-collaboration EuNPC, March 15-20, 2009, Bochum Motivation ELSA accelerator Crystal Barrel experiment Recent Results Summary and Outlook

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

When Perturbation Theory Fails...

When Perturbation Theory Fails... When Perturbation Theory Fails... Brian Tiburzi (University of Maryland) When Perturbation Theory Fails... SU(3) chiral perturbation theory? Charm quark in HQET, NRQCD? Extrapolations of lattice QCD data?

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

The shape of the Nucleon from Out of Plane

The shape of the Nucleon from Out of Plane The shape of the Nucleon from Out of Plane Some History On sizes and Shapes On out of Plane Some recent data.. Interpreting the data, connecting to theory Past, future and the Bates Legacy C. N. Papanicolas

More information

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young

P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young Chiral extrapolation of nucleon form factors from lattice data P. Wang, D. B. Leinweber, A. W. Thomas, and R. Young 1. Introduction CHPT Finite-Range- Regularization 2. Magnetic form factors 3. Extrapolation

More information

Kaon and Hyperon Form Factors in Kaon Electroproduction on the Nucleon

Kaon and Hyperon Form Factors in Kaon Electroproduction on the Nucleon 1 Kaon and Hyperon Form Factors in Kaon Electroproduction on the Nucleon T. Mart a,b, C. Bennhold b a Jurusan Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia b Center for Nuclear Studies,

More information

Quarkonium Production at J-PARC

Quarkonium Production at J-PARC Quarkonium Production at J-PARC Jen-Chieh Peng University of Illinois at Urbana-Champaign J-PARC Meeting for Spin and Hadron Physics RIKEN, April 7-8, 008 Outline Quarkonium Production at J-PARC with Unpolarized

More information

σ tot (J/ψN) 3 4 mb Mark Strikman, PSU Jlab, March 26, 2011

σ tot (J/ψN) 3 4 mb Mark Strikman, PSU Jlab, March 26, 2011 J/ψ exclusive photoproduction off protons and nuclei near threshold Mark Strikman, PSU Application of VDM: σ V DM tot (J/ψN) 1 mb, σtot VDM (Ψ N) m2 (J/ψN) σ VDM tot J/ψ m 2 Ψ though r 2 Ψ r 2 J/ψ 4 QCD:

More information

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY

BRIDGING OVER p-wave π-production AND WEAK PROCESSES IN FEW-NUCLEON SYSTEMS WITH CHIRAL PERTURBATION THEORY MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany BRIDGING OVER p-wave π-production AND WEAK PROCESSES

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS. Kijun Park. August 23, 2017

Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS. Kijun Park. August 23, 2017 Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS Kijun Park August 23, 27 Overview Introduction 2 Physics Result Highlight! 3 New Interesting Results! 4 Summary K. Park

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY Young-Ho Song(RISP, Institute for Basic Science) Collaboration with R. Lazauskas( IPHC, IN2P3-CNRS) U. van Kolck (Orsay, IPN & Arizona

More information

Pion photoproduction in a gauge invariant approach

Pion photoproduction in a gauge invariant approach Pion photoproduction in a gauge invariant approach F. Huang, K. Nakayama (UGA) M. Döring, C. Hanhart, J. Haidenbauer, S. Krewald (FZ-Jülich) Ulf-G. Meißner (FZ-Jülich & Bonn) H. Haberzettl (GWU) Jun.,

More information

Nucleon Transition Form Factors and New Perspectives

Nucleon Transition Form Factors and New Perspectives Nucleon Transition Form Factors and New Perspectives R W Gothe Department of Physics and Astronomy, University of South Carolina, Columbia, SC 2928, USA gothe@sc.edu Abstract. The status of the electro-excitation

More information

Sitting in the Interphase: Connecting Experiment and Theory in Nuclear and Hadronic Physics

Sitting in the Interphase: Connecting Experiment and Theory in Nuclear and Hadronic Physics Sitting in the Interphase: Connecting Experiment and Theory in Nuclear and Hadronic Physics César Fernández-Ramírez Nuclear Physics Group, Universidad Complutense de Madrid Indiana-JLab Interview, 11th

More information

Photoproduction of the f 1 (1285) Meson

Photoproduction of the f 1 (1285) Meson Photoproduction of the f 1 (1285) Meson Reinhard Schumacher Ph.D. work of Ryan Dickson, completed 2011 October 21, 2015, CLAS Collaboration meeting Outline What are the f 1 (1285) and η(1295) mesons? Identification

More information

Electroexcitation of Nucleon Resonances BARYONS 02

Electroexcitation of Nucleon Resonances BARYONS 02 Electroexcitation of Nucleon Resonances Volker D. Burkert Jefferson Lab BARYONS 02 9th International Conference on the Structure of Baryons March 3-8, 2002 1 Why N* s are important (Nathan Isgur, N*2000

More information

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China))

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China)) Study of η N interaction from η/η production data and in-medium η properties Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China)) Introduction - Origin of the η mass U A (1) anomaly and

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

arxiv: v1 [hep-ph] 13 Sep 2009

arxiv: v1 [hep-ph] 13 Sep 2009 On the Mass and Decay Constant of K (143) Tensor Meson T. M. Aliev 1, K. Azizi,V. Bashiry 3 1 Department of Physics, Middle East Technical University, 6531 Ankara, Turkey Physics Division, Faculty of Arts

More information

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain , L. Tiator and M. Ostrick Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany E-mail: kashevar@uni-mainz.de, tiator@uni-mainz.de, ostrick@uni-mainz.de A phenomenological analysis of

More information