Introduction to Approximate Dynamic Programming

Size: px
Start display at page:

Download "Introduction to Approximate Dynamic Programming"

Transcription

1 Introduction to Approximate Dynamic Programming Dan Zhang Leeds School of Business University of Colorado at Boulder Dan Zhang, Spring 2012 Approximate Dynamic Programming 1

2 Key References Bertsekas, D.P Chapter 6, Approximate Dynamic Programming, Dynamic Programming and Optimal Control, 3rd Edition, Volume II. Available online at Bertsekas, D.P., J.N. Tsitsiklis Neuro-Dynamic Programming. Athena Scientific, Belmont, MA. Powell, W Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley-Interscience. Dan Zhang, Spring 2012 Approximate Dynamic Programming 2

3 Outline Setup: infinite horizon discounted MDPs Policy evaluation via Monte Carlo simultion Q-Learning Linear programming based approximate dynamic programming Approximate policy iteration Rollout policies State aggregation Dan Zhang, Spring 2012 Approximate Dynamic Programming 3

4 Setup Infinite-horizon discounted MDP Transition probability p ij (u) Cost: g(i, u, j) with g(i, u, j) < Discounting: α [0, 1). Discrete state space: S is finite Action space U. Dan Zhang, Spring 2012 Approximate Dynamic Programming 4

5 MDP Model Let π Π MD. States visited under policy π follows a Markov chain with transition probability P π = {p ij (π(i)) : i, j S}. Total discounted cost { T } J π (i) = lim E α t g(it π, π(it π ), it+1) π. T t=0 An optimal policy can be computed by solving the optimality equations: J(i) = min p ij (u)[g(i, u, j) + αj(j)]. u U(i) j S Dan Zhang, Spring 2012 Approximate Dynamic Programming 5

6 Value Iteration The optimality equation can be written as J = TJ, where [TJ](i) = min u U(i) p ij (u)[g(i, u, j) + αj(j)]. j S The value function J is a fixed point of the operator T. Under suitable technical conditions, J = lim k T k J 1 for an initial vector J 1. Dan Zhang, Spring 2012 Approximate Dynamic Programming 6

7 Policy Iteration Define [T π J](i) = j S p ij (π(i))[g(i, π(i), j) + αj(j)]. It can be shown that the discounted cost J π incurred by policy π is a fixed point of the operator T π ; i.e., J π = T π J π. Dan Zhang, Spring 2012 Approximate Dynamic Programming 7

8 Policy Iteration (Continued) Policy evaluation: Compute the discounted cost J πk incurred by policy π k, possibly by solving the system of linear equations J πk = g πk + αp πk J πk. Policy improvement: For all i S, let policy π k+1 be defined such that we have π k+1 (i) = argmin p ij (u)[g(i, u, j) + αj πk (j)]. u U(i) j S Stop if π k = π k+1. Dan Zhang, Spring 2012 Approximate Dynamic Programming 8

9 Three Curses of Dimensionality (Powell, 2007) State space is large: Computing and storing the value function v( ) can be difficult for both value iteration and policy iteration algorithms Action space is large: Both value iteration and policy evaluation become difficult Computing expectations with respect to the transition probability matrix can be difficult when the system dynamics is complex Dan Zhang, Spring 2012 Approximate Dynamic Programming 9

10 Policy Evaluation with Monte Carlo Simulation Policy evaluation requires solving linear equations of the form J π = g π + αp π J π. Difficult when P is large or unknown Idea: Simulate the sequence of state {i 0, i 1,... } by following a particular policy π. An approximation J of J π can be updated as follows: J(i k ) (1 γ)j(i k ) + γ[g(i k, π(i k ), i k+1 ) + αj(i k+1 )]. Dan Zhang, Spring 2012 Approximate Dynamic Programming 10

11 Policy Evaluation with Monte Carlo Simulation Policy evaluation requires solving linear equations of the form J π = g π + αp π J π. Difficult when P is large or unknown Idea: Simulate the sequence of state {i 0, i 1,... } by following a particular policy π. An approximation J of J π can be updated as follows: J(i k ) (1 γ)j(i k ) + γ[g(i k, π(i k ), i k+1 ) + αj(i k+1 )]. Why does this make sense? Dan Zhang, Spring 2012 Approximate Dynamic Programming 10

12 Policy Evaluation with Monte Carlo Simulation (continued) The procedure requires storing J, which can be problematic when the state space S is large. Idea: Use a parameterized approximation architecture: J(i, r) = L r l φ l (i), l=1 where φ l ( ) s are pre-specified functions ( feature functions ) and r is a vector of adjustable parameters. Dan Zhang, Spring 2012 Approximate Dynamic Programming 11

13 Policy Evaluation with Monte Carlo Simulation (continued) The procedure requires storing J, which can be problematic when the state space S is large. Idea: Use a parameterized approximation architecture: J(i, r) = L r l φ l (i), l=1 where φ l ( ) s are pre-specified functions ( feature functions ) and r is a vector of adjustable parameters. How to update r? Dan Zhang, Spring 2012 Approximate Dynamic Programming 11

14 Q-Learning Q-learning is based on an alternative representation of the optimality equation: J(i) = min Q(i, u), u U(i) Q(i, u) = j S p ij (u)[g(i, u, j) + αj(j)]. Dan Zhang, Spring 2012 Approximate Dynamic Programming 12

15 Q-Learning Q-learning is based on an alternative representation of the optimality equation: J(i) = min Q(i, u), u U(i) Q(i, u) = j S p ij (u)[g(i, u, j) + αj(j)]. What is the interpretation of Q(i, u)? Dan Zhang, Spring 2012 Approximate Dynamic Programming 12

16 Q-Learning (Continued) Key idea: Evaluate Q(i, u) by using a stochastic approximation iteration: Q(i k, u k ) (1 γ)q(i k, u k )+γ[g(i k, u k, s k )+α min Q(s k, v)], v U(s k ) where the successor state s k is sampled according to the probabilities {p ik,j(u k ) : j S}. Dan Zhang, Spring 2012 Approximate Dynamic Programming 13

17 Q-Learning (Continued) Key idea: Evaluate Q(i, u) by using a stochastic approximation iteration: Q(i k, u k ) (1 γ)q(i k, u k )+γ[g(i k, u k, s k )+α min Q(s k, v)], v U(s k ) where the successor state s k is sampled according to the probabilities {p ik,j(u k ) : j S}. What is the benefit of Q-learning? Dan Zhang, Spring 2012 Approximate Dynamic Programming 13

18 Linear Programming Approach Let θ(s) be positive scalars such that s S θ(s) = 1. The linear programming formulation is given by max θ(i)j(i) J i S J(i) j S αp ij (u)j(j) j S P ij (u)g(i, u, j), i S, u U(i). Dual linear program is given by min p ij (u)g(i, u, j)x(i, u) x i S u U(i) j S u U(i) x(i, u) j S x(i, u) 0, u U(j) αp ji (u)x(j, u) = θ(i), i S, i S, u U(i). Dan Zhang, Spring 2012 Approximate Dynamic Programming 14

19 Linear Programming Approach (continued) The size of LP can be reduced by using a parameterized approximation architecture (Schweitzer and Seidmann, 1985): J(i, r) = L r l φ l (i), l=1 Two solution approaches: Simulation-based approach (de Farias and Van Roy, 2003; also Powell, 2007) Mathematical programming-based approach (Adelman, 2003; Adelman, 2007) Dan Zhang, Spring 2012 Approximate Dynamic Programming 15

20 Approximate Policy Iteration Policy evaluation algorithm can be difficult when the problem is large. Idea: Carry out policy iteration approximately. Dan Zhang, Spring 2012 Approximate Dynamic Programming 16

21 Approximate Policy Iteration (Continued) Approximate policy evaluation: Simulate a sequence of states {i 0, i 1,... } by following policy π k. Let C l = t=l αt l g(i t, π k (i t ), i t+1 ) for all l = 0, 1,.... Let r k be the solution to the regression problem min r { t=0 [ J(i t, r) C t ] 2 } = min r [ L t=0 l=1 ] 2 r l φ l (i t ) C t. Approximate policy improvement: For all i S, let policy π k+1 be defined such that we have π k+1 (i) = argmin p ij (u)[g(i, u, j) + α J(j, r k )]. u U(i) j S Dan Zhang, Spring 2012 Approximate Dynamic Programming 17

22 Rollout Policy Idea: Improve the performance of a given policy. Given policy π, let π be defined such that for each i S, π (i) = argmin p ij (u)[g(i, u, j) + αj π (j)]. u U(i) j S Then it can be shown that π is at least as good as π. Simulation may be involved to estimate J π. Dan Zhang, Spring 2012 Approximate Dynamic Programming 18

23 State Aggregation Idea: Partition the state space into a number of subsets and assume the value function is constant over each partition. State aggregation can be combined with other approximation methods. Dan Zhang, Spring 2012 Approximate Dynamic Programming 19

24 Discussion ADP aims at alleviating computational effort required to solve large-scale dynamic programs The area is still in its infancy A commonly accepted definition of ADP does not seem to exist Open problem: How to specify feature functions? Research to date usually assume they are fixed in advance. Recent advances: Klabjan and Adelman (2007) Develop efficient solution approaches for practical applications could be valuable. Dan Zhang, Spring 2012 Approximate Dynamic Programming 20

Computation and Dynamic Programming

Computation and Dynamic Programming Computation and Dynamic Programming Huseyin Topaloglu School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA topaloglu@orie.cornell.edu June 25, 2010

More information

Optimistic Policy Iteration and Q-learning in Dynamic Programming

Optimistic Policy Iteration and Q-learning in Dynamic Programming Optimistic Policy Iteration and Q-learning in Dynamic Programming Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology November 2010 INFORMS, Austin,

More information

Elements of Reinforcement Learning

Elements of Reinforcement Learning Elements of Reinforcement Learning Policy: way learning algorithm behaves (mapping from state to action) Reward function: Mapping of state action pair to reward or cost Value function: long term reward,

More information

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019

Reinforcement Learning and Optimal Control. ASU, CSE 691, Winter 2019 Reinforcement Learning and Optimal Control ASU, CSE 691, Winter 2019 Dimitri P. Bertsekas dimitrib@mit.edu Lecture 8 Bertsekas Reinforcement Learning 1 / 21 Outline 1 Review of Infinite Horizon Problems

More information

6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 6 LECTURE OUTLINE Review of Q-factors and Bellman equations for Q-factors VI and PI for Q-factors Q-learning - Combination of VI and sampling Q-learning and cost function

More information

Infinite-Horizon Average Reward Markov Decision Processes

Infinite-Horizon Average Reward Markov Decision Processes Infinite-Horizon Average Reward Markov Decision Processes Dan Zhang Leeds School of Business University of Colorado at Boulder Dan Zhang, Spring 2012 Infinite Horizon Average Reward MDP 1 Outline The average

More information

Infinite-Horizon Discounted Markov Decision Processes

Infinite-Horizon Discounted Markov Decision Processes Infinite-Horizon Discounted Markov Decision Processes Dan Zhang Leeds School of Business University of Colorado at Boulder Dan Zhang, Spring 2012 Infinite Horizon Discounted MDP 1 Outline The expected

More information

On the Convergence of Optimistic Policy Iteration

On the Convergence of Optimistic Policy Iteration Journal of Machine Learning Research 3 (2002) 59 72 Submitted 10/01; Published 7/02 On the Convergence of Optimistic Policy Iteration John N. Tsitsiklis LIDS, Room 35-209 Massachusetts Institute of Technology

More information

Infinite-Horizon Dynamic Programming

Infinite-Horizon Dynamic Programming 1/70 Infinite-Horizon Dynamic Programming http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Mengdi Wang s and Prof. Dimitri Bertsekas lecture notes 2/70 作业

More information

Procedia Computer Science 00 (2011) 000 6

Procedia Computer Science 00 (2011) 000 6 Procedia Computer Science (211) 6 Procedia Computer Science Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science and Technology 211-

More information

Temporal difference learning

Temporal difference learning Temporal difference learning AI & Agents for IET Lecturer: S Luz http://www.scss.tcd.ie/~luzs/t/cs7032/ February 4, 2014 Recall background & assumptions Environment is a finite MDP (i.e. A and S are finite).

More information

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems Chapter 8 Stochastic Shortest Path Problems 1 In this chapter, we study a stochastic version of the shortest path problem of chapter 2, where only probabilities of transitions along different arcs can

More information

Lecture 4: Misc. Topics and Reinforcement Learning

Lecture 4: Misc. Topics and Reinforcement Learning Approximate Dynamic Programming Lecture 4: Misc. Topics and Reinforcement Learning Mengdi Wang Operations Research and Financial Engineering Princeton University August 1-4, 2015 1/56 Feature Extraction

More information

Dynamic Programming and Reinforcement Learning

Dynamic Programming and Reinforcement Learning Dynamic Programming and Reinforcement Learning Reinforcement learning setting action/decision Agent Environment reward state Action space: A State space: S Reward: R : S A S! R Transition:

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

A System Theoretic Perspective of Learning and Optimization

A System Theoretic Perspective of Learning and Optimization A System Theoretic Perspective of Learning and Optimization Xi-Ren Cao* Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong eecao@ee.ust.hk Abstract Learning and optimization

More information

Reinforcement Learning and Optimal Control. Chapter 4 Infinite Horizon Reinforcement Learning DRAFT

Reinforcement Learning and Optimal Control. Chapter 4 Infinite Horizon Reinforcement Learning DRAFT Reinforcement Learning and Optimal Control by Dimitri P. Bertsekas Massachusetts Institute of Technology Chapter 4 Infinite Horizon Reinforcement Learning DRAFT This is Chapter 4 of the draft textbook

More information

The Art of Sequential Optimization via Simulations

The Art of Sequential Optimization via Simulations The Art of Sequential Optimization via Simulations Stochastic Systems and Learning Laboratory EE, CS* & ISE* Departments Viterbi School of Engineering University of Southern California (Based on joint

More information

LP-Based Local Approximation for Markov Decision Problems

LP-Based Local Approximation for Markov Decision Problems Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany STEFAN HEINZ 1 VOLKER KAIBEL 1,2 MATTHIAS PEINHARDT 1 JÖRG RAMBAU 3 ANDREAS TUCHSCHERER 1 LP-Based Local Approximation

More information

Approximate active fault detection and control

Approximate active fault detection and control Approximate active fault detection and control Jan Škach Ivo Punčochář Miroslav Šimandl Department of Cybernetics Faculty of Applied Sciences University of West Bohemia Pilsen, Czech Republic 11th European

More information

Markov Decision Processes and Dynamic Programming

Markov Decision Processes and Dynamic Programming Markov Decision Processes and Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) Ecole Centrale - Option DAD SequeL INRIA Lille EC-RL Course In This Lecture A. LAZARIC Markov Decision Processes

More information

Abstract Dynamic Programming

Abstract Dynamic Programming Abstract Dynamic Programming Dimitri P. Bertsekas Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Overview of the Research Monograph Abstract Dynamic Programming"

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Reinforcement Learning and Optimal Control. Chapter 4 Infinite Horizon Reinforcement Learning DRAFT

Reinforcement Learning and Optimal Control. Chapter 4 Infinite Horizon Reinforcement Learning DRAFT Reinforcement Learning and Optimal Control by Dimitri P. Bertsekas Massachusetts Institute of Technology Chapter 4 Infinite Horizon Reinforcement Learning DRAFT This is Chapter 4 of the draft textbook

More information

Linear Programming Formulation for Non-stationary, Finite-Horizon Markov Decision Process Models

Linear Programming Formulation for Non-stationary, Finite-Horizon Markov Decision Process Models Linear Programming Formulation for Non-stationary, Finite-Horizon Markov Decision Process Models Arnab Bhattacharya 1 and Jeffrey P. Kharoufeh 2 Department of Industrial Engineering University of Pittsburgh

More information

Value and Policy Iteration

Value and Policy Iteration Chapter 7 Value and Policy Iteration 1 For infinite horizon problems, we need to replace our basic computational tool, the DP algorithm, which we used to compute the optimal cost and policy for finite

More information

Linear Programming Methods

Linear Programming Methods Chapter 11 Linear Programming Methods 1 In this chapter we consider the linear programming approach to dynamic programming. First, Bellman s equation can be reformulated as a linear program whose solution

More information

Online solution of the average cost Kullback-Leibler optimization problem

Online solution of the average cost Kullback-Leibler optimization problem Online solution of the average cost Kullback-Leibler optimization problem Joris Bierkens Radboud University Nijmegen j.bierkens@science.ru.nl Bert Kappen Radboud University Nijmegen b.kappen@science.ru.nl

More information

Alleviating tuning sensitivity in Approximate Dynamic Programming

Alleviating tuning sensitivity in Approximate Dynamic Programming Alleviating tuning sensitivity in Approximate Dynamic Programming Paul Beuchat, Angelos Georghiou and John Lygeros Abstract Approximate Dynamic Programming offers benefits for large-scale systems compared

More information

Optimal Stopping Problems

Optimal Stopping Problems 2.997 Decision Making in Large Scale Systems March 3 MIT, Spring 2004 Handout #9 Lecture Note 5 Optimal Stopping Problems In the last lecture, we have analyzed the behavior of T D(λ) for approximating

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

Markov Decision Processes and Dynamic Programming

Markov Decision Processes and Dynamic Programming Markov Decision Processes and Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course How to model an RL problem The Markov Decision Process

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

arxiv: v1 [cs.lg] 23 Oct 2017

arxiv: v1 [cs.lg] 23 Oct 2017 Accelerated Reinforcement Learning K. Lakshmanan Department of Computer Science and Engineering Indian Institute of Technology (BHU), Varanasi, India Email: lakshmanank.cse@itbhu.ac.in arxiv:1710.08070v1

More information

Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains

Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov Chains Yao Hengshuai Liu Zhiqiang School of Creative Media, City University of Hong Kong at Chee Avenue, Kowloon, Hong Kong, S.A.R.,

More information

Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming

Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming April 2010 (Revised October 2010) Report LIDS - 2831 Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming Dimitri P. Bertseas 1 and Huizhen Yu 2 Abstract We consider the classical

More information

Reinforcement Learning for Long-Run Average Cost

Reinforcement Learning for Long-Run Average Cost Reinforcement Learning for Long-Run Average Cost Abhijit Gosavi Assistant Professor 261, Technology Bldg, 2200 Bonforte Blvd Colorado State University, Pueblo, Pueblo, CO 81001 Email: gosavi@uscolo.edu,

More information

Stochastic Primal-Dual Methods for Reinforcement Learning

Stochastic Primal-Dual Methods for Reinforcement Learning Stochastic Primal-Dual Methods for Reinforcement Learning Alireza Askarian 1 Amber Srivastava 1 1 Department of Mechanical Engineering University of Illinois at Urbana Champaign Big Data Optimization,

More information

Duality in Robust Dynamic Programming: Pricing Convertibles, Stochastic Games and Control

Duality in Robust Dynamic Programming: Pricing Convertibles, Stochastic Games and Control Duality in Robust Dynamic Programming: Pricing Convertibles, Stochastic Games and Control Shyam S Chandramouli Abstract Many decision making problems that arise in inance, Economics, Inventory etc. can

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

CS 287: Advanced Robotics Fall Lecture 14: Reinforcement Learning with Function Approximation and TD Gammon case study

CS 287: Advanced Robotics Fall Lecture 14: Reinforcement Learning with Function Approximation and TD Gammon case study CS 287: Advanced Robotics Fall 2009 Lecture 14: Reinforcement Learning with Function Approximation and TD Gammon case study Pieter Abbeel UC Berkeley EECS Assignment #1 Roll-out: nice example paper: X.

More information

Approximate dynamic programming for stochastic reachability

Approximate dynamic programming for stochastic reachability Approximate dynamic programming for stochastic reachability Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour and John Lygeros Abstract In this work we illustrate how approximate dynamic

More information

HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM?

HOW TO CHOOSE THE STATE RELEVANCE WEIGHT OF THE APPROXIMATE LINEAR PROGRAM? HOW O CHOOSE HE SAE RELEVANCE WEIGH OF HE APPROXIMAE LINEAR PROGRAM? YANN LE ALLEC AND HEOPHANE WEBER Abstract. he linear programming approach to approximate dynamic programming was introduced in [1].

More information

Q-Learning for Markov Decision Processes*

Q-Learning for Markov Decision Processes* McGill University ECSE 506: Term Project Q-Learning for Markov Decision Processes* Authors: Khoa Phan khoa.phan@mail.mcgill.ca Sandeep Manjanna sandeep.manjanna@mail.mcgill.ca (*Based on: Convergence of

More information

6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 17 LECTURE OUTLINE Undiscounted problems Stochastic shortest path problems (SSP) Proper and improper policies Analysis and computational methods for SSP Pathologies of

More information

Reinforcement learning

Reinforcement learning Reinforcement learning Based on [Kaelbling et al., 1996, Bertsekas, 2000] Bert Kappen Reinforcement learning Reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Lecture notes for Analysis of Algorithms : Markov decision processes

Lecture notes for Analysis of Algorithms : Markov decision processes Lecture notes for Analysis of Algorithms : Markov decision processes Lecturer: Thomas Dueholm Hansen June 6, 013 Abstract We give an introduction to infinite-horizon Markov decision processes (MDPs) with

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Master MVA: Reinforcement Learning Lecture: 5 Approximate Dynamic Programming Lecturer: Alessandro Lazaric http://researchers.lille.inria.fr/ lazaric/webpage/teaching.html Objectives of the lecture 1.

More information

Average Reward Parameters

Average Reward Parameters Simulation-Based Optimization of Markov Reward Processes: Implementation Issues Peter Marbach 2 John N. Tsitsiklis 3 Abstract We consider discrete time, nite state space Markov reward processes which depend

More information

Solving Factored MDPs with Exponential-Family Transition Models

Solving Factored MDPs with Exponential-Family Transition Models Solving Factored MDPs with Exponential-Family Transition Models Branislav Kveton Intelligent Systems Program University of Pittsburgh bkveton@cs.pitt.edu Milos Hauskrecht Department of Computer Science

More information

Kernel-Based Reinforcement Learning Using Bellman Residual Elimination

Kernel-Based Reinforcement Learning Using Bellman Residual Elimination Journal of Machine Learning Research () Submitted ; Published Kernel-Based Reinforcement Learning Using Bellman Residual Elimination Brett Bethke Department of Aeronautics and Astronautics Massachusetts

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Reinforcement Learning Part 2

Reinforcement Learning Part 2 Reinforcement Learning Part 2 Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ From previous tutorial Reinforcement Learning Exploration No supervision Agent-Reward-Environment

More information

We consider a network revenue management problem where customers choose among open fare products

We consider a network revenue management problem where customers choose among open fare products Vol. 43, No. 3, August 2009, pp. 381 394 issn 0041-1655 eissn 1526-5447 09 4303 0381 informs doi 10.1287/trsc.1090.0262 2009 INFORMS An Approximate Dynamic Programming Approach to Network Revenue Management

More information

APPROXIMATE DYNAMIC PROGRAMMING A SERIES OF LECTURES GIVEN AT TSINGHUA UNIVERSITY JUNE 2014 DIMITRI P. BERTSEKAS

APPROXIMATE DYNAMIC PROGRAMMING A SERIES OF LECTURES GIVEN AT TSINGHUA UNIVERSITY JUNE 2014 DIMITRI P. BERTSEKAS APPROXIMATE DYNAMIC PROGRAMMING A SERIES OF LECTURES GIVEN AT TSINGHUA UNIVERSITY JUNE 2014 DIMITRI P. BERTSEKAS Based on the books: (1) Neuro-Dynamic Programming, by DPB and J. N. Tsitsiklis, Athena Scientific,

More information

arxiv: v1 [cs.lg] 6 Jun 2013

arxiv: v1 [cs.lg] 6 Jun 2013 Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee Bruno Scherrer, LORIA MAIA project-team, Nancy, France, bruno.scherrer@inria.fr Matthieu Geist, Supélec IMS-MaLIS Research Group,

More information

Hidden Markov Models (HMM) and Support Vector Machine (SVM)

Hidden Markov Models (HMM) and Support Vector Machine (SVM) Hidden Markov Models (HMM) and Support Vector Machine (SVM) Professor Joongheon Kim School of Computer Science and Engineering, Chung-Ang University, Seoul, Republic of Korea 1 Hidden Markov Models (HMM)

More information

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel

Reinforcement Learning with Function Approximation. Joseph Christian G. Noel Reinforcement Learning with Function Approximation Joseph Christian G. Noel November 2011 Abstract Reinforcement learning (RL) is a key problem in the field of Artificial Intelligence. The main goal is

More information

A Gentle Introduction to Reinforcement Learning

A Gentle Introduction to Reinforcement Learning A Gentle Introduction to Reinforcement Learning Alexander Jung 2018 1 Introduction and Motivation Consider the cleaning robot Rumba which has to clean the office room B329. In order to keep things simple,

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Artificial Intelligence & Sequential Decision Problems

Artificial Intelligence & Sequential Decision Problems Artificial Intelligence & Sequential Decision Problems (CIV6540 - Machine Learning for Civil Engineers) Professor: James-A. Goulet Département des génies civil, géologique et des mines Chapter 15 Goulet

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

An Empirical Algorithm for Relative Value Iteration for Average-cost MDPs

An Empirical Algorithm for Relative Value Iteration for Average-cost MDPs 2015 IEEE 54th Annual Conference on Decision and Control CDC December 15-18, 2015. Osaka, Japan An Empirical Algorithm for Relative Value Iteration for Average-cost MDPs Abhishek Gupta Rahul Jain Peter

More information

1 Problem Formulation

1 Problem Formulation Book Review Self-Learning Control of Finite Markov Chains by A. S. Poznyak, K. Najim, and E. Gómez-Ramírez Review by Benjamin Van Roy This book presents a collection of work on algorithms for learning

More information

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS 63 2.1 Introduction In this chapter we describe the analytical tools used in this thesis. They are Markov Decision Processes(MDP), Markov Renewal process

More information

9 Improved Temporal Difference

9 Improved Temporal Difference 9 Improved Temporal Difference Methods with Linear Function Approximation DIMITRI P. BERTSEKAS and ANGELIA NEDICH Massachusetts Institute of Technology Alphatech, Inc. VIVEK S. BORKAR Tata Institute of

More information

Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming

Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming MATHEMATICS OF OPERATIONS RESEARCH Vol. 37, No. 1, February 2012, pp. 66 94 ISSN 0364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/10.1287/moor.1110.0532 2012 INFORMS Q-Learning and Enhanced

More information

Solving Factored MDPs with Continuous and Discrete Variables

Solving Factored MDPs with Continuous and Discrete Variables Appeared in the Twentieth Conference on Uncertainty in Artificial Intelligence, Banff, Canada, July 24. Solving Factored MDPs with Continuous and Discrete Variables Carlos Guestrin Milos Hauskrecht Branislav

More information

Prioritized Sweeping Converges to the Optimal Value Function

Prioritized Sweeping Converges to the Optimal Value Function Technical Report DCS-TR-631 Prioritized Sweeping Converges to the Optimal Value Function Lihong Li and Michael L. Littman {lihong,mlittman}@cs.rutgers.edu RL 3 Laboratory Department of Computer Science

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications

Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications May 2012 Report LIDS - 2884 Weighted Sup-Norm Contractions in Dynamic Programming: A Review and Some New Applications Dimitri P. Bertsekas Abstract We consider a class of generalized dynamic programming

More information

Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms

Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms Jonathan Baxter and Peter L. Bartlett Research School of Information Sciences and Engineering Australian National University

More information

Approximate Dynamic Programming

Approximate Dynamic Programming Approximate Dynamic Programming A. LAZARIC (SequeL Team @INRIA-Lille) Ecole Centrale - Option DAD SequeL INRIA Lille EC-RL Course Value Iteration: the Idea 1. Let V 0 be any vector in R N A. LAZARIC Reinforcement

More information

Approximate Dynamic Programming for Large Scale Systems. Vijay V. Desai

Approximate Dynamic Programming for Large Scale Systems. Vijay V. Desai Approximate Dynamic Programming for Large Scale Systems Vijay V. Desai Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

More information

Reinforcement Learning: the basics

Reinforcement Learning: the basics Reinforcement Learning: the basics Olivier Sigaud Université Pierre et Marie Curie, PARIS 6 http://people.isir.upmc.fr/sigaud August 6, 2012 1 / 46 Introduction Action selection/planning Learning by trial-and-error

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

Factored State Spaces 3/2/178

Factored State Spaces 3/2/178 Factored State Spaces 3/2/178 Converting POMDPs to MDPs In a POMDP: Action + observation updates beliefs Value is a function of beliefs. Instead we can view this as an MDP where: There is a state for every

More information

A Least Squares Q-Learning Algorithm for Optimal Stopping Problems

A Least Squares Q-Learning Algorithm for Optimal Stopping Problems LIDS REPORT 273 December 2006 Revised: June 2007 A Least Squares Q-Learning Algorithm for Optimal Stopping Problems Huizhen Yu janey.yu@cs.helsinki.fi Dimitri P. Bertsekas dimitrib@mit.edu Abstract We

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

DIFFERENTIAL TRAINING OF 1 ROLLOUT POLICIES

DIFFERENTIAL TRAINING OF 1 ROLLOUT POLICIES Appears in Proc. of the 35th Allerton Conference on Communication, Control, and Computing, Allerton Park, Ill., October 1997 DIFFERENTIAL TRAINING OF 1 ROLLOUT POLICIES by Dimitri P. Bertsekas 2 Abstract

More information

Bayesian Active Learning With Basis Functions

Bayesian Active Learning With Basis Functions Bayesian Active Learning With Basis Functions Ilya O. Ryzhov Warren B. Powell Operations Research and Financial Engineering Princeton University Princeton, NJ 08544, USA IEEE ADPRL April 13, 2011 1 / 29

More information

UNCORRECTED PROOFS. P{X(t + s) = j X(t) = i, X(u) = x(u), 0 u < t} = P{X(t + s) = j X(t) = i}.

UNCORRECTED PROOFS. P{X(t + s) = j X(t) = i, X(u) = x(u), 0 u < t} = P{X(t + s) = j X(t) = i}. Cochran eorms934.tex V1 - May 25, 21 2:25 P.M. P. 1 UNIFORMIZATION IN MARKOV DECISION PROCESSES OGUZHAN ALAGOZ MEHMET U.S. AYVACI Department of Industrial and Systems Engineering, University of Wisconsin-Madison,

More information

APPROXIMATE DYNAMIC PROGRAMMING II: ALGORITHMS

APPROXIMATE DYNAMIC PROGRAMMING II: ALGORITHMS APPROXIMATE DYNAMIC PROGRAMMING II: ALGORITHMS INTRODUCTION WARREN B. POWELL Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey Approximate dynamic

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

Control Theory : Course Summary

Control Theory : Course Summary Control Theory : Course Summary Author: Joshua Volkmann Abstract There are a wide range of problems which involve making decisions over time in the face of uncertainty. Control theory draws from the fields

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

Loss Bounds for Uncertain Transition Probabilities in Markov Decision Processes

Loss Bounds for Uncertain Transition Probabilities in Markov Decision Processes Loss Bounds for Uncertain Transition Probabilities in Markov Decision Processes Andrew Mastin and Patrick Jaillet Abstract We analyze losses resulting from uncertain transition probabilities in Markov

More information

What you should know about approximate dynamic programming

What you should know about approximate dynamic programming What you should know about approximate dynamic programming Warren B. Powell Department of Operations Research and Financial Engineering Princeton University, Princeton, NJ 08544 December 16, 2008 Abstract

More information

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI

Temporal Difference. Learning KENNETH TRAN. Principal Research Engineer, MSR AI Temporal Difference Learning KENNETH TRAN Principal Research Engineer, MSR AI Temporal Difference Learning Policy Evaluation Intro to model-free learning Monte Carlo Learning Temporal Difference Learning

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December

More information

Reinforcement Learning. Spring 2018 Defining MDPs, Planning

Reinforcement Learning. Spring 2018 Defining MDPs, Planning Reinforcement Learning Spring 2018 Defining MDPs, Planning understandability 0 Slide 10 time You are here Markov Process Where you will go depends only on where you are Markov Process: Information state

More information

Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression

Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression Approximate Dynamic Programming Using Bellman Residual Elimination and Gaussian Process Regression The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information