Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors

Size: px
Start display at page:

Download "Accurate and Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors"

Transcription

1 energies Article Accurate Efficient Torque Control of an Interior Permanent Magnet Synchronous Motor in Electric Vehicles Based on Hall-Effect Sensors Lei Yu 1, Youtong Zhang 1, Wenqing Huang 2 1 Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing , China; yulei0724@bit.edu.cn 2 United Automotive Electronic System Co., Ltd., Shanghai , China; hwq086@126.com Correspondence: youtong@bit.edu.cn; Tel.: Academic Editor: Kuohsiu David Huang Received: 4 January 2017; Accepted: 14 March 2017; Published: 21 March 2017 Abstract: In this paper, an effective method to achieve accurate efficient torque control of an interior permanent magnet synchronous motor (IPMSM) in electric vehicles, based on low-resolution Hall-effect sensors, is proposed. The high-resolution position is estimated by a proportional integral (PI) regulator using deviation between actual output power reference output power. This method can compensate for Hall position sensor mounting error, estimate position continuously accurately. The permanent magnetic flux linkage is also estimated based on a current PI controller. Or important parameters, such as d-axis q-axis inductances, stator resistance, loss, are measured offline by experiments. The measured parameters are saved as lookup tables which cover entire current operating range at different current levels. Based on se accurate parameters, a maximum torque per ampere (MTPA) control strategy, combined with feedforward parameter iteration method, can be achieved for accurate efficient torque control. The effectiveness of proposed method is verified by both simulation experimental results. Keywords: hall-effect sensor; position estimation; interior permanent magnet synchronous motor (IPMSM); torque control; electric vehicle 1. Introduction The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicles for its high efficiency high power density. Accurate efficient torque control is essential for automotive drive systems. However, it is difficult to achieve this target because of varying parameters of IPMSM [1]. Although resolver can obtain high-resolution position of IPMSM, it is not suitable to be used in vehicles, considering its high cost, weight, volume. Algorithms based on no position sensors [2] cannot estimate position accurately in all conditions, in addition to high-volume computation. In fact, Hall-effect sensors can be used to realize low cost, weight, volume, high-resolution position. Considering discrete position signals from Hall-effect sensors, it is quite necessary to conduct research on obtaining continuous position signals. The most popular method to estimate position is based on average motor speed [3]. When motor speed varies frequently, this method may cause a very large error failure of control strategy. A vector-tracking observer was proposed to estimate positon in [4]. This method needs to acquire stator voltages, thus increasing cost complexity of system. An improved vector-tracking observer was proposed to eliminate complexity of system in [5]. A method based on back electromotive force (EMF) was proposed in [6]. Although this Energies 2017, 10, 410; doi: /en

2 Energies 2017, 10, of 15 method can obtain accurate speed, it cannot obtain accurate position. A method based on flux estimation was proposed for a slotless permanent magnet synchronous motor (PMSM) in [7]. An improved square root unscented Kalman filter (SRUKF) was proposed to estimate speed position in [8]. Additionally, some studies used linear Hall sensors [9] to estimate position instead of discrete Hall sensors. To achieve accurate efficient control, accurate parameters are essential. There are, mainly, two types of methods proposed to achieve parameter identification. One is based on offline measurements, or is based on real-time estimating arithmetic [1]. The real-time estimating arithmetic based on PMSM model was analyzed in [10]. Some parameters must be assumed to be known since not all parameters are identifiable in steady state. A method was proposed to estimate stator resistance flux linkage by injecting short-period d-axis current into surface PMSM in [11]. However, it is not suitable for application in vehicles. Mechanical parameters of induction motors were estimated by using voltage sensors only in [12]. The variation of d-axis q-axis inductances measured offline [13], or calculated from finite element [14] in consideration of cross saturation were proposed. An analytical calculation method of d-axis q-axis inductances for IPMSM based on winding function ory was proposed in [15]. An adaptive parameter estimator that can achieve maximum torque per ampere (MTPA) control was proposed in [16]. In this paper, an effective method to achieve accurate efficient torque control of an IPMSM in electric vehicles, based on low-resolution Hall-effect sensors, is proposed. A variety of important parameters are estimated for torque control. To obtain high-resolution position, an estimation method based on power closed-loop is proposed with low-resolution Hall-effect sensors. This method can compensate for Hall position sensor mounting error, estimate position continuously accurately. The permanent magnetic flux linkage is estimated based on a current proportional integral (PI) controller. Or important parameters, such as d-axis q-axis inductances, stator resistance, loss are measured offline by experiments. The measured parameters are saved as lookup tables which cover entire current operating range at different current levels. Combined with feedforward parameter iteration method, MTPA control strategy can be achieved based on accurate parameters. As a result, it is an effective approach to realize accurate efficient torque control. MATLAB/SIMULINK models were built to analyze proposed method. Furrmore, experiments were carried out to verify method. 2. Parameter Estimation 2.1. Analysis of IPMSM Energy Model For IPMSM, input comes from inverter. conservation, input can be expressed as follows [17]: According to law of E in = E out + E loss (1) E loss can be expressed as follows: E loss = E Cu + E Fe + E Str + E M (2) From point view of inverter, input can be expressed as follows: E in = 3(v q + v d )/2dt (3) output can be expressed as follows: E out = ω e T e /pdt (4)

3 Energies 2017, 10, of 15 Energies 2017, 10, of 16 where Considering ω e can be obtained cost, from Hall-effect IPMSM used sensors. in vehicles has no torque transducer; hence actual output Considering cannot cost, be obtained IPMSM from used Equation in vehicles (4). However, has no torque if transducer; input hence actual output loss are known, cannot output be obtained from can be Equation obtained (4). from However, Equation if (1). input The IPMSM model can loss be are used known, to estimate output essential parameters, can be obtained such as from Equation permanent (1). magnetic The IPMSM flux linkage model [18], can difference be used of to estimate q-axis essential d-axis inductance parameters, [1]. such In this as paper, permanent magnetic model is flux used linkage to estimate [18], difference high-resolution of q-axis position d-axis based inductance on low-resolution [1]. In this paper, Hall-effect sensors. model is used to estimate high-resolution position based on low-resolution Hall-effect sensors Rotor Position Estimation 2.2. Rotor Position Estimation Rotor Rotor Position Position Estimation Estimation Based Based on on Average Average Motor Motor Speed Speed The The high-resolution high-resolution position position can can easily easily be be estimated estimated through through a method a method based based on on average average speed, speed, where where six six sectors sectors are are classified classified according according to to states states of of Hall Hall sensor s sensor s signals signals [4]. [4]. Assuming Assuming that that speed speed within within a a sector sector is is constant constant average average speed speed in in present present previous previous sectors sectors is is uniform, uniform, speed speed can can be be approximated approximated as as follows follows [3]: [3]: ω e = θ θ θ θ 0 = dθ dθ ω = = e (5) t t t t (5) t 1 t 0 t 1 t 0 where where dθ d isθ is electrical electrical degree degree between between two sectors, two sectors, t 1 t 0 is t 1 t 0 time is interval time interval of previous of previous sector; n sector; n position can position be estimated can be estimated as follows: as follows: θ = 1 + ω e t = θ 1 dθ θ = θ + ω t = θ + t 1 e 1 (6) tt 1 t 0 Similarly, high-resolution position position can can be be obtained, obtained, as as shown shown in in Figure Figure Figure 1. Output signals of Hall sensors resultant position estimation. Figure 1. Output signals of Hall sensors resultant position estimation. θ 1 θ θ 0 θshould be 60 degrees if Hall sensors are aligned accurately. However, in IPMSM, 1 0 should be 60 degrees if Hall sensors are aligned accurately. However, in IPMSM, re is a certain error in hall sensor installation. The back EMF can be used to avoid error eliminate re is a certain third error harmonic. in However, hall sensor large installation. estimation The errors back will EMF occur can be when used this to method avoid is error used in vehicles eliminate where third motor harmonic. speed However, changes frequently. large estimation errors will occur when this method is used in vehicles where motor speed changes frequently Rotor Position Estimation Based on Power Closed-Loop Method Rotor Position Estimation Based on Power Closed-Loop Method For improving accuracy of estimated position, a method based on power closed-loop is proposed For improving to estimate accuracy position, of estimated as shown inposition, Figure 2. a method based on power closedloop is proposed to estimate position, as shown in Figure 2.

4 Energies 2017, 10, of 15 Energies 2017, 10, of 16 P in v, v i, i q q d d v, v, v iu, iv, iw u v w P loss P out P out θ P out P out T e ω e Figure Figure 2. Rotor 2. Rotor position position estimation estimation based based on on power closed-loop method. The reference electromagnetic torque T e can be expressed as follows: The reference electromagnetic torque Te can be expressed as follows: 3 T = pϕ f i dli i e (7) Te = 3 ( ϕ ) 2 oq od oq 2 p f ioq dliod i oq (7) where: where: ( ) 2 1 ω i Li L e q q e q f od = i id = i i cd i= = A 1 id i + ω el q iq R od d cd d c ω e 2L q ϕ f R 2 2 A( c R c R ) c (8) ioq = iq i cq = (8) A 1 iq ( ω e(ϕ f +L d id) + ) 1 ω ϕ Li R c e f d d i = i i = i oq q cq q A R c A = 1 + ω e 2 L d L q (9) R 2 2 c ω LL e d q The reference output power can be expressed A = 1as + follows: (9) 2 R c The reference output power can be Pexpressed out = Te as ω e follows: /p (10) For current closed-loop control, stator P = Tω / p (10) out d-axis e e q-axis current can be expressed as follows: For current i closed-loop control, stator d-axis q-axis current = can be d, = iq, (, ) = ParkTrans(ClarkeTrans(i u, i v, i w ), θ ) (11) expressed as follows: The output voltage of d-axis q-axis can be expressed as follows: i = i, i = i,( i, i ) = ParkTrans(ClarkeTrans( i, i, i ), θ ) d d q q d q u v w (11) (v d, v q ) = ParkTrans(ClarkeTrans(v u, v v, v w ), θ ) (12) The output voltage of d-axis q-axis can be expressed as follows: The input power from inverter to motor P (v,v ) = ParkTrans(ClarkeTrans(v in can be expressed as follows:,v,v ), θ ) d q u v w (12) P in = 3(v q i The input power from inverter to motor P q + v d )/2 (13) in can be expressed as follows: The actual mechanical output power P P out can be expressed as follows: = 3( vi + vi ) / 2 in q q d d (13) P The actual mechanical output power out = P can in P be loss (14) expressed as follows: P out Assuming that estimated position P is= equal P Pto actual position, n out in loss (14) actual electromagnetic torque should be equal to reference electromagnetic torque, actual output power should Assuming be equal that to stimated reference output position power is equal to vice versa. actual Therefore, position, n estimated actual position electromagnetic can be adjusted torque realize should be equal equality to of reference actual electromagnetic output power torque, reference actual output output power. power To achieve should accurate be equal torque reference control, output a PI estimator power with vice robust versa. Therefore, control is designed estimated to obtain position can be adjusted to realize equality of actual output power reference output position in this paper. As shown in Equation (7), permanent flux linkage difference of d-axis q-axis inductances are used to calculate reference electromagnetic torque. These parameters influence

5 Energies 2017, 10, of 16 power. To achieve accurate torque control, a PI estimator with robust control is designed to obtain Energies 2017, position 10, 410 in this paper. 5 of 15 As shown in Equation (7), permanent flux linkage difference of d-axis q-axis inductances are used to calculate reference electromagnetic torque. These parameters influence accuracy accuracy of of position estimation significantly. In this paper, permanent flux flux linkage linkage is is estimated estimated online online difference of of d-axis q-axis inductances is ismeasured offline offline by by experiments Permanent 2.3. Permanent Magnetic Magnetic Flux Flux Linkage Estimation To realize To realize accurate accurate efficient efficient current current control, control, current current PI controller PI controller with with feedforward feedforward control control voltage based on space vector pulse width modulation (SVPWM) is shown in Figure 3 [19]. voltage based on space vector pulse width modulation (SVPWM) is shown in Figure 3 [19]. +_ +_ k p _ d k i _ d s k ad v d _ ff v d +_ SVPWM v d 1 R + L s s d +_ +_ k p _ q k i _ q s k aq v q _ ff v q +_ SVPWM v q 1 R + L s s q Figure 3. Current proportional integral (PI) controller. Figure 3. Current proportional integral (PI) controller. For an For IPMSM, an IPMSM, it is it needed is needed to decouple to decouple d-axis d-axis q-axis q-axis voltages voltages current. The d-axis q-axis voltages q-axis voltages in in rotating rotating coordinate coordinate system system can be can expressed be expressed as as follows: [ ] [ ][ ] [ ][ ] [ ][ ] v 0 i ϕ 0 ω ϕ v d R d s s d e d d R = s 0 = + s 0 ϕ+ ϕ (15) v v 0 i ω 0 ϕ q R + d 0 ω s q + e ϕ d (15) q 0 R s 0 s q ϕ q e ω e q 0 ϕ q The last term of Equation (15) is back EMF. If d-axis q-axis flux linkages are accurate, The last term of Equation (15) is back EMF. If d-axis q-axis flux linkages are accurate, it can be eliminated by decoupling control. The feedforward control voltages can be expressed as it canfollows: be eliminated by decoupling control. The feedforward control voltages can be expressed as follows: [ ] [ ] v d_ f f v d_ ff 0 ω ω ϕ e d = = e ϕ d (16) (16) v q_ f f v _ ω q ff e 0 ϕ ϕq q where v d_ f f v where v q_ f d_ ff v f are d-axis q-axis feedforward control voltages, q_ ff are d-axis q-axis feedforward control voltages, ϕ ϕ d ϕ d are q are ϕ q estimated d-axis q-axis flux linkages. Assuming estimated d-axis v q-axis flux linkages. d_ f b v q_ f b are outputs of PI controller, d-axis q-axis voltages can be expressedassuming as follows: v d_ fb v q_ fb are outputs of PI controller, d-axis q-axis voltages can [ ] [ ] [ ] be expressed as follows: v d v = d_ f b v + d_ f f (17) v q v v q_ v f b v v q_ f f d d_ fb d_ ff = + (17) In steady circumstance, actual current vq vfollows q_ fb vqwell _ ff to reference current, thus differential term of Equation (15) can be eliminated: In steady circumstance, actual current follows well to reference current, thus differential term of Equation [ ] (15) [ can be eliminated: ][ ] [ ][ ] v d R = s 0 0 ω + e ϕ d v q 0 R s ω e 0 ϕ q [ ] [ ] (18) v = d_ f b 0 ω + e ϕ d v q_ f b ω e 0 ϕ q

6 Energies 2017, 10, of 15 Furrmore: [ v d_ f b v q_ f b ] = [ R s 0 0 R s ][ ] + [ 0 ω e ω e 0 ] ϕ d ϕ d ϕ q ϕ q (19) As shown in Equation (19), outputs of current PI controller contain a voltage drop at stator resistance an error of estimated flux linkage. If variation of stator resistance is negligible or can be compensated, error of estimated flux linkage can be obtained from integration term of PI controller, that is: [ ϕ d ϕ q ] = 1ωe [ ]([ v d_ f b_i v q_ f b_i ] [ R s 0 0 R s where ϕ d ϕ q are errors of d-axis q-axis flux linkages between actual estimated value ( ϕ d = ϕ d ϕ d, ϕ q = ϕ q ϕ q ), v d_ f b_i v q_ f b_i are integration terms of PI controller. Then, estimated permanent magnetic flux linkage can be expressed as follows: ][ ]) (20) ϕ f = ϕ d + ϕ d L d = (v q R s )/ω e L d (21) As shown in Equation (21), accuracy of estimated permanent magnetic flux linkage is affected by q-axis voltage (v q ), d-axis q-axis inductances (L d, L q ), stator resistance (R s ), d-axis q-axis current (, ). v q is equivalent to reference voltage, which includes output lag compensation [20] dead time compensation [21]. In this paper, L d, L q, R s are measured offline by experiments. The measured parameters are saved as lookup tables which cover entire current operating range at different current levels. Thus, L d, L q, R s can be considered to be accurate. In fact, R s is approximately accurate with temperature compensation, especially at a high speed when back EMF is much greater than voltage drop at stator resistance., can be obtained from current sensors Hall-effect sensors. Considering electrical angular speed (ω e ) is in denominator, estimation should be avoided at too low speed. 3. Torque Control Strategy 3.1. Feedforward Parameter Iteration Method A variety of parameters are needed for obtaining target current. The position permanent magnetic flux linkage can be estimated, as mentioned above. Or important parameters, such as d-axis q-axis inductances, stator resistance, loss, are measured offline by experiments. The measured parameters are saved as lookup tables which cover entire current operating range at different current levels. The parameters are obtained according to present input current, n target current is calculated according to control strategies. Therefore, parameters do not match target current well [22]. Assuming responding time from zero to maximum torque T emax is t respond, largest change in value of electromagnetic torque in a control period can be expressed as follows: T e_change = T emax 2t respond f (22) The largest change in value of q-axis current in a control period can be expressed as follows: _change = T emax 3pϕ f t respond f (23)

7 Energies 2017, 10, of 15 In fact, torque dem varies frequently for IPMSM used in vehicles, target current is calculated according to actual torque dem. It is difficult to define an equation to calculate mismatch between parameters current. For a given torque dem, starting with present parameters ( d-axis q-axis inductances, stator resistance, loss), one set of d-axis q-axis current is obtained, which is calculated by control strategies (such as MTPA). The obtained current is used for a new set of motor parameter calculation (using parameter lookup tables). Anor set of d-axis q-axis current is calculated with new parameters. This recursive calculation is carried out until differences between new output current previous one have reached a defined minimum error [22]. The feedforward parameter iteration method follows five steps: (1) Obtain present motor parameters ( d-axis q-axis inductances, stator resistance, loss) from lookup tables; (2) Calculate one set of d-axis q-axis current using control strategies; (3) Calculate motor parameters with current from step 2 using lookup tables; (4) Calculate anor set of d-axis q-axis current with new set of motor parameters from step 3 using control strategies. (5) If current error is within tolerance between current previous step, iteration is complete. Orwise, return to step Maximum Torque Per Ampere Control Strategy The MTPA control strategy is an efficiency optimization algorithm which only considers copper loss. The aim of optimization algorithm is to realize minimum copper loss for a given torque. Since copper loss is proportional to square of stator current, it is essential to find minimum stator current for a given torque. The MTPA control strategy can be expressed as follows: i cd = 0 i cq = 0 i od = i cd = i oq = i cq = T e = 3 2 p ( ϕ f + ( L d L q ) id ) min P Cu = 3 ( ) 2 2 R s i 2 2 d + = 3 2 R s i 2 d + 2T e 3p (ϕ f + ( ) ) L d L q id (24) (25) (26) For an IPMSM, L d = L q, Equation (26) has no explicit solutions for a given torque. If control parameter is q-axis current [23] or amplitude of stator current [24], explicit solution of can be expressed by as follows: or explicit solution of can be expressed by i s as follows: = ϕ f ϕ 2 f + 4 ( ) 2iq L q L 2 d 2 ( ) (27) L q L d = ϕ f ϕ f ( L q L d ) 2is 2 4 ( L q L d ) (28)

8 Energies 2017, 10, of 15 normalizing Equation (25), it can be expressed as follows: where T en = n (1 n ) (29) i b = ϕ f / ( L q L d ), Teb = 1.5pϕ f i b n = /i b, n = /i b, T en = T e /T eb (30) Equation (29) shows that output torque depends on d-axis q-axis current. For a given T en, n n have no unique solution. Substituting Equation (29) into Equation (26), MTPA control strategy can be expressed as follows: min { P Cu = 3 2 R si b 2 [ ]} i 2 dn + T en 2 (1 n ) 2 For a given IPMSM, R s i b are certain, MTPA control strategy can be expressed as follows: { } min i 2 dn + T en 2 (1 n ) 2 (32) solving Equation (32): T en = n (n 1) 3 T en = n 2 ( i 2 qn) Although relationship between normalized torque stator current can be obtained, Equation (33) has no explicit solutions eir. However, n n can be obtained from lookup tables, as shown in Figure 4. One of current can be obtained from lookup tables. The or Energies 2017, 10, of 16 current can be obtained from lookup tables directly or calculated by first current. (31) (33) Figure4. 4. Lookup tablesof of n n n to Tto en. T en. The MTPA T e control strategy only needs two lookup tables, which are independent of motor ω parameters, hence it is widely used in IPMSM for e its simplicity small amount i i θ of calculations. The IPMSM control system with MTPA control q strategy is shown in Figure 5. dl v q v d i v u T eb ϕ f i q θ T e i b i vd v q q FW v d _ fb _ i v q _ fb _ i v d v q θ V dc V dc

9 Energies 2017, 10, of 15 Figure 4. Lookup tables of i dn n to T en. T e dl ω e v d v q i θ i v u T eb ϕ f i q θ T e i b i vd q v q v d _ fb _ i v q _ fb _ i v d v q θ V dc FW V dc Figure 5. Maximum torque per ampere (MTPA) control algorithm. Figure 5. Maximum torque per ampere (MTPA) control algorithm. 4. Simulation Experimental Results 4. Simulation Experimental Results 4.1. Simulation Results 4.1. Simulation Results MATLAB/SIMULINK models were developed to examine proposed method. A 75-kW MATLAB/SIMULINK IPMSM for a new models vehicle application were developed is used in tothis examine paper, its proposed parameters method. are shown A in 75-kW IPMSM Table for1 a[1]. new vehicle application is used in this paper, its parameters are shown in Table 1 [1]. Table 1. Parameters of interior permanent magnet synchronous motor (IPMSM). Table 1. Parameters of Parameter interior permanent magnet Symbol synchronous Value motor (IPMSM). Number of pole pairs p 6 Parameter Stator resistance Symbol Rs 4.23 Value mω NumberMagnet of pole pairs flux linkage p ϕf Wb Stator resistance d-axis inductance R s Ld mω mh Magnet flux q-axis linkage inductance φ f Lq mh Wb d-axis inductance DC linkage voltage L d Vdc mh V q-axis inductance Maximum speed L q nb 4000 Rpm mh DC linkage Peak voltage current V dc Ipk Apk V Maximum speed n Rated power b 4000 Rpm Pr 75 kw Peak current I pk 570 Apk Peak torque Tmax 540 Nm Rated power P r 75 kw Coefficient of RSac to RsDC Peak torque T μ 0.1 max 540 Nm Coefficient of R Sac to R sdc µ 0.1 Hysteresis current coefficient K h Eddy current coefficient K e Stray loss coefficient c Str Mechanical friction torque T fric 5.24 Windage torque coefficient c wind The simulation model is shown in Figure 6. The PWM frequency is set as 10 khz PI current regulating frequency is set as 20 khz. The dead time voltage drop of power device are ignored in simulation (in actual application, dead time voltage drop of power device will be compensated, so simplification is valid at this stage). Iron loss mechanical frictional loss are also ignored in simulation. To make simulation more accurate, stator resistance d-axis q-axis inductances are measured offline. In fact, only varying trends but not accurate values of se parameters are needed in simulation, because y are just used to verify effectiveness of proposed method. The simulation results are shown in Figures 7 9 at different conditions. As shown, actual electromagnetic torque follows well with reference electromagnetic torque based on accurate estimated measured parameters; hence accurate torque control is achieved. The simulation

10 Energies 2017, 10, of 16 Hysteresis current coefficient Kh Energies 2017, 10, 410 Eddy current coefficient Ke of 15 Stray loss coefficient cstr Mechanical friction torque Tfric 5.24 results under any orwindage condition torque alsocoefficient verify effectiveness of proposed method (except cwind zero-speed zero-torque condition under which d-q axis voltages reference power are zero. In that The case, simulation position model is shown estimator in Figure flux 6. linkage estimator cannot function). Figure 6. Simulation model. The PWM frequency is set as 10 khz PI current regulating frequency is set as 20 khz. The dead time voltage drop of power device are ignored in simulation (in actual application, dead time voltage drop of power device will be compensated, so simplification is valid at this stage). Iron loss mechanical frictional loss are also ignored in simulation. To make simulation more accurate, stator resistance d-axis q-axis inductances are measured offline. In fact, only varying trends but not accurate values of se parameters are needed in simulation, because y are just used to verify effectiveness of proposed method. The simulation results are shown in Figures 7 9 at different conditions. As shown, actual electromagnetic torque follows well with reference electromagnetic torque based on accurate estimated measured parameters; hence accurate torque control is achieved. The simulation results under any or condition also verify effectiveness of proposed method (except 6. zero-speed zero-torque condition Figure under 6. which Simulation d-q model. axis voltages reference power are zero. In that case, position estimator flux linkage estimator cannot function). The PWM frequency is set as 10 khz PI current regulating frequency is set as 20 khz. The dead time voltage drop of power device are ignored in simulation (in actual application, dead time voltage drop of power device will be compensated, so simplification is valid at this stage). Iron loss mechanical frictional loss are also ignored in simulation. To make simulation more accurate, stator resistance d-axis q-axis inductances are measured offline. In fact, only varying trends but not accurate values of se parameters are needed in simulation, because y are just used to verify effectiveness of proposed method. The simulation results are shown in Figures 7 9 at different conditions. As shown, actual electromagnetic torque follows well with reference electromagnetic torque based on accurate estimated measured parameters; hence accurate torque control is achieved. The simulation results under any or condition also verify effectiveness of proposed method (except zero-speed zero-torque condition under which d-q axis voltages reference power are zero. In that case, position estimator flux linkage estimator cannot function). Energies 2017, 10, of 16 Figure 7. Flux linkage estimation torque control under maximum torque conditions Figure 7. Flux linkage estimation torque control under maximum torque conditions (1000 (1000 rpm/540 Nm). rpm/540 Nm). Figure 8. Flux linkage estimation torque control under rated conditions (2000 rpm/358 Nm). Figure 8. Flux linkage estimation torque control under rated conditions (2000 rpm/358 Nm).

11 Energies 2017, 10, of 15 Figure 8. Flux linkage estimation torque control under rated conditions (2000 rpm/358 Nm). Figure Flux linkage estimation torque control in in flux weakening region (2800 rpm/256 Nm) Experimental Results The effectiveness of of proposed method was tested experimentally with IPMSM as Table 1 shows. A dynamometer was usedto emulate load. Adigital signal signal processor (DSP) (DSP) was was used usedto to carry carryout out real-time algorithm. Six-pack insulated gate bipolar transistors (IGBT) were used as as power switches. switches. A LiFePO A LiFePO4 4 battery battery pack (288 pack V/180 (288 Ah) V/180 wasah) usedwas a power used as source. a power The experimental source. The bench experimental is shownbench in Figure is shown 10. in Figure 10. Energies 2017, 10, of 16 Figure Figure Experimental Experimental bench. bench. The experimental results are shown in Figures The experimental results are shown in Figures As shown in Figures 11 12, minimum position error is less than one electrical As shown in Figures 11 12, minimum position error is less than one electrical degree degree maximum position error is less than five electrical degrees. However, maximum position error is less than five electrical degrees. However, maximum maximum position error with average speed based estimation method is around ten position error with average speed based estimation method is around ten electrical degrees [4]. electrical degrees [4]. Furrmore, output torque of motor is always accurate. Furrmore, output torque of motor is always accurate. Figure 11 shows that voltage of battery drops dramatically to 250 under rated conditions, Figure 11 shows that voltage of battery drops dramatically to 250 V under rated conditions, hence, motor enters flux-weakening region. Compared with simulation results, q-axis hence, motor enters flux-weakening region. Compared with simulation results, q-axis current decreases, whereas d-axis current increases, magnetic saturation is not so serious. Thus, current decreases, whereas d-axis current increases, magnetic saturation is not so serious. Thus, estimated flux linkage in experiment is slightly greater than simulation result. estimated flux linkage in experiment is slightly greater than simulation result.

12 degree maximum position error is less than five electrical degrees. However, maximum position error with average speed based estimation method is around ten electrical degrees [4]. Furrmore, output torque of motor is always accurate. Figure 11 shows that voltage of battery drops dramatically to 250 V under rated conditions, hence, motor enters flux-weakening region. Compared with simulation results, q-axis Energies current 2017, 10, decreases, 410 whereas d-axis current increases, magnetic saturation is not so serious. Thus, 12 of 15 estimated flux linkage in experiment is slightly greater than simulation result. Figure 11. Experimental results under rated conditions (2000 rpm/358 Nm). Energies 2017, 10, Figure Experimental results under rated conditions (2000 rpm/358 Nm). 13 of 16 Energies 2017, 10, of 16 Figure 12 shows almost same results with simulation except that flux linkage decreases due to increment of temperature. Under maximum torque conditions, reluctance torque is greater than or conditions; hence less current is needed to obtain same output torque. Therefore, torque control is more efficient. Figure 13 shows efficiency of motor drive system, including motor inverter. As shown, maximum efficiency of motor drive system can reach 0.94 around rated conditions, minimum efficiency of system is above 0.8. Thus, efficient control has been realized. Figure 12. Experimental results under maximum torque conditions (1000 rpm/540 Nm). Figure Figure 12. Experimental 12. Experimental results results under under maximum maximum torque conditions (1000 (1000rpm/540 rpm/540 Nm). Nm). Figure 13. Efficiency of motor drive system. Figure 13. Efficiency of motor drive system. Figure 13. Efficiency of motor drive system. 5. Conclusions 5. Conclusions In this paper, an effective method to achieve accurate efficient torque control of an IPMSM in electric In this vehicles, paper, an based effective on low-resolution method to achieve Hall-effect accurate sensors, efficient is proposed. torque Assuming control of that an IPMSM d- axis in electric q-axis vehicles, inductances, based on stator low-resolution resistance, Hall-effect loss sensors, are known is proposed. (measured Assuming offline), that highresolution d- axis q-axis inductances, position stator permanent resistance, flux linkage are loss estimated are known online (measured based offline), on IPMSM highresolution model. Combined position with permanent feedforward flux linkage parameter are estimated iteration online method, based MTPA on control IPMSM strategy model. is achieved Combined based on with accurate feedforward parameters. parameter The simulation iteration method, experimental MTPA results control show

13 Energies 2017, 10, of 15 Figure 12 shows almost same results with simulation except that flux linkage decreases due to increment of temperature. Under maximum torque conditions, reluctance torque is greater than or conditions; hence less current is needed to obtain same output torque. Therefore, torque control is more efficient. Figure 13 shows efficiency of motor drive system, including motor inverter. As shown, maximum efficiency of motor drive system can reach 0.94 around rated conditions, minimum efficiency of system is above 0.8. Thus, efficient control has been realized. 5. Conclusions In this paper, an effective method to achieve accurate efficient torque control of an IPMSM in electric vehicles, based on low-resolution Hall-effect sensors, is proposed. Assuming that d-axis q-axis inductances, stator resistance, loss are known (measured offline), high-resolution position permanent flux linkage are estimated online based on IPMSM model. Combined with feedforward parameter iteration method, MTPA control strategy is achieved based on accurate parameters. The simulation experimental results show that, by using this method, accurate efficient torque control can be realized. By using low-resolution Hall-effect sensors instead of resolvers, electric vehicles can reduce cost, weight, volume. Since position estimation is based on a power closed-loop, IPMSM can output accurate torque even if estimated position has some errors. Since flux linkage power calculations are related to speed, proposed method may have some drawbacks in low-speed region. However, this method provides a relatively more effective way to achieve efficient accurate control of IPMSM, particularly when IPMSM works under high-power, high-speed working conditions. Moreover, method proposed in this paper can also be applied in or types of motors in electric vehicles, such as in-wheel motors, surface PMSM, PM-assisted synchronous reluctance motors. Author Contributions: This paper is results of hard work of all of authors. Lei Yu Wenqing Huang conceived designed proposed method. Lei Yu Youtong Zhang conceived performed experiments; Lei Yu analyzed data; Lei Yu wrote paper. All authors gave advice for manuscript. Conflicts of Interest: The authors declare no conflict of interest. Nomenclature E in E out E loss E Cu E Fe E str E M v u, v v, v w v d, v q v d, v q i u, i v, i w, id, i q i cd, i cq n, n i s FW ω e Input Output Energy loss Copper loss Iron loss Stray loss Mechanical loss Stator three phase voltages Stator d-axis q-axis voltages Reference stator d-axis q-axis voltages Stator three phase current Stator d-axis q-axis current Reference stator d-axis q-axis current d-axis q-axis iron loss current Normalized stator d-axis q-axis current Stator current d-axis field-weakening current Rotor electrical angular speed

14 Energies 2017, 10, of 15 T e Te T en θ θ L d, L q ϕ d, ϕ q ϕ f ϕ f dl R s R c P in P out Pout P loss P Cu V dc T f t p Electromagnetic torque Reference electromagnetic torque Normalized electromagnetic torque Actual positon Estimated positon d-axis q-axis inductances d-axis q-axis flux linkages Permanent magnetic flux linkage Estimated Permanent magnetic flux linkage Difference of d-axis q-axis inductances Stator resistance Iron loss resistance Input power Output power Reference output power Power loss Copper power loss DC linkage voltage Control period Control frequency Time Number of pole pairs References 1. Huang, W.; Zhang, Y.; Zhang, X.; Sun, G. Accurate torque control of interior permanent magnet synchronous machine. IEEE Tran. Energy Convers. 2014, 29, [CrossRef] 2. Rostami, A.; Asaei, B. A novel method for estimating initial position of pm motors without position sensor. Energy Convers. Manag. 2009, 50, [CrossRef] 3. Dong-Bin, L.U.; Ouyang, M.G.; Jing, G.U.; Jian-Qiu, L.I. Field oriented control of permanent magnet brushless hub motor in electric vehicle. Electr. Mach. Control 2012, 11, Kim, S.Y.; Choi, C.; Lee, K.; Lee, W. An improved position estimation with vector-tracking observer in pmsm drives with low-resolution hall-effect sensors. IEEE Trans. Ind. Electron. 2011, 58, Dalala, Z.M.; Cho, Y.; Lai, J.S. Enhanced Vector Tracking Observer for Rotor Position Estimation for PMSM Drives with Low Resolution Hall-Effect Position Sensors. In Proceedings of 2013 IEEE International Electric Machines & Drives Conference (IEMDC), Chicago, IL, USA, May 2013; pp Lidozzi, A.; Solero, L.; Crescimbini, F.; Napoli, A.D. SVM PMSM drive with low resolution hall-effect sensors. IEEE Tran. Power Electron. 2007, 22, [CrossRef] 7. Batzel, T.D.; Lee, K.Y. Slotless permanent magnet synchronous motor operation without a high resolution angle sensor. IEEE Tran. Energy Convers. 2001, 15, [CrossRef] 8. Xu, B.; Mu, F.; Shi, G.; Ji, W.; Zhu, H. State estimation of permanent magnet synchronous motor using improved square root UKF. Energies 2016, 9, 489. [CrossRef] 9. Jung, S.Y.; Nam, K. Pmsm control based on edge-field hall sensor signals through anf-pll processing. IEEE Trans. Ind. Electron. 2011, 58, [CrossRef] 10. Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Online identification of PMSM parameters: Parameter identifiability estimator comparative study. IEEE Trans. Ind. Appl. 2011, 47, [CrossRef] 11. Liu, K.; Zhu, Z.Q.; Stone, D.A. Parameter estimation for condition monitoring of PMSM stator winding permanent magnets. IEEE Trans. Ind. Electron. 2013, 60, [CrossRef] 12. Horen, Y.; Strajnikov, P.; Kuperman, A. Simple mechanical parameters identification of induction machine using voltage sensor only. Energy Convers. Manag. 2015, 92, [CrossRef] 13. Park, J.W.; Koo, D.H.; Kim, J.M.; Kim, H.G. Improvement of control characteristics of interior permanent magnet synchronous motor for electric vehicle. IEEE Trans. Ind. Appl. 2001, 37, [CrossRef]

15 Energies 2017, 10, of Meessen, K.J.; Thelin, P.; Soulard, J.; Lomonova, E.A. Inductance calculations of permanent-magnet synchronous machines including flux change self- cross-saturations. IEEE Trans. Magn. 2008, 44, [CrossRef] 15. Liang, P.; Pei, Y.; Chai, F.; Zhao, K. Analytical calculation of d- q-axis inductance for interior permanent magnet motors based on winding function ory. Energies 2016, 9, 580. [CrossRef] 16. Mohamed, Y.R.; Lee, T.K. Adaptive self-tuning MTPA vector controller for IPMSM drive system. IEEE Tran. Energy Convers. 2006, 21, [CrossRef] 17. Urasaki, N.; Senjyu, T.; Uezato, K. An accurate modeling for permanent magnet synchronous motor drives. In Proceedings of APEC Fifteenth IEEE Applied Power Electronics Conference Exposition, New Orleans, LA, USA, 6 10 February 2000; Volume 381, pp Huang, W.Q.; Zhang, Y.T.; Zhang, X.C. Research on power closed-loop torque control strategy of PMSM in HEV application. Trans. Beijing Inst. Technol. 2015, 35, Kwon, Y.C.; Kim, S.; Sul, S.K. Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives. IEEE Trans. Ind. Electron. 2012, 59, [CrossRef] 20. Choi, J.W.; Sul, S.K. Inverter output voltage synsis using novel dead time compensation. IEEE Trans. Power Electron. 1996, 11, [CrossRef] 21. Choi, J.W.; Sul, S.K. A new compensation strategy reducing voltage/current distortion in PWM VSI systems operating with low output voltages. IEEE Trans. Ind. Appl. 1995, 31, [CrossRef] 22. Cheng, B.; Tesch, T.R. Torque feedforward control technique for permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 2010, 57, [CrossRef] 23. Morimoto, S.; Sanada, M.; Takeda, Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator. IEEE Trans. Ind. Appl. 1994, 30, [CrossRef] 24. Kim, J.M.; Sul, S.K. Speed control of interior permanent magnet synchronous motor drive for flux weakening operation. IEEE Trans. Ind. Appl. 1995, 2000, by authors. Licensee MDPI, Basel, Switzerl. This article is an open access article distributed under terms conditions of Creative Commons Attribution (CC BY) license (

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control

On-line Parameter Estimation Method for IPMSM Based on Decoupling Control World Electric Vehicle Journal Vol. 4 - ISSN 232-6653 - 21 WEVA Page61 EVS25 Shenzhen, China, Nov 5-9, 21 On-line Parameter Estimation Method for IPMSM Based on Decoupling Control Aimeng Wang,Xingwang

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

An improved deadbeat predictive current control for permanent magnet linear synchronous motor Indian Journal of Engineering & Materials Sciences Vol. 22, June 2015, pp. 273-282 An improved deadbeat predictive current control for permanent magnet linear synchronous motor Mingyi Wang, iyi i, Donghua

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure Send Orders for Reprints to reprints@benthamscienceae The Open Automation and Control Systems Journal, 5, 7, 33-33 33 Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral

More information

970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012

970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012 970 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 3, MAY/JUNE 2012 Control Method Suitable for Direct-Torque-Control-Based Motor Drive System Satisfying Voltage and Current Limitations Yukinori

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

Lecture 7: Synchronous Motor Drives

Lecture 7: Synchronous Motor Drives 1 / 46 Lecture 7: Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 46 Learning Outcomes After this lecture and exercises you

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:

More information

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor Journal of Magnetics 22(2), 266-274 (2017) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 https://doi.org/10.4283/jmag.2017.22.2.266 Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric

More information

Improved efficiency of a fan drive system without using an encoder or current sensors

Improved efficiency of a fan drive system without using an encoder or current sensors Improved efficiency of a fan drive system without using an encoder or current sensors Tian-Hua Liu, Jyun-Jie Huang Department of Electrical Engineering, National Taiwan University of Science Technology,

More information

II. Mathematical Modeling of

II. Mathematical Modeling of SICE Annual Conference in Fukui, August 4-62003 Fukui University, Japan MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Young Sam Kim, Sang Kyoon Kim and Young Ahn Kwon Department of

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive

Modeling of Direct Torque Control (DTC) of BLDC Motor Drive IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 09 March 2017 ISSN (online): 2349-784X Modeling of Direct Torque Control (DTC) of BLDC Motor Drive Addagatla Nagaraju Lecturer

More information

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque

Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque Direct Flux Vector Control Of Induction Motor Drives With Maximum Efficiency Per Torque S. Rajesh Babu 1, S. Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering, JNTUACEA, Anantapuramu,

More information

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Adeeb Ahmed Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA aahmed4@ncsu.edu

More information

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology Arpit S. Bhugul 1, Dr. Archana

More information

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Daisuke Sato Department of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata,

More information

Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor

Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor Four-Switch Inverter-Fed Direct Torque control of Three Phase Induction Motor R.Dharmaprakash 1, Joseph Henry 2, P.Gowtham 3 Research Scholar, Department of EEE, JNT University, Hyderabad, India 1 Professor,

More information

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change International Journal of Engineering Inventions e-issn: 2278-7461, p-isbn: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 77-86 Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous Motor Drives

Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous Motor Drives SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 11, No., June 014, 57-68 UDC: 61.311-5:61.313.33]:60.9 DOI: 10.98/SJEE131701G Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous

More information

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band UKSim 2009: th International Conference on Computer Modelling and Simulation A Direct Torque Controlled Induction Motor with Variable Hysteresis Band Kanungo Barada Mohanty Electrical Engineering Department,

More information

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current

Research on Control Method of Brushless DC Motor Based on Continuous Three-Phase Current 6th International onference on Measurement, Instrumentation and Automation (IMIA 017 Research on ontrol Method of Brushless D Motor Based on ontinuous hree-phase urrent Li Ding 1,Mingliang Hu, Jun Zhao

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE

Dr. N. Senthilnathan (HOD) G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE Design and Optimization of 4.8kW Permanent MagNet Brushless Alternator for Automobile G. Sabaresh (PG Scholar) Kongu Engineering College-Perundurai Dept. of EEE sabareshgs@gmail.com 45 Dr. N. Senthilnathan

More information

the machine makes analytic calculation of rotor position impossible for a given flux linkage and current value.

the machine makes analytic calculation of rotor position impossible for a given flux linkage and current value. COMPARISON OF FLUX LINKAGE ESTIMATORS IN POSITION SENSORLESS SWITCHED RELUCTANCE MOTOR DRIVES Erkan Mese Kocaeli University / Technical Education Faculty zmit/kocaeli-turkey email: emese@kou.edu.tr ABSTRACT

More information

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Performance analysis of variable speed multiphase induction motor with pole phase modulation ARCHIVES OF ELECTRICAL ENGINEERING VOL. 65(3), pp. 425-436 (2016) DOI 10.1515/aee-2016-0031 Performance analysis of variable speed multiphase induction motor with pole phase modulation HUIJUAN LIU, JUN

More information

Study on Nonlinear Perpendicular Flux Observer for Direct-torque-controlled Induction Motor

Study on Nonlinear Perpendicular Flux Observer for Direct-torque-controlled Induction Motor ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.6(2008) No.1,pp.73-78 Study on Nonlinear Perpendicular Flux Observer for Direct-torque-controlled Induction Motor

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Speed Control of PMSM Drives by Using Neural Network Controller

Speed Control of PMSM Drives by Using Neural Network Controller Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 353-360 Research India Publications http://www.ripublication.com/aeee.htm Speed Control of PMSM Drives by

More information

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Implementation of Twelve-Sector based Direct Torque Control for Induction motor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.32-37 Implementation of Twelve-Sector based Direct Torque Control

More information

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION Jorge G. Cintron-Rivera, Shanelle N. Foster, Wesley G. Zanardelli and Elias G. Strangas

More information

SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE

SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE SPEED CONTROL OF PMSM BY USING DSVM -DTC TECHNIQUE J Sinivas Rao #1, S Chandra Sekhar *2, T Raghu #3 1 Asst Prof, Dept Of EEE, Anurag Engineering College, AP, INDIA 3 Asst Prof, Dept Of EEE, Anurag Engineering

More information

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 2015

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 2015 SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 215 Torque Ripple Minimization of BLDC Motor by Using Vector Control R.keerthi Paul 1, P.Pradeep 2

More information

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS

A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS A NOVEL FLUX-SPACE-VECTOR-BASED DIRECT TORQUE CONTROL SCHEME FOR PMSG USED IN VARIABLE-SPEED DIRECT-DRIVE WECS B.VENKATESWARARAJU 1, B. YELLA REDDY 2 1 Mtech Scholar, 2 Assistant Professor Department of

More information

Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors

Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors Impact of the Motor Magnetic Model on Direct Flux Vector Control of Interior PM Motors Gianmario Pellegrino, Radu Bojoi, Paolo Guglielmi Politecnico di Torino, Italy (gianmario.pellegrino,radu.bojoi,paolo.guglielmi)@polito.it

More information

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique S.Anuradha 1, N.Amarnadh Reddy 2 M.Tech (PE), Dept. of EEE, VNRVJIET, T.S, India 1 Assistant Professor, Dept.

More information

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation * Available online at www.sciencedirect.com AASRI Procedia 3 (2012 ) 262 269 2012 AASRI Conference on Modeling, Identification and Control Research on Permanent Magnet Linear Synchronous Motor Control System

More information

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives

Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives International Journal of Automation and Computing (24) 35-4 Simplified EKF Based Sensorless Direct Torque Control of Permanent Magnet Brushless AC Drives Yong Liu, Ziqiang Zhu, David Howe Department of

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller Journal of Engineering Science and Technology Review 3 (1) (2010) 168-175 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Robust Non-Linear Direct Torque and Flux Control

More information

Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method

Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method IEEJ Journal of Industry Applications Vol.7 No.1 pp.73 79 DOI: 10.1541/ieejjia.7.73 Paper Evaluation Method to Estimate Position Control Error in Position Sensorless Control Based on Pattern Matching Method

More information

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection 8 Journal of Power Electronics, Vol. 9, No. 4, July 9 JPE 9-4-8 Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

More information

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles

Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Progress In Electromagnetics Research M, Vol. 6, 113 123, 16 Hybrid Excited Vernier Machines with All Excitation Sources on the Stator for Electric Vehicles Liang Xu, Guohai Liu, Wenxiang Zhao *, and Jinghua

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS

1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS 1234. Sensorless speed control of a vector controlled three-phase induction motor drive by using MRAS Ali Saffet Altay 1, Mehmet Emin Tacer 2, Ahmet Faik Mergen 3 1, 3 Istanbul Technical University, Department

More information

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine

Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity in Permanent Magnet Machine Journal of Magnetics 23(1), 68-73 (218) ISSN (Print) 1226-175 ISSN (Online) 2233-6656 https://doi.org/1.4283/jmag.218.23.1.68 Experimental Assessment of Unbalanced Magnetic Force according to Rotor Eccentricity

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine

Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine EVS28 KINTEX, Korea, May 3-6, 215 Magnetic Saturation and Iron Loss Influence on Max Torque per Ampere Current Vector Variation of Synchronous Reluctance Machine Huai-Cong Liu 1, In-Gun Kim 1, Ju lee 1

More information

International Journal of Multidisciplinary Research and Modern Education (IJMRME)) ISSN (Online): (www.rdmodernresearch.

International Journal of Multidisciplinary Research and Modern Education (IJMRME)) ISSN (Online): (www.rdmodernresearch. INTELLIGENT SENSOR LESS AND ROTOR FLUX LINKAGE CONTROL DESIGN OF PERMANENT- MAGNET SYNCHRONOUS MOTORS SERVO DRIVE S. Radhika*, Dr. R. A. Jaikumar** & Dr. M. Marsalin Beno*** *Research Scholar, St. Peter

More information

Optimal Efficiency Analysis of MW-Level Direct-Drive Wind Generation System

Optimal Efficiency Analysis of MW-Level Direct-Drive Wind Generation System International Journal of Smart Grid and Clean Energy Optimal Efficiency Analysis of MW-Level Direct-Drive Wind Generation System Jingyuan Yin*, Xinmin Jin, Xuezhi Wu School of Electrical Engineering, Beijing

More information

Decoupling control for aircraft brushless wound-rotor synchronous starter-generator in the starting mode

Decoupling control for aircraft brushless wound-rotor synchronous starter-generator in the starting mode The 4th International Symposium on More Electric Aircraft Technology (MEA 2017) 8 9 November 2017 Decoupling control for aircraft brushless wound-rotor synchronous starter-generator in the starting mode

More information

Power density improvement of three phase flux reversal machine with distributed winding

Power density improvement of three phase flux reversal machine with distributed winding Published in IET Electric Power Applications Received on 4th January 2009 Revised on 2nd April 2009 ISSN 1751-8660 Power density improvement of three phase flux reversal machine with distributed winding

More information

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM

The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Electrical and Electronic Engineering 2016, 6(3): 39-48 DOI: 10.5923/j.eee.20160603.01 The Application of Anti-windup PI Controller, SIPIC on FOC of PMSM Hoo Choon Lih School of Engineering, Taylor s University,

More information

Speed Control of Induction Motor Drives using Nonlinear Adaptive Controller

Speed Control of Induction Motor Drives using Nonlinear Adaptive Controller Speed Control of Induction Motor Drives using Nonlinear Adaptive Controller 1 Sarojini.P, 2 Mr. R Issan Raj M.E Control and Instrumentation Engineering Valliammai Engineering College Kancheepuram District

More information

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit Journal of Magnetics 19(4), 404-410 (2014) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2014.19.4.404 Design and Analysis of Interior Permanent Magnet Synchronous Motor

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India

Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India MODELING AND ANALYSIS OF 6/4 SWITCHED RELUCTANCE MOTOR WITH TORQUE RIPPLE REDUCTION Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women,

More information

Academic Editor: Paolo Mercorelli Received: 17 August 2016; Accepted: 27 October 2016; Published: 8 November 2016

Academic Editor: Paolo Mercorelli Received: 17 August 2016; Accepted: 27 October 2016; Published: 8 November 2016 energies Article Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm Xing Liu, Jinhua Du

More information

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD

SHAPE DESIGN OPTIMIZATION OF INTERIOR PERMANENT MAGNET MOTOR FOR VIBRATION MITIGATION USING LEVEL SET METHOD International Journal of Automotive Technology, Vol. 17, No. 5, pp. 917 922 (2016) DOI 10.1007/s12239 016 0089 7 Copyright 2016 KSAE/ 092 17 pissn 1229 9138/ eissn 1976 3832 SHAPE DESIGN OPTIMIZATION OF

More information

High Performance and Reliable Torque Control of Permanent Magnet Synchronous Motors in Electric Vehicle Applications

High Performance and Reliable Torque Control of Permanent Magnet Synchronous Motors in Electric Vehicle Applications http://dx.doi.org/10.5755/j01.eee.19.7.159 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 139-115, VOL. 19, NO. 7, 013 High Performance and Reliable Torque Control of Permanent Magnet Synchronous Motors in Electric

More information

Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors

Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors IEEJ Journal of Industry Applications Vol.3 No.2 pp.112 120 DOI: 10.1541/ieejjia.3.112 Maximum Torque per Ampere and Maximum Efficiency Control Methods based on V/f Control for IPM Synchronous Motors Jun-ichi

More information

Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications

Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications IEEJ Journal of Industry Applications Vol.6 No.6 pp.401 408 DOI: 10.1541/ieejjia.6.401 Influence of Permanent Magnet Properties and Arrangement on Performance of IPMSMs for Automotive Applications Yuki

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength Journal of Magnetics 18(2), 125-129 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.2.125 Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration

More information

Finite Element Based Transformer Operational Model for Dynamic Simulations

Finite Element Based Transformer Operational Model for Dynamic Simulations 496 Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 Finite Element Based Transformer Operational Model for Dynamic Simulations O. A. Mohammed 1, Z. Liu 1, S. Liu 1,

More information

Comparisons of direct and adaptative optimal controls for interior permanent magnet synchronous integrated starter generator

Comparisons of direct and adaptative optimal controls for interior permanent magnet synchronous integrated starter generator Comparisons of direct and adaptative optimal controls for interior permanent magnet synchronous integrated starter generator L. Chédot Valeo Electrical System 2, rue A. Boulle / BP15 9417 Créteil Cedex

More information

Minimum Losses Point Tracking and Minimum Current Point Tracking in Interior PMSMs

Minimum Losses Point Tracking and Minimum Current Point Tracking in Interior PMSMs Minimum Losses Point Tracking and Minimum Current Point Tracking in Interior Pablo Moreno-Torres, Jorge Torres, Marcos Lafoz CIEMAT c/ Julián Camarillo, 30 Madrid, SPAIN Tel.: +34 / 91 335 7194. E-Mail:

More information

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors

Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Wide-Speed Operation of Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motors Adina Muntean, M.M. Radulescu Small Electric Motors and Electric Traction (SEMET) Group, Technical University

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER

DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER DIRECT TORQUE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR USING TWO LEVEL INVERTER- SURVEY PAPER 1 PREETI SINGH, BHUPAL SINGH 1 M.Tech (scholar) Electrical Power & Energy System, lecturer Ajay Kumar

More information

Fahrzeugenergiesysteme. Abschlussbericht

Fahrzeugenergiesysteme. Abschlussbericht Fahrzeugenergiesysteme II Abschlussbericht TP2000-AP2300 Modellbasierte Entwicklung innovativer Betriebsstrategien Modelbased development of innovative operation strategies Februar 2013 Titel TP2000-AP2300

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Simplified current minimization control of vector controlled Interior Permanent Magnet motor

Simplified current minimization control of vector controlled Interior Permanent Magnet motor Sådhanå (2018) 43:54 Ó Indian Academy of Sciences https://doi.org/10.1007/s12046-018-0811-4sadhana(0123456789().,-volv)ft3 ](0123456789().,-volV) Simplified current minimization control of vector controlled

More information

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction S. Pavithra, Dinesh Krishna. A. S & Shridharan. S Netaji Subhas Institute of Technology, Delhi University

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

INTELLIGENT SENSORLESS AND ROTOR FLUX LINKAGE CONTROL DESIGN OF PMSM SERVO DRIVE

INTELLIGENT SENSORLESS AND ROTOR FLUX LINKAGE CONTROL DESIGN OF PMSM SERVO DRIVE I J E E E S : Vol. 6 No. 1 January-June 2014 INTELLIGENT SENSORLESS AND ROTOR FLUX LINKAGE CONTROL DESIGN OF PMSM SERVO DRIVE 1 S. Radhika and 2 M. Marsalin Beno The permanent-magnet synchronous motors

More information

A Method for Magnetizing Curve Identification in Rotor Flux Oriented Induction Machines

A Method for Magnetizing Curve Identification in Rotor Flux Oriented Induction Machines IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 15, NO. 2, JUNE 2000 157 A Method for Magnetizing Curve Identification in Rotor Flux Oriented Induction Machines Emil Levi, Member, IEEE, Matija Sokola, and

More information

High-Speed Current Vector Control of PWM Inverter Minimizing Current Error at Every Sampling Point

High-Speed Current Vector Control of PWM Inverter Minimizing Current Error at Every Sampling Point High-Speed Current Vector Control of PWM Inverter Minimizing Current Error at Every Sampling Point Toshihiko Noguchi, Hirokazu Kodachi Isamu Saito Nagaoka University of Technology Toshiba Corporation 16-1

More information

AC Induction Motor Stator Resistance Estimation Algorithm

AC Induction Motor Stator Resistance Estimation Algorithm 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 21-23, 27 86 AC Induction Motor Stator Resistance Estimation Algorithm PETR BLAHA

More information

Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines

Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines Inductance Testing According to the New IEEE Std 1812 Application and Possible Extensions for IPM Machines Vandana Rallabandi Narges Taran Dan M. Ionel Department of Electrical and Computer Engineering

More information

A new FOC technique based on predictive current control for PMSM drive

A new FOC technique based on predictive current control for PMSM drive ISSN 1 746-7, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 4, pp. 87-94 A new FOC technique based on predictive current control for PMSM drive F. Heydari, A. Sheikholeslami, K.

More information

Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range

Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range Sensorless Control of Two-phase Switched Reluctance Drive in the Whole Speed Range Dmitry Aliamkin, Alecksey Anuchin, Maxim Lashkevich Electric Drives Department of Moscow Power Engineering Institute,

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information