Financial. Analysis. O.Eval = {Low, High} Store. Bid. Update. Risk. Technical. Evaluation. External Consultant

Size: px
Start display at page:

Download "Financial. Analysis. O.Eval = {Low, High} Store. Bid. Update. Risk. Technical. Evaluation. External Consultant"

Transcription

1 ACM PODS98 of CS Dept at Stony Brook University Based Modeling and Analysis of Logic Workows Hasan Davulcu* N.Y , U.S.A. * Joint with M. Kifer, C.R. Ramakrishnan, I.V. Ramakrishnan Hasan Davulcu { University at Stony Brook 1

2 A collection of inter-related tasks and transactions Workow: to carry out a well-dened business process. designed Management: Automated coordination of work, Workow processing entities, to achieve an overall business goal. among Management System (WfMS): System for Workow of workow processes (like DBMS facilitates automation Workows creation and maintenance of large data sets). Hasan Davulcu { University at Stony Brook 2

3 What Kind of Computations are Workows? Long-running: Hours, days, months; Autonomous, distributed processing entities; Transactional Semantics. Hasan Davulcu { University at Stony Brook 3

4 Control Flow Graph: Bid Evaluation Example Contractor Evaluation o O.Eval = {Low, High} Financial Analysis f Receive Bid r AND c Cost Update C.Cost < Budget b Budget Update s Store Bid d Final Decision D.Final = Accept XOR D.Final = Reject OR t e Technical Evaluation External Consultant i m Risk Analysis Consultant Billing Global Coordination Dependencies: 1. IF o.eval = low THEN not e 2. IF occurs (e) THEN o before e 3. IF occurs (t) AND occurs (e) THEN e before i 4. c before f Hasan Davulcu { University at Stony Brook 4

5 Coordination: How to schedule tasks automatically? Central Workow Problems a XOR b c d 1. d before c 2. b AND IF occurs (b) THEN c Is control ow graph and coordination dependencies Consistency:? consistent Does the specication satisfy certain key properties? Correctness: Every bid is either accepted or rejected by the bid-evaluation e.g., workow. Hasan Davulcu { University at Stony Brook 5

6 A formal language to specify the structure of processes Creation: their interactions at a high-level; and Reasoning methods to ascertain that a workow is Verication: correct; Techniques for automatically deriving correct Execution: from high-level specications. executions What is Needed to Enable Workow Automation? Ideally, all should t in a single, unifying framework. Hasan Davulcu { University at Stony Brook 6

7 { Sequential and concurrent composition; { Subroutines (e.g. sub-workows); { Declarative queries (e.g. transition conditions); { Atomicity; { Isolation; Requirements for Workow Specication Primitives for modular specication Temporal constraints for expressing coordination dependencies. Triggers (e.g. exceptions) Hasan Davulcu { University at Stony Brook 7

8 { Suitable for specifying reactive behavior. [Dayal et.al.-91,96] Related Research on Workows Extended Transaction Models Permits hierarchical structures and relaxes ACID properties. { [Elmagarmid-90] Task Dependencies Declarative constructs suitable for specifying global coordination { [Klein-91, Singh-96] dependencies. Active Rules and Triggers Petri Nets and Temporal Logics Suitable for modeling and verifying concurrent processes. { et.al.-93, Nabil et.al.-98] [Sheth Hasan Davulcu { University at Stony Brook 8

9 { Declarative queries { Concurrent updates { Transactional behavior Model Theory: { A model assigns transaction formulas truth values over paths. Informally, being true over path means \ can execute along." Constructs execution paths as it proves statements. Our Framework: Concurrent Transaction Logic (CT R ) CT R : Conservative extension of rst order logic for programming, executing and reasoning with state-changing concurrent processes. CT R uniformly models: (i.e., nite sequences of states) Proof Theory: { Sound and complete. Hasan Davulcu { University at Stony Brook 9

10 CT R : Logical Connectives cost update budget update means, \Execute cost update and then budget update". execute D D D D D D D D cost_update budget_update (contractor nancial) j (consultant billing) means, \Execute f inancial) and (consultant billing) in an interleaved (contractor fashion". D D D D D D D D contractor consultant financial billing ( contractor financial ) ( consultant billing ) Hasan Davulcu { University at Stony Brook 10

11 db updates means, \Execute db updates in isolation". CT R : Logical Connectives bid eval ^ c before f means, \Execute bid eval and c bef ore f along the path". (i.e. ^ can be used to express constraints on execution.) same c_before_f D D D D D D D D bid_eval internal eval _ external contractor means, \Execute either internal eval external contractor". or : external contractor means, \Do anything but an execution of contractor". external db updates cost update budget update means, \An execution of update budget update is also an execution of db updates". cost ( is dened as _:). Hasan Davulcu { University at Stony Brook 11

12 Control-ow graphs translates straightforwardly into CTR formulas: Putting It Altogether : Bid-Evaluation Workow bid eval r (f inancial j db updates j technical) rest f inancial o ([o:eval = \high"] f ) _ (low f ) db updates (c [c:cost < budget] b) s technical (t i) _ (e m) _ (t i j e m) Global Coordination Dependencies can be modeled as conjunction of set of dependencies C. a 1: Olow! :Oe 3: Ot ^ Oe! Oe Oi 2: Oe! (Oo Oe) 4: Oc Of ( O means \ occurs sometime".) Workow specication: bid eval ^ C Hasan Davulcu { University at Stony Brook 12

13 Constraints are CT R formulas. Temporal Dependencies 1. Existence constraints: Oe, :Oe (e must/must not occur); 2. Serial constraints: Oe Of (e must occur before f); 3. Complex constraints: C 1 ^ C 2, and C 1 _ C 2, if C 1, C 2 are constraints.. Hasan Davulcu { University at Stony Brook 13

14 Executing a workow G ^ C by the general proof theory has run-time complexity. exponential We develop a re-write system, Apply, which transforms G ^ C an equivalent ^-free formula G C such that: into { Execution and verication becomes more ecient on G C. Transformation Apply Hasan Davulcu { University at Stony Brook 14

15 Workow Analysis with CT R : G C if satisable and G C is ^-free A legal execution of C ^ G can be picked from G C { Inconsistency: I Apply (C, bid eval) false { Verication: Given a property : Proposition (Apply): 8 < Apply (C; G) C ^ G false if C ^ G is unsatisable in linear time by the inference system. 2 8 < Apply (:; G C ) false if holds for G C G : all counter executions of C^: Inconsistency and verication reduce to the same logical problem { unsatisability. Hasan Davulcu { University at Stony Brook 15

16 Apply Transformation: Contd. α γ XOR β δ η Example: If T is ( ), then Apply (O; T ) = O ^ T = Apply (:O; T ) = :O ^ T = ( _ ) Hasan Davulcu { University at Stony Brook 16

17 = ( send()) j (receive() ) j 1 j ::: j n Apply Transformation: Contd. AND γ XOR β ρ ρ 1 n α XOR δ Example: Apply ( O O; ( _ ) j ( _ ) j 1 j ::: j n ) Hasan Davulcu { University at Stony Brook 17

18 Knot Detection and Elimination Insertion of send/receive may cause a cyclic wait, which we call a knot. Wf Coord. Dependencies : Receive Bid 1. I before O OR 2. If occurs (E) then O before E 3. If occurs (T) AND occurs(e) then E before I R AND Technical Evaluation T Contractor Evaluation O 2 E I 1 3 External Consultant Risk Analysis D Final Decision Excise Transformation rewrites the above workow into a knot-free Receive Bid R AND Technical Evaluation XOR Contractor Evaluation O T I Risk Analysis D Final Decision E External Consultant workow: Hasan Davulcu { University at Stony Brook 18

19 (Consistency) Theorem workow specication G ^C is inconsistent i Excise(Apply (C; G)) false. A (Correctness) Theorem is a constructive way of verifying workow properties with Apply. There (Coordination) Theorem jgj denote the size of a control-ow graph, then we can pick a legal Let (Complexity) Let jgj denote the size of a control-ow graph, N be the Theorem of constraints in C, and d be the largest number of disjuncts in a constraint. number Results execution from Excise(Apply (C; G)) in time linear in jgj. The worst-case size of Apply (C; G) is O(d N jgj). (where as standard model-checking algorithms for this problem are exponential in jgj) For certain classes of constraints Apply (C; G) is linear in jgj. Excise(G) is linear in jgj. Hasan Davulcu { University at Stony Brook 19

20 Data Value Dependencies: Include transition conditions in analysis; Future Work Management: Facilitate failure detection and handling with Failure features like contingency and compensation; advanced Management: Improve support for triggers to facilitate Exception behavior due to exceptions; reactive Workows with Loops. Hasan Davulcu { University at Stony Brook 20

CTR-S: A Logic for Specifying Contracts in Semantic Web Services

CTR-S: A Logic for Specifying Contracts in Semantic Web Services CTR-S: A Logic for Specifying Contracts in Semantic Web Services Hasan Davulcu Department of CSE Arizona State University Box 875406, Tempe, AZ 85287-5406 hdavulcu@asu.edu Michael Kifer Department of Computer

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Artificial Intelligence Chapter 7: Logical Agents

Artificial Intelligence Chapter 7: Logical Agents Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent State University February 20, 2006 AI: Chapter 7: Logical Agents 1 Contents Knowledge Based Agents

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

CS206 Lecture 03. Propositional Logic Proofs. Plan for Lecture 03. Axioms. Normal Forms

CS206 Lecture 03. Propositional Logic Proofs. Plan for Lecture 03. Axioms. Normal Forms CS206 Lecture 03 Propositional Logic Proofs G. Sivakumar Computer Science Department IIT Bombay siva@iitb.ac.in http://www.cse.iitb.ac.in/ siva Page 1 of 12 Fri, Jan 03, 2003 Plan for Lecture 03 Axioms

More information

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14 0/0/4 Knowledge based agents Logical Agents Agents need to be able to: Store information about their environment Update and reason about that information Russell and Norvig, chapter 7 Knowledge based agents

More information

Intelligent Agents. Pınar Yolum Utrecht University

Intelligent Agents. Pınar Yolum Utrecht University Intelligent Agents Pınar Yolum p.yolum@uu.nl Utrecht University Logical Agents (Based mostly on the course slides from http://aima.cs.berkeley.edu/) Outline Knowledge-based agents Wumpus world Logic in

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

The Discrete EVent System specification (DEVS) formalism

The Discrete EVent System specification (DEVS) formalism The Discrete EVent System specification (DEVS) formalism Hans Vangheluwe The DEVS formalism was conceived by Zeigler [Zei84a, Zei84b] to provide a rigourous common basis for discrete-event modelling and

More information

A Proof-Theoretic Approach to Irrelevance: Richard E. Fikes. KSL, Stanford University. et al., 1994b].

A Proof-Theoretic Approach to Irrelevance: Richard E. Fikes. KSL, Stanford University. et al., 1994b]. A Proof-Theoretic Approach to Irrelevance: Foundations and Applications Alon Y. Levy AT&T Bell Laboratories Murray Hill, NJ, 7974 levy@research.att.com Richard E. Fikes KSL, Stanford University Palo Alto,

More information

Logical Agents. Chapter 7

Logical Agents. Chapter 7 Logical Agents Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

Kecerdasan Buatan M. Ali Fauzi

Kecerdasan Buatan M. Ali Fauzi Kecerdasan Buatan M. Ali Fauzi Artificial Intelligence M. Ali Fauzi Logical Agents M. Ali Fauzi In which we design agents that can form representations of the would, use a process of inference to derive

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

Logical agents. Chapter 7. Chapter 7 1

Logical agents. Chapter 7. Chapter 7 1 Logical agents Chapter 7 Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Non-elementary Lower Bound for Propositional Duration. Calculus. A. Rabinovich. Department of Computer Science. Tel Aviv University

Non-elementary Lower Bound for Propositional Duration. Calculus. A. Rabinovich. Department of Computer Science. Tel Aviv University Non-elementary Lower Bound for Propositional Duration Calculus A. Rabinovich Department of Computer Science Tel Aviv University Tel Aviv 69978, Israel 1 Introduction The Duration Calculus (DC) [5] is a

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

CT R-S: A Logic for Specifying Contracts in Semantic Web Services

CT R-S: A Logic for Specifying Contracts in Semantic Web Services CT R-S: A Logic for Specifying Contracts in Semantic Web Services Hasan Davulcu Department of CSE Arizona State University Box 875406, Tempe, AZ 85287-5406 hdavulcu@asu.edu Michael Kifer Department of

More information

Introduction to Artificial Intelligence. Logical Agents

Introduction to Artificial Intelligence. Logical Agents Introduction to Artificial Intelligence Logical Agents (Logic, Deduction, Knowledge Representation) Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Knowledge-based

More information

TDT4136 Logic and Reasoning Systems

TDT4136 Logic and Reasoning Systems TDT436 Logic and Reasoning Systems Chapter 7 - Logic gents Lester Solbakken solbakke@idi.ntnu.no Norwegian University of Science and Technology 06.09.0 Lester Solbakken TDT436 Logic and Reasoning Systems

More information

Deliberative Agents Knowledge Representation I. Deliberative Agents

Deliberative Agents Knowledge Representation I. Deliberative Agents Deliberative Agents Knowledge Representation I Vasant Honavar Bioinformatics and Computational Biology Program Center for Computational Intelligence, Learning, & Discovery honavar@cs.iastate.edu www.cs.iastate.edu/~honavar/

More information

The Logic of Compound Statements cont.

The Logic of Compound Statements cont. The Logic of Compound Statements cont. CSE 215, Computer Science 1, Fall 2011 Stony Brook University http://www.cs.stonybrook.edu/~cse215 Refresh from last time: Logical Equivalences Commutativity of :

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus

On Controllability and Normality of Discrete Event. Dynamical Systems. Ratnesh Kumar Vijay Garg Steven I. Marcus On Controllability and Normality of Discrete Event Dynamical Systems Ratnesh Kumar Vijay Garg Steven I. Marcus Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

More information

for Propositional Temporal Logic with Since and Until Y. S. Ramakrishna, L. E. Moser, L. K. Dillon, P. M. Melliar-Smith, G. Kutty

for Propositional Temporal Logic with Since and Until Y. S. Ramakrishna, L. E. Moser, L. K. Dillon, P. M. Melliar-Smith, G. Kutty An Automata-Theoretic Decision Procedure for Propositional Temporal Logic with Since and Until Y. S. Ramakrishna, L. E. Moser, L. K. Dillon, P. M. Melliar-Smith, G. Kutty Department of Electrical and Computer

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Maren Bennewitz, and Marco Ragni Albert-Ludwigs-Universität Freiburg Contents 1 Agents

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 17, 2016

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 10, 5/9/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Logical Agents Chapter 7

More information

Representing and Querying Temporal Workflow Schemas

Representing and Querying Temporal Workflow Schemas Sixth Int. Conf. on IFSs, Varna, 13-14 Sept. 2002 NIFS 8 (2002), 3, 57-65 Representing and Querying Temporal Workflow Schemas Hathal Al-Roki 1, Panagiotis Chountas 2, Ilias Petrounias 1, Vassilis Kodogiannis

More information

Logical Agents. Outline

Logical Agents. Outline Logical Agents *(Chapter 7 (Russel & Norvig, 2004)) Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability

More information

Logical Agents. Outline

Logical Agents. Outline ogical gents Chapter 6, Ie Chapter 7 Outline Knowledge-based agents Wumpus world ogic in general models and entailment ropositional (oolean) logic Equivalence, validity, satisfiability Inference rules

More information

Logical agents. Chapter 7. Chapter 7 1

Logical agents. Chapter 7. Chapter 7 1 Logical agents Chapter 7 Chapter 7 1 Outline Knowledge-based agents Logic in general models and entailment Propositional (oolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 rtificial Intelligence Spring 2018 Logical gents Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart Russell

More information

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World School of Informatics, University of Edinburgh 26/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Outline Knowledge-based

More information

Logic for Computer Science - Week 4 Natural Deduction

Logic for Computer Science - Week 4 Natural Deduction Logic for Computer Science - Week 4 Natural Deduction 1 Introduction In the previous lecture we have discussed some important notions about the semantics of propositional logic. 1. the truth value of a

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Last update: March 4, Logical agents. CMSC 421: Chapter 7. CMSC 421: Chapter 7 1

Last update: March 4, Logical agents. CMSC 421: Chapter 7. CMSC 421: Chapter 7 1 Last update: March 4, 00 Logical agents CMSC 4: Chapter 7 CMSC 4: Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general models and entailment Propositional (oolean) logic Equivalence,

More information

Propositional Calculus - Soundness & Completeness of H

Propositional Calculus - Soundness & Completeness of H Propositional Calculus - Soundness & Completeness of H Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Review Goal of logic To check whether given a formula Á is valid To prove a given formula Á `

More information

CS 347 Distributed Databases and Transaction Processing Notes03: Query Processing

CS 347 Distributed Databases and Transaction Processing Notes03: Query Processing CS 347 Distributed Databases and Transaction Processing Notes03: Query Processing Hector Garcia-Molina Zoltan Gyongyi CS 347 Notes 03 1 Query Processing! Decomposition! Localization! Optimization CS 347

More information

Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics

Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics Department of Computer Science and Engineering University of Texas at Arlington Arlington, TX 76019 Event Operators: Formalization, Algorithms, and Implementation Using Interval- Based Semantics Raman

More information

Class Assignment Strategies

Class Assignment Strategies Class Assignment Strategies ì Team- A'ack: Team a'ack ì Individualis2c: Search for possible ì Poli2cal: look at others and make decision based on who is winning, who is loosing, and conversa;on ì Emo2on

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Please evaluate this course on Axess. Your comments really do make a difference. Announcements Problem Set 8 due tomorrow at 12:50PM sharp with one late day. Problem Set 9 out,

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

7. Logical Agents. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Knowledge base. Models and Planning. Russell & Norvig, Chapter 7.

7. Logical Agents. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Knowledge base. Models and Planning. Russell & Norvig, Chapter 7. COMP944/984/34 6s Logic COMP944/ 984/ 34: rtificial Intelligence 7. Logical gents Outline Knowledge-based agents Wumpus world Russell & Norvig, Chapter 7. Logic in general models and entailment Propositional

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim INF5390 Kunstig intelligens Logical Agents Roar Fjellheim Outline Knowledge-based agents The Wumpus world Knowledge representation Logical reasoning Propositional logic Wumpus agent Summary AIMA Chapter

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Propositional Logic Marc Toussaint University of Stuttgart Winter 2016/17 (slides based on Stuart Russell s AI course) Motivation: Most students will have learnt about propositional

More information

Introduction to Arti Intelligence

Introduction to Arti Intelligence Introduction to Arti Intelligence cial Lecture 4: Constraint satisfaction problems 1 / 48 Constraint satisfaction problems: Today Exploiting the representation of a state to accelerate search. Backtracking.

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) You will be expected to know Basic definitions Inference, derive, sound, complete Conjunctive Normal Form (CNF) Convert a Boolean formula to CNF Do a short

More information

A Logically Complete Reasoning Maintenance System Based on a Logical Constraint Solver

A Logically Complete Reasoning Maintenance System Based on a Logical Constraint Solver A Logically Complete Reasoning Maintenance System Based on a Logical Constraint Solver J.C. Madre and O. Coudert Bull Corporate Research Center Rue Jean Jaurès 78340 Les Clayes-sous-bois FRANCE Abstract

More information

Propositional Logic: Methods of Proof. Chapter 7, Part II

Propositional Logic: Methods of Proof. Chapter 7, Part II Propositional Logic: Methods of Proof Chapter 7, Part II Inference in Formal Symbol Systems: Ontology, Representation, ti Inference Formal Symbol Systems Symbols correspond to things/ideas in the world

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: RTIFICIL INTELLIGENCE PREDICTE LOGICS 11/8/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary of last day: Logical gents: The can

More information

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR Last time Expert Systems and Ontologies oday Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof theory Natural

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

SPECIFICATION MODELS. Chapter 3. Overview. Introducing Hierarchy. StateCharts

SPECIFICATION MODELS. Chapter 3. Overview. Introducing Hierarchy. StateCharts hapter SPEIFITION MOELS Overview Stateharts Hierarchy oncurrency Events and ctions Simulation Semantics Non-eterminism and onflicts Petri Nets Notation oncurrency Petri Net Languages ehavioral Properties

More information

A Game Logic for Workflows of Non-cooperating Services Λ

A Game Logic for Workflows of Non-cooperating Services Λ A Game Logic for Workflows of Non-cooperating Services Λ Hasan Davulcu Michael Kifer I.V. Ramakrishnan Department of Computer Science Stony Brook University Stony Brook, NY 11794 fdavulcu, kifer, ramg@cs.stonybrook.edu

More information

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I 1 Knowledge-based Agents Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Logic. proof and truth syntacs and semantics. Peter Antal

Logic. proof and truth syntacs and semantics. Peter Antal Logic proof and truth syntacs and semantics Peter Antal antal@mit.bme.hu 10/9/2015 1 Knowledge-based agents Wumpus world Logic in general Syntacs transformational grammars Semantics Truth, meaning, models

More information

Probabilistic Guarded Commands Mechanized in HOL

Probabilistic Guarded Commands Mechanized in HOL Probabilistic Guarded Commands Mechanized in HOL Joe Hurd joe.hurd@comlab.ox.ac.uk Oxford University Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) First Lecture Today (Tue 21 Jun) Read Chapters 1 and 2 Second Lecture Today (Tue 21 Jun) Read Chapter 7.1-7.4 Next Lecture (Thu 23 Jun) Read Chapters 7.5 (optional:

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

Wojciech Penczek. Polish Academy of Sciences, Warsaw, Poland. and. Institute of Informatics, Siedlce, Poland.

Wojciech Penczek. Polish Academy of Sciences, Warsaw, Poland. and. Institute of Informatics, Siedlce, Poland. A local approach to modal logic for multi-agent systems? Wojciech Penczek 1 Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland and 2 Akademia Podlaska Institute of Informatics, Siedlce,

More information

Knowledge Representation. Propositional logic

Knowledge Representation. Propositional logic CS 2710 Foundations of AI Lecture 10 Knowledge Representation. Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Knowledge-based agent Knowledge base Inference engine Knowledge

More information

2 On TLA TLA is a simple linear-time temporal logic with a relatively complete set of proof rules for reasoning about the safety (i.e. \what the syste

2 On TLA TLA is a simple linear-time temporal logic with a relatively complete set of proof rules for reasoning about the safety (i.e. \what the syste Reasoning about mobile processes in an ambient using the temporal logic of actions TATJANA KAPUS Faculty of Electrical Engineering and Computer Science University of Maribor Smetanova ul. 17, SI-2000 Maribor

More information

Compositionality in SLD-derivations and their abstractions Marco Comini, Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica, Universita di

Compositionality in SLD-derivations and their abstractions Marco Comini, Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica, Universita di Compositionality in SLD-derivations and their abstractions Marco Comini Giorgio Levi and Maria Chiara Meo Dipartimento di Informatica Universita di Pisa Corso Italia 40 56125 Pisa Italy fcomini levi meog@di.unipi.it

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Logic Part II: Intuitionistic Logic and Natural Deduction

Logic Part II: Intuitionistic Logic and Natural Deduction Yesterday Remember yesterday? classical logic: reasoning about truth of formulas propositional logic: atomic sentences, composed by connectives validity and satisability can be decided by truth tables

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 8: Logical Agents - I 2/8/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

More information

The TLA + proof system

The TLA + proof system The TLA + proof system Stephan Merz Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport INRIA Nancy & INRIA-MSR Joint Centre, France Amir Pnueli Memorial Symposium New York University, May 8, 2010 Stephan

More information

CS 380: ARTIFICIAL INTELLIGENCE PREDICATE LOGICS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE PREDICATE LOGICS. Santiago Ontañón CS 380: RTIFICIL INTELLIGENCE PREDICTE LOGICS Santiago Ontañón so367@drexeledu Summary of last day: Logical gents: The can reason from the knowledge they have They can make deductions from their perceptions,

More information

{},{a},{a,c} {},{c} {c,d}

{},{a},{a,c} {},{c} {c,d} Modular verication of Argos Programs Agathe Merceron 1 and G. Michele Pinna 2 1 Basser Department of Computer Science, University of Sydney Madsen Building F09, NSW 2006, Australia agathe@staff.cs.su.oz.au

More information

02 Propositional Logic

02 Propositional Logic SE 2F03 Fall 2005 02 Propositional Logic Instructor: W. M. Farmer Revised: 25 September 2005 1 What is Propositional Logic? Propositional logic is the study of the truth or falsehood of propositions or

More information

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5 rtificial Intelligence Topic 12 Logical Inference Reading: Russell and Norvig, Chapter 7, Section 5 c Cara MacNish. Includes material c S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical

More information

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS 1 Language There are several propositional languages that are routinely called classical propositional logic languages. It is due to the functional dependency

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

Logical Agents. September 14, 2004

Logical Agents. September 14, 2004 Logical Agents September 14, 2004 The aim of AI is to develop intelligent agents that can reason about actions and their effects and about the environment, create plans to achieve a goal, execute the plans,

More information

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Set 6: Knowledge Representation: The Propositional Calculus Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Outline Representing knowledge using logic Agent that reason logically A knowledge based agent Representing

More information

Towards a Formal Language for Electronic Contracts

Towards a Formal Language for Electronic Contracts Towards a Formal Language for Electronic Contracts Gerardo Schneider gerardo@i.uio.no Joint work with Cristian Prisacariu (cristi@i.uio.no) Department of Informatics, University of Oslo University of Edinburgh

More information

Logical Agent & Propositional Logic

Logical Agent & Propositional Logic Logical Agent & Propositional Logic Berlin Chen 2005 References: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 7 2. S. Russell s teaching materials Introduction The representation

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (previous lecture, Part I) Chapter 7.5 (this lecture, Part II) (optional: 7.6-7.8)

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Proof Methods for Propositional Logic

Proof Methods for Propositional Logic Proof Methods for Propositional Logic Logical equivalence Two sentences are logically equivalent iff they are true in the same models: α ß iff α β and β α Russell and Norvig Chapter 7 CS440 Fall 2015 1

More information

Business Process Regulatory Compliance is Hard

Business Process Regulatory Compliance is Hard IEEE TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X X 1 Business Process Regulatory Compliance is Hard Silvano Colombo Tosatto, Guido Governatori and Pierre Kelsen Abstract Verifying whether a business

More information

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Fault Tree Analysis Obscurities and Open Issues Content What are Events? Examples for Problematic Event Semantics Inhibit, Enabler / Conditioning

More information

Diagram-based Formalisms for the Verication of. Reactive Systems. Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas E.

Diagram-based Formalisms for the Verication of. Reactive Systems. Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas E. In CADE-1 Workshop on Visual Reasoning, New Brunswick, NJ, July 1996. Diagram-based Formalisms for the Verication of Reactive Systems Anca Browne, Luca de Alfaro, Zohar Manna, Henny B. Sipma and Tomas

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 & Clocks, Clocks, and the Ordering of Events in a Distributed System. L. Lamport, Communications of the ACM, 1978 Notes 15: & Clocks CS 347 Notes

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

Logical Agents: Propositional Logic. Chapter 7

Logical Agents: Propositional Logic. Chapter 7 Logical Agents: Propositional Logic Chapter 7 Outline Topics: Knowledge-based agents Example domain: The Wumpus World Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity,

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information