Decomposability of Global Tasks for Multi-agent Systems

Size: px
Start display at page:

Download "Decomposability of Global Tasks for Multi-agent Systems"

Transcription

1 49th IEEE Cofrc o Dcisio Cotrol Dcmbr 15-17, 2010 Hilto Atlt Hotl, Atlt, GA, USA Dcomposbility of Globl Tsks for Multi-gt Systms Mohmm Krimii Hi Li Abstrct Multi-gt systm is rpily vlopig rsrch r with strog support from both civili militry pplictios. O of th sstil problms i multi-gt systm rsrch is how to sig locl itrctio ruls cooritio pricipls mog gts such tht th whol systm chivs sir globl bhviors. To tckl this problm, ivi--coqur pproch ws propos i [1], th bsic i is to compos th rqust globl spcifictio ito subtsks for iiviul gts i such wy tht th fulfillmt of ths subtsks by ch iiviul gt shoul l to th stisfctio of th globl spcifictio. Th, th sig rucs to chivig th ssig subtsks for corrspoig iiviul gts. I [1], it ws show tht ot ll globl tsks c b compos, cssry sufficit coitio o th composbility of tsk utomto btw two gts ws prst. For mor th two gts, w th propos hirrchicl lgorithm s sufficit coitio for composbility. This ppr ims to xt th cssry sufficit composbility coitios for y rbitrry fiit umbr of cooprtiv gts. A w cssry sufficit coitio o composbility of tsk utomto is propos, hr. Svrl xmpls r provi to illustrt th compositio schm coitios. I. INTRODUCTION Multi-gt systm is rpily vlopig crossiscipliry rsrch r tht hs b obtiig strog support from both civili militry pplictios such s coorit survillc, trgt cquisitio, rcoissc, urwtr or spc xplortio, ssmblig trsporttio rpi mrgcy rspos [2]. It is kow tht sophistict collctiv bhviors c mrg through th cooprtio of ruimtry gts with simpl locl itrctio ruls. But, most stuis i th multi-gt systm litrtur hv b focus o bottom-up pprochs [3], mily through simultio, mpiricl huristic pprochs [4]- [7]. Th pst svrl yrs hv s sigifict rsrch fforts i th thorticl lysis o multi-gt systms usig grph thory [8] symbolic cotrol of swrmig systms [9], [10]. Howvr, th cooprtiv cotrol of multigt systm is still i its ifcy with sigifict prcticl thorticl chllgs tht r ifficult to b formult tckl by th tritiol mthos [9], [11]. O of th sstil problms i cooprtiv cotrol of multi-gt systms is how to sig th locl itrctio ruls cooritio pricipls mog gts such tht th whol systm chivs sir globl spcifictio. To tckl this chllg, i [1], w propos ivi-coqur pproch by composig th rqust globl M. Krimii H. Li r both from th Dprtmt of Elctricl Computr Egirig, Ntiol Uivrsity of Sigpor, Sigpor. Corrspoig uthor, H. Li llh@us.u.sg spcifictio ito subtsks for iiviul gts such tht th fulfillmt of ths subtsks by ch iiviul gt will l to th stisfctio of th globl spcifictio. Th, th sig rucs to chivig th ssig subtsks for corrspoig iiviul gts. I orr to pursu th i, svrl qustios to b swr, such s how to scrib th globl spcifictio subtsks i succict forml wy, how to compos th globl spcifictio, whthr it is lwys possibl to compos, if ot wht is th coitio for composbility. This ppr cotius th fforts i our prvious work [1] ims to swr ths qustios pc th wy towrs forml sig mtho for multi-gt systms. Hr, th tsk for group of itlligt gts r rprst s utomto u to its xprssibility similrity to our hum logicl comms [12], [13]. Th, th compositio of globl tsk ctully bcoms th utomto compositio problm tht hs b stui i th computr scic litrtur. Roughly spkig, two iffrt clsss of problms hv b stui so fr. Th first problm is to sig th vt istributio so s to mk th utomto composbl, which is typiclly stui i th cotxt of cocurrt systms. For xmpl, [14] chrctriz th coitios for compositio of sychroous utomt i th ss of isomorphism bs o th mximl cliqus of th pc grph. Thir chrctriztio of ipcy rlis o forwr imo (FD) ipt imo (ID) ruls, rprstig th ituitiv otio of ipt orr ipt choic of ipt vts (privt vts from iffrt locl vt sts). Our composbility coitios lso iclu two coitios rssig th otio o ipc (w will cll thm DC1 DC2). Howvr, i DC1 DC2, lthough ipt vts strtig from o stt r llow to occur i y orr, iffrt occurrig orrs my l to iffrt stts. This rlxtio llows us to obti th compositio i th ss of bisimultio rthr th isomorphism i [14]. Grlly, som utomt my stisfy DC1 DC2, but ot cssrily FD ID. O th othr h, th sco problm ssums tht th istributio of th globl vt st is giv th gol is to fi coitios o th utomto such tht it is composbl. This is usully cll sythsis moulo problm [13], bisimultio sythsis moulo for globl utomto ws rss i [15] by itroucig cssry sufficit coitio for utomto compositio bs o lgug prouct of th utomto trmiism of its bisimultio quotit. Obtiig th bisimultio quotit, howvr, is grlly ifficult tsk. This motivts us to vlop w /10/$ IEEE 4192

2 cssry sufficit coitio cosir mor grl css, which my occur i multi-gt systms. Followig [1], w ssum tht th globl sir bhvior c b rprst s trmiistic utomto, whos vt st is th uio of th collctio of locl vt sts for ch gt. Ur this ssumptio, th locl tsk utomto for iiviul gt c b obti through turl projctio of th globl tsk utomto ito its corrspoig locl vt st. Ufortutly, it ws show i [1] tht ot ll globl tsk utomto c b compos i this wy, which ms tht th compositio of th obti sub-tsk utomt is ot quivlt to th globl tsk utomto. Formlly, th compositio is through clssicl prlll compositio, whil th quivlc is i th ss of bisimultio. Furthrmor, i [1] cssry sufficit coitio o th composbility of tsk utomto btw two gts ws propos. For mor th two gts hirrchicl lgorithm ws prst tht ws show to b oly sufficit coitio. I this ppr, w im to furthr xt th composbility rsult to y rbitrry fiit umbr of cooprtiv gts, s cssry sufficit coitio. Th rst of th ppr is orgiz s follows. Prlimiry rsults, ottios, fiitios problm formultio r rprst i Sctio II. Sctio III itroucs th cssry sufficit coitio for compositio of utomto with rspct to prlll compositio rbitrry fiit umbr of vt sts. Filly, th ppr coclus i Sctio IV with rmrks iscussios. II. PROBLEM FORMULATION W first rcll th fiitio of utomto [16]. Dfiitio 1: (Automto) A utomto is tupl A = (Q, q 0, E, δ) cosistig of st of stts Q; th iitil stt q 0 Q; st of vts E tht cuss trsitios btw th stts, trsitio rltio δ Q E Q such tht (q,, q ) δ if oly if δ(q, ) = q (or q q ). Th trsitio rltio c b xt to fiit strig of vts, S E, whr E sts for Kl Closur of E (th st of ll fiit strigs ovr lmts of E), s δ(q, ε) = q, δ(q, S) = δ(δ(q, S), ) for S E E. W focus o trmiistic tsk utomt tht r simplr to b chrctriz, covr wi clss of spcifictios. Th qulittiv bhvior of trmiistic systm is scrib by th st of ll possibl squcs of vts strtig from th iitil stt. Ech such squc is cll strig, collctio of strigs rprsts th lgug grt by th utomto, ot by L(A). Th xistc of trsitio ovr strig S E from stt q Q is ot by δ(q, S)!. Cosirig lgug L, by δ(q, L)! w m tht ω L : δ(q, ω)!. Nxt, th succssiv vt pir jct vt pir for utomto r fi s follows. Dfiitio 2: (Succssiv vt pir) Two vts r cll succssiv vts if q Q : δ(q, )! δ(δ(q, ), )! or δ(q, )! δ(δ(q, ), )!. Dfiitio 3: (Ajct vt pir) Two vts r cll jct vts if q Q : δ(q, )! δ(q, )!. To compr th tsk utomto th compositio of its compos utomt, w us th simultio rltio [12], fi s follows. ( Dfiitio 4: (Simultio) Giv two utomt A i = Qi, qi 0, E, δ ) i, i = 1, 2, rltio R Q1 Q 2 is si to b simultio rltio from A 1 to A 2 (ot s A 1 A 2 ) if 1) ( q1, 0 q2) 0 R 2) (q 1, q 2 ) R, δ 1 (q 1, ) = q 1, th q 2 Q 2 such tht δ 2 (q 2, ) = q 2, (q 1, q 2 ) R. A mutul symmtric similrity btw A 1 A 2 is cll bisimilrity ot s A 1 = A2. Two utomt r (bi)similr wh th (bi)simultio rltio is fi ovr ll (Q 1 Q 2 ) Q 1, for ll E. I this ppr, w ssum tht th tsk utomto A S th sts of locl vts E i r ll giv. It is furthr ssum tht A is trmiistic utomto whil its vt st E is giv s th uio of locl vt sts, i.., E = i E i. Th problm is to chck whthr th tsk utomto A S c b compos ito sub-utomt A Si o th locl vt sts E i, rspctivly, such tht th collctio of ths subutomt A Si is quivlt to A S wh put thm togthr. Th quivlc is i th ss of bisimilrity s fi bov, whil th clustrig procss for ths sub-utomt A Si coul b i th usul ss of prlll compositio s fi blow. Prlll compositio [16] is commo wy to mol th itrctios btw utomt, is mploy hr to rprst th globl bhvior of tm of cooprtiv multi-gts. ( Dfiitio 5: (Prlll Compositio) [16] Lt A i = Qi, qi 0, E ) i, δ i, i = 1, 2 b utomt. Th prlll compositio (sychroous compositio) of A 1 A 2 is th utomto A 1 A 2 = (Q, q 0, E, δ), fi s Q = Q 1 Q 2 ; q 0 = (q1 0, q0 2 ); E = E 1 E 2 ; (q 1, q 2 ) Q, E { : δ((q 1, q 2 ), ) = δ1 (q (δ 1 (q 1, ), δ 2 (q 2, )), if 1, )!, δ 2 (q 2, )! ; E 1 E 2 (δ 1 (q 1, ), q 2 ), if δ 1 (q 1, )!, E 1 \E 2 ; (q 1, δ 2 (q 2, )), if δ 2 (q 2, )!, E 2 \E 1 ; ufi, othrwis Th prlll compositio of A i, i = 1, 2,..., is cll prlll istribut systm, is fi bs o th ssocitivity proprty of prlll compositio [12] s A i = A 1... A = A 1 (A 2 ( (A 1 A ))). Nxt, lt us rcll th oprtio of turl projctio tht will b us ltr to obti th compos subtsk utomt. Dfiitio 6: (Nturl Projctio o Strig) Cosir globl vt st E its locl vt sts E i, i = 1, 2,...,, 4193

3 with E = E i. Th, th turl projctio p i : E Ei is iuctivly fi s p i (ε) = ε; { S E pi (S) if i loc();, E : p i (S) = p i (S) othrwis. Hr loc() = {i E i }. Th turl projctio is lso fi o utomt s P i (A S ) : A S A Si, whr, A Si r obti from A S by rplcig its vts tht r blog to E\E i by ε-movs, th, mrgig th ε-rlt stts. Th turl projctio is formlly fi o utomto s follows. Dfiitio 7: (Nturl Projctio o Automto) Cosir utomto A S = (Q, q 0, E, δ) locl vt sts E i, i = 1, 2,...,, with E = E i. Th, P i (A S ) = (Q i = Q / Ei, [q 0 ] Ei, E i, δ i ), with δ i ([q] Ei, ) = [q ] Ei if thr r stts q 1 q 1 such tht q 1 Ei q, q 1 Ei q, δ(q 1, ) = q 1. Hr, [q] E i = [q] i ots th quivlc clss of q fi o E i, whr, th rltio E i is th lst quivlc rltio o th st Q of stts such tht δ(q, ) = q i / loc() q Ei q. Th followig xmpl lborts th cocpt of turl projctio o giv utomto. Exmpl: Cosir utomto A S : 4 b with th vt st E = E 1 E 2 locl vt sts E 1 = {, b, }, E 2 = {, b,, 4 }. Th turl projctios of A S ito E 1 is obti s P 1 (A S ): b ˇ by rplcig, 4 E\E 1 with ε mrgig th ε-rlt stts. Similrly, th projctio P 2 (A S ) is obti s P 2 (A S ): 2 4 b. To ivstigt th itrctios of trsitios i two utomt, prticulrly i P 1 (A S ) P 2 (A S ), th itrlvig of strigs is fi s follows. Dfiitio 8: Cosir two squcs q 1 q q q 1 q 2... q, th itrlvig of thir corrspoig strigs, S =... S = m, is ot by S S, fi s S S = L{PA(q 1, S)PA (q 1, S )}, whr, PA(q 1, S) = ({q 1,..., q }, {q 1 }, {,..., },δ PA ) with δ PA (q i, i ) = q i+1, i = 1,..., 1, δ PA is fi i similr wy. Bs o ths fiitios, w my ow formlly fi th composbility of utomto with rspct to prlll compositio turl projctios s follows. Dfiitio 9: (Automto composbility) A tsk utomto A S with th vt st E locl vt sts E i, i = 1,...,, E = E i, is si to b composbl with rspct to prlll compositio turl projctios if P i (A S ) = A S. m It is sy to show by simpl coutr xmpls (s Exmpls 2-5) tht ot ll utomt r composbl with rspct to prlll compositio turl projctios. Th, turl follow-up qustio is wht mks utomto composbl. It c b formlly stt s follows. Problm 1: Giv trmiistic tsk utomto A S locl vt sts E i, i = 1,,, wht is th cssry sufficit coitio tht A S is composbl with rspct to prlll compositio turl projctios P i : A S P i (A S ), i = 1,,, such tht P i (A S ) = A S? III. DECOMPOSABILITY OF TASK AUTOMATON A. Dcomposbility Coitio for 2 gts First, lt us rcll th mi rsult i [1] for th composbility of utomto A S for two cooprtiv gts, to b us s bsis for th mor grl cs of rbitrry fiit umbr of gts. Lmm 1: (Thorm 1 i [1])) A trmiistic utomto A S = (Q, q 0, E = E 1 E 2, δ) is composbl with rspct to prlll compositio turl projctios P i : A S P i (A S ), i = 1, 2, such tht A S = P1 (A S )P 2 (A S ) = (Z, z 0, E, δ ) if oly if it stisfis th followig composbility coitios (DC): E 1 \E 2, E 2 \E 1, q Q, S E, DC1: [δ(q, )! δ(q, )!] [δ(q, )! δ(q, )!]; DC2: δ(q, S)! δ(q, S)!, DC3: S, S E, shrig th sm first pprig commo vt E 1 E 2, S S, q Q: δ(q, S)! δ(q, S )! δ(q, p 1 (S) p 2 (S ))! δ(q, p 1 (S ) p 2 (S))!; DC4: i {1, 2}, x, x 1, x 2 Q i, x 1 x 2, E i, t E i, δ i(x, ) = x 1, δ i (x, ) = x 2 : δ i (x 1, t)! δ i (x 2, t)!. Rmrk 1: Ituitivly, th composbility coitio DC1 ms tht for y jct pir of privt vts (, ) {(E 1 \E 2, E 2 \E 1 ), (E 2 \E 1, E 1 \E 2 )} (from iffrt privt vt sts), both orrs shoul b lgl from th sm stt, ulss thy r mit by commo strig. Whil DC1 rsss th cisio o jct vts, DC2 ls with th cisio o th orr of succssiv vts stts tht if y orr of pir of jct privt vts (, ) {(E 1 \E 2, E 2 \E 1 ), (E 2 \E 1, E 1 \E 2 )} (from iffrt privt vt sts) is cssry coitio of occurrc of y strig S E, th th othr orr lso shoul b lgl for such occurrc (s Exmpl 3). Not tht, s spcil cs, S coul b ε. Th coitio DC3 ms tht if two strigs S S shr th sm first pprig commo vt, th y itrlvig of ths two strigs shoul b lgl i A S. This rquirmt is u to sychroiztio of projctios of ths strigs i P 1 (A S ) P 2 (A S ). Th lst coitio DC4, surs th symmtry of mutul simultio rltios btw A S P 1 (A S )P 2 (A S ). Giv th trmiism of A S, this symmtry is gurt wh ch locl tsk utomto bisimults trmiistic 4194

4 utomto, lig to th xistc trmiistic utomto tht is bisimilr to P 1 (A S )P 2 (A S ). If th simultio rltios r ot symmtric, th som of th squcs tht r llow i A S will b isbl i P 1 (A S )P 2 (A S ). Th followig svrl xmpls r rviw from [1] to illustrt th composbl ucomposbl utomt bs o th composbility coitios i Lmm 1. Exmpl: This xmpl shows utomto tht stisfis DC2, DC3 DC4, but ot DC1, lig to ucomposbility. Lt utomto A S to b with locl vt sts E 1 = { } E 2 = { }. Th prlll compositio of P 1 (A S ) : 1 P 2 (A S ) : 2 is P 1 (A S ) P 2 (A S ) : 1. Thrfor, A S is ot composbl, sic two jct vts E 1 \E 2 E 2 \E 1 o ot rspct DC1. O c obsrv tht, if i this xmpl E 1 \E 2 E 2 \E 1 wr sprt by commo vt E 1 E 2, th th utomto with locl vt sts E 1 = {, } E 2 = {, }, ws composbl. Exmpl 3: This xmpl shows utomto which rspcts DC1, DC3 DC4, but is ucomposbl u to violtio of DC2. Cosir utomt A S : 1 2 with E 1 = {, }, E 2 = {, }, lig to P 1 (A S )P 2 (A s ):. Th trsitio δ (z 0, )! i P 1 (A S )P 2 (A S ), but δ(q 0, )! i A S. If E 1 \E 2 E 2 \E 1 wr sprt by commo vt E 1 E 2, th th utomto 1 2 with locl vt sts E 1 = {, } E 2 = {, }, ws composbl. Also if both orrs of E 1 \E 2 E 2 \E 1 wr lgl for occurrc of, i.., if A S ws, th gi it ws composbl. Exmpl 4: This xmpl illustrts utomto tht stisfis DC1, DC2 DC4, but it is ucomposbl s it os ot fulfil DC3, sic w strigs ppr i P 1 (A S )P 2 (A S ) from th itrlvig of two strigs i P 1 (A S ) P 2 (A S ), but thy r ot lgl i A S. Cosir th tsk utomto A S : with E 1 = {, }, E 2 = {, }, lig to P 1 (A S ) =, P 2 (A S ) = P 1 (A S )P 2 (A S ) = 2 tht is ot bisimilr to A S sic its two lft brchs r wly grt, whil thy o ot ppr i A S, lthough both P 1 (A S ) P 2 (A S ) r trmiistic. Exmpl 5: This xmpl illustrts utomto tht stisfis DC1 DC2, DC3, but is ucomposbl s it os ot fulfil DC4. Cosir th tsk utomto A S : q 1 b q 2 q 3 q 0 q 4 with E 1 = {, b, }, E 2 = {, b}, lig to P 1 (A S ): x 1 b x 2 x 3, x 0 P 2 (A S ): x 4 b y 1 y 2, y 0 y 3 P 1 (A S )P 2 (A S ): z 1 b z 2 z 3 z 0 z 5 z 4 which is ot bisimilr to A S. This tsk utomto A S stisfis DC1 DC2 s cotis o succssiv/jct trsitios fi o iffrt locl vt sts. It os stisfis DC3 sic y strig i T = {p 1 (S) p 2 (S ), p 1 (S ) p 2 (S)} (S S r th top bottom strigs i A S shr th first pprig commo vt E 1 E 2 ), pprs i A S. But A S os ot fulfil DC4 sic thr os ot xist trmiistic utomto tht bisimults P 2 (A S ). This rsults i th xistc of trsitio o strig from z 0 to z 5 tht stops i P 1 (A S )P 2 (A S ), whrs, lthough trsits from q 0 i A S, it os ot stop ftrwrs. This illustrt issymmtry i simultio rltios btw A S P 1 (A S )P 2 (A S ). Not tht A S P 1 (A S )P 2 (A S ) with th simultio rltio R 1 ovr ll vts i E, from ll stts i Q ito som stts i Z, s R 1 = {(q 0, z 0 ), (q 1, z 1 ), (q 2, z 2 ), (q 3, z 3 ), (q 4, z 4 )}. Morovr, P 1 (A S )P 2 (A S ) A S with th simultio rltio R 2 ovr ll vts i E, from ll stts i Z ito som stts i Q, s R 2 = {(z 0, q 0 ), (z 1, q 1 ), (z 2, q 2 ), (z 3, q 3 ), (z 4, q 4 ), (z 5, q 2 )}. Thrfor, lthough A S P 1 (A S )P 2 (A S ) P 1 (A S )P 2 (A S ) A S, P 1 (A S )P 2 (A S ) A S, sic (z 5, q 2 ) R 2, whrs (q 2, z 5 ) / R 1. If similr to P 1 (A S ), 4195

5 P 2 (A S ) lso h trmiistic bisimilr utomto, th for stoppig of strig i P 1 (A S )P 2 (A S ), thr ws stt i Q rchbl from q 0 by stoppig thr, th w h q Q, z Z : (q, z) R 1 (z, q) R 2 P 1 (A S )P 2 (A S ) = A S. B. Dcomposbility Coitio for gts I prctic, multi-gt systms r typiclly compris of my iiviul gts tht work s tm. Th propos procur of compositio c b grliz for mor th two gts, cosirig y -tupl of succssiv/jct privt vts from iffrt privt vt sts. Howvr, this pproch bcoms rpily complx s th umbr of gts icrss, s it shoul chck! possibilitis for th orr of ths vts. To tckl this problm o wy is to us hirrchicl compositio mtho to hv oly two iiviul vt sts t tim for prtitioig: locl vt st; th st of th rst of locl vt sts. I ch stp, th lgorithm sks ths two sts such tht thy stisfy th composbility coitios. This lgorithm, howvr, ps strogly o th orr of th vt sts tht w choos for compositio, s it is lbort i th followig xmpl. Exmpl 6: Th utomt A S : with E = E 1 E 2 E 3, E 1 = {, }, E 2 = {, b, }, E 3 = {b, 3 }, P 1 (A S ): 1, P 2 (A S ) = 2 b P 3 (A S ) = b 3, is composbl s A s = P1 (A S )P 2 (A S )P 3 (A S ) = P 1 (A S )(P 2 (A S )P 3 (A S )) = P 3 (A S )(P 1 (A S )P 2 (A S )) = P 2 (A S )(P 1 (A S )P 3 (A S )). I this xmpl, P E2 E 3 (A S ) = P2 (A S )P 3 (A S ) P E1 E 2 (A S ) = P1 (A S )P 2 (A S ), but P E1 E 3 (A S ) P 1 (A S )P 3 (A S ). This ms tht whil choosig P 1 (A S ) or P 3 (A S ) s th first st llows th hirrchicl lgorithm to procs up to A s = P1 (A S )P 2 (A S )P 3 (A S ), choosig P 2 (A S ) will stuck th lgorithm i th sco stp s A s = P2 (A S )P E1 E 3 (A S ), but P E1 E 3 (A S ) P 1 (A S )P 3 (A S ). Thrfor, th lgorithm ps o th orr of slctios. Nxt, s illustrt i th followig xmpl, th bov hirrchicl compositio mtho is oly sufficit. Exmpl 7: Th utomt A S : b 3 c 5 2 b 3 c 5 with E = E 1 E 2 E 3, E 1 = {, c,,, 5 }, E 2 = {, b,, }, E 3 = {b, c, 3 }, P 1 (A S ): b 3 b 3 c 5 c P 2 (A S ) = 2 b P 3 (A S ) = b 3 c, is composbl s A s = P1 (A S )P 2 (A S )P 3 (A S ). Howvr, P E2 E 3 (A S ) P 2 (A S )P 3 (A S ), P E1 E 2 (A S ) P 1 (A S )P 2 (A S ) P E1 E 3 (A S ) P 1 (A S )P 3 (A S ). This ms tht lthough A S is composbl with rspct to P 1 (A S ), P 2 (A S ) P 3 (A S ), choosig y of locl vt sts E 1, E 2 E 3 psss th first stg of hirrchicl compositio, but th lgorithm will stuck t th sco stp. Thrfor, it woul b vry vtgous if w c fi cssry sufficit coitio for composbility of trmiistic utomto with rspct to rbitrry fiit umbr of locl vt sts. Th mtho woul b ipt of th orr of th locl vt sts shoul b bl to chck th composbility coitio by irct ivstigtio. I th followig, s th mi rsult, w propos such cssry sufficit coitio for tsk utomto compositio for rbitrry fiit umbr of gts. ( Thorm 1: A trmiistic ) utomto A S = Q, q 0, E = E i, δ is composbl with rspct to prlll compositio turl projctios P i : A S P i (A S ), i = 1,..., such tht A S = 5, P i (A S ) if oly if A S stisfis th followig composbility coitios (DC):, E, q Q, S E, E i {E 1,..., E },{, } E i : DC1: [δ(q, )! δ(q, )!] [δ(q, )! δ(q, )!]; DC2: δ (q, S)! δ (q, S)!; DC3: δ(q 0, p i (S i ))! for S i L(A S ), whr, L(A S ) L (A S ) is th lrgst subst of L (A S ) such tht S L(A S ) S L (A S ), E i, E j {E 1,..., E }, i j, p Ei E j (S) p Ei E j (S ) strt with th sm vt, DC4: i {1, 2}, x, x 1, x 2 Q i, x 1 x 2, E i, t Ei, δ i(x, ) = x 1, δ i (x, ) = x 2 : δ i (x 1, t)! δ i (x 2, t)!. Proof: I orr for A S = P i (A S ), from th fiitio of bisimultio, it is rquir to hv A S P i (A S ); P i (A S ) A S, th simultio rltios r symmtric. Ths rquirmts r provi by th followig thr lmms. Du to limittio i spc, th proofs for ths lmms r omitt from hr, will b provi i th xt vrsio of this rsult. Firstly, i grl, P i (A S ) lwys simults A S. ( Lmm 2: For ) trmiistic utomto A S = Q, q 0, E = E i, δ turl projctios 4196 P i : A S A S P i (A S ). P i (A S ), i = 1,...,, it lwys hols tht

6 This lmm shows tht, i grl, A S. Th similrity of P i (A S ) simults P i (A S ) to A S, howvr, is ot lwys tru (s Exmpls 2 3), s som coitios s stt i th followig lmm. ( Lmm 3: Cosir ) trmiistic utomto A S = Q, q 0, E = E i, δ turl projctios P i : A S P i (A S ), i = 1,...,. Th, DC1, DC2 DC3 hol tru for A S. P i (A S ) A S if oly if Nxt, w to show tht th two simultio rltios R 1 (for A S P i (A S )) R 2 (for P i (A S ) A S ) fi by th bov two lmms r symmtric. Lmm 4: Cosir utomto A S = (Q, q 0, E = E i, δ) with turl projctios P i : A S P i (A S ), i = 1,...,. If A S is trmiistic, A S P i (A S ) with th simultio rltio R 1 P i (A S ) A S with th simultio rltio R 2, th R1 1 = R 2 (i.., q Q, z Z: (z, q) R 2 (q, z) R 1 ) if oly if DC4: i {1,..., }, x, x 1, x 2 Q i, x 1 x 2, E i, t Ei, δ i (x, ) = x 1, δ i (x, ) = x 2 : δ i (x 1, t)! δ i (x 2, t)!. Now, ccorig to Dfiitio 4, A S = P i (A S ) if oly if A S 2), P i (A S ) (tht is lwys tru u to Lmm P i (A S ) A S (tht it is tru if oly if DC1, DC2 DC3 r tru, ccorig to Lmm 3) th simultio rltios r symmtric, i.., R1 1 = R 2 (tht for trmiistic utomto A S, wh A S P i (A S ) with simultio rltio R 1 P i (A S ) A S with simultio rltio R 2, u to Lmm 4, R1 1 = R 2 hols tru if oly if DC4 is stisfi). Thrfor, A S = P i (A S ) if oly if DC1, DC2, DC3 DC4 r stisfi. Th composbility coitios i Thorm 1 r illustrt i th followig xmpl. Exmpl 8: Cosir th utomto i Exmpl 6. W ot th strigs o th bottom top brchs of A S s S 1 S 2, rspctivly. Sic {, } E 1, {, } E 2, {, b} E 2, {b, 3 } E 3, th DC1 DC2 r stisfi. Morovr, S 1, S 2 coti E 1 E 2, b E 2 E 3, whr pprs s th first vt i both p E1 E 2 (S 1 ) p E1 E 2 (S 2 ). Th, ccorig to DC3, followig ight itrlvig trsitios r chck: δ (q 0, p 1 (S i ) p 2 (S j ) p 3 (S k ))!, i {1, 2}, j {1, 2}, k {1, 2}, i.., DC3 is stisfi. Morovr, DC4 is lso stisfi s P 1 (A S ), P 2 (A S ) P 3 (A S ) r trmiistic, hc, A S is composbl. IV. CONCLUSION Th ppr propos forml mtho for utomto compositio, pplicbl i top-ow cooprtiv cotrol sig for multi-gt systms. For th clss of prlll istribut systms whos globl spcifictio is rprst s trmiistic utomto with giv vt istributio, w provi cssry sufficit coitio for composbility of utomto with rspct to prlll compositio turl projctios ito rbitrry fiit umbr of locl vt sts. Aothr rsrch qustio is tht wh tsk utomto is ot composbl, th how o c moify th vt istributio to mk th globl tsk utomto composbl. Aothr futur work c b ivstigtio of composbility ur vt filur, mly, ur wht coitios composbl tsk utomto prsrvs its composbility i spit of filur of som vts. REFERENCES [1] M. Krimii H. Li, Gurt Globl Prformc Through Locl Cooritios, Submitt to Automtic, [2] P. U. Lim L. M. Custio, Multi-Robot Systms, Book Sris Stuis i Computtiol Itlligc, Book Iovtios i Robot, Mobility Cotrol, Chptr 1, vol. 8, Sprigr Brli / Hilbrg, [3] V. Crspi, A. Glsty K. Lrm, Top-ow vs bottom-up mthoologis i multi-gt systm sig, Jourl: Autoomous Robots, Publishr: Sprigr Nthrls, vol. 24, o. 3, pp , April [4] C. Ryols, Flocks, hrs schools: A istribut bhviorl mol, Proc. of th4th ul cofrc o Computr Grphics, vol. 21, o. 4, July [5] M. G. Hichy, J. L. Rsh, W. F. Truszkowski, C. A. Rouff R. Strrit, Autoomous utoomic swrms, I Proc. Th005 Itrtiol Cof. o Softwr Egirig Rsrch Prctic (SERP 05), CSREA Prss, Ls Vgs, Nv, USA, pp , 27 Ju005. [6] W. F. Truszkowski, M. G. Hichy, J. L. Rsh C. A. Rouff, Autoomous utoomic systms: A prigm for futur spc xplortio missios, IEEE Trs. o Systms, M Cybrtics, Prt C, [7] C. A. Rouff, W. F. Truszkowski, J. L. Rsh M. G. Hichy, A survy of forml mthos for itlligt swrms, Tchicl Rport TM , NASA Gor Spc Flight Ctr, Grblt, Mryl, [8] A. Jbbi, J. Li A. S. Mors, Cooritio of groups of mobil utoomous gts usig rst ighbor ruls, IEEE Trsctio o Automttic Cotrol, vol. 48, o. 6, pp. 988C-1001, [9] C. Blt, A. Bicchi, M. Egrstt, E. Frzzoli, E. Klvis G. J. Ppps, Symbolic plig cotrol of robot motio, IEEE Robotics Automtio Mg., spcil issu o Gr Chllgs of Robotics, vol. 14, o. 1, pp , [10] M. Klotzr C. Blt, Tmporl logic plig cotrol of robotic swrms by hirrchicl bstrctios, IEEE Trs. o Robotics, vol. 23, o. 2, pp , [11] P. Tbu G. J. Ppps, Lir tim logic cotrol of iscrttim lir systms, IEEE Trs. Automt. Cotr., vol. 51, o. 12, pp , [12] C. G. Cssrs S. Lfortu, Itrouctio to Discrt Evt Systms, Sprigr, U.S.A, [13] M. Muku, From globl spcifictios to istribut implmttios, i B. Cillu, P. Drou, L. Lvgo (Es.), Sythsis Cotrol of Discrt Evt Systms, Kluwr, pp , [14] R. Mori, Dcompositios of sychroous systms, I CONCUR 98, LNCS 1466, pp , Sprigr, [15] I. Cstlli, M. Muku, P.S. Thigrj, Sythsizig istribut trsitio systms from globl spcifictio, I: Pu Rg, C., Rm, V., Rmujm, R. (s.) FSTTCS LNCS, vol. 1738, pp , Sprigr, Hilbrg, [16] R. Kumr V. K. Grg, Molig Cotrol of Logicl Discrt Evt Systms. Kluwr Acmic Publishrs, Bosto,

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

CHAPTER 5d. SIMULTANEOUS LINEAR EQUATIONS

CHAPTER 5d. SIMULTANEOUS LINEAR EQUATIONS CHAPTE 5. SIUTANEOUS INEA EQUATIONS A. J. Crk Schoo of Egirig Dprtmt of Civi Eviromt Egirig by Dr. Ibrhim A. Asskkf Sprig ENCE - Compttio thos i Civi Egirig II Dprtmt of Civi Eviromt Egirig Uivrsity of

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

Improved Performance of the MMSE Linear Equalizer in Turbo Equalization by the use of Extrinsic Feedback Information

Improved Performance of the MMSE Linear Equalizer in Turbo Equalization by the use of Extrinsic Feedback Information Improv Prformc of th MMS Lir qulizr i Turbo quliztio by th us of xtrisic Fbck Iformtio M.Y. Abul Gffr, H. Xu F. Tkwir Abstrct This ppr prsts grl structur for Miimum M Squr rror (MMS) qulizrs from which

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU Prictors of log tr post-trutic strss i othrs fthrs ftr chil s issio to PICU Colvill G, Boyls C, Gry S, Ross O, Mht R PICU, Southpto Grl Hospitl Rlvt Litrtur Post Trutic Strss Disorr DSM IV critri Trutic

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Content. Languages, Alphabets and Strings. Operations on Strings. a ab abba baba. aaabbbaaba b 5. Languages. A language is a set of strings

Content. Languages, Alphabets and Strings. Operations on Strings. a ab abba baba. aaabbbaaba b 5. Languages. A language is a set of strings CD5560 FABER Forml guges, Automt d Models of Computtio ecture Mälrdle Uiversity 006 Cotet guges, Alphets d Strigs Strigs & Strig Opertios guges & guge Opertios Regulr Expressios Fiite Automt, FA Determiistic

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of Do Bgyoko () FOURIER SERIES I. INTRODUCTION Srs psos r ubqutous too o scc d grg. Th kds o pso to utz dpd o () th proprts o th uctos to b studd d (b) th proprts or chrctrstcs o th systm udr vstgto. Powr

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information