Neutrino phenomenology Lecture 2: Precision physics with neutrinos

Size: px
Start display at page:

Download "Neutrino phenomenology Lecture 2: Precision physics with neutrinos"

Transcription

1 Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 Masses and constants Walter Winter Universität Würzburg ν

2 Contents (overall) Lecture 1: Testing neutrino mass and flavor mixing Lecture 2: Precision physics with neutrinos Lecture 3: Aspects of neutrino astrophysics 2

3 Contents (lecture 2) Repetition Matter effects in neutrino oscillations CP violation phenomenology Mass hierarchy measurement Experiments: The near future Experiments for precision. Example: Neutrino factory New physics searches (some examples) Summary 3

4 Repetition from yesterday

5 Three flavor oscillation summary With three flavors: six parameters (three mixing angles, one phase, two mass squared differences) Atmospheric oscillations: Amplitude: θ 23 Frequency: Δm 31 2 Coupling: θ 13 Solar oscillations: Amplitude: θ 12 Frequency: Δm 21 2 Suppressed effect: δ CP (Super-K, 1998; Chooz, 1999; SNO ; KamLAND 2002) Established by two flavor subsector measurements In the future: measure unknown θ 13 and δ CP, MH 5

6 Global fits 90%CL, 3σ 1σ Schwetz, Tortola, Valle,

7 A new ingredient: Matter effects in neutrino oscillations

8 Ordinary matter: electrons, but no µ, τ Coherent forward scattering in matter: Net effect on electron flavor Matter effects proportional to electron density n e and baseline Hamiltonian in matter (matrix form, flavor space): Matter effect (MSW) (Wolfenstein, 1978; Mikheyev, Smirnov, 1985) Y: electron fraction ~ 0.5 (electrons per nucleon) 8

9 Numerical evaluation Evolution operator method: H(ρ j ) is the Hamiltonian in constant density Note that in general Additional information by interference effects compared to pure absorption phenomena 9

10 Matter profile of the Earth as seen by a neutrino Core Inner core (PREM: Preliminary Reference Earth Model) 10

11 Two flavor limit (ρ=const.) Multiplied out, two flavors, global phase substracted: Compare to vacuum Idea: write matter Hamiltonian in same form as in vacuum with effective parameters 11

12 Parameter mapping Oscillation probabilities in vacuum: matter: Matter resonance: In this case: - Effective mixing maximal - Effective osc. frequency minimal Resonance energy: ρ ~ 4.5 g/cm 3 (Earth s mantle) Solar osc.: E ~ 100 MeV!!! Atm osc.: E ~ 6.5 GeV 12

13 Mass hierarchy Matter resonance for Neutrinos/Antineutrinos Will be used in the future to determine the mass ordering: 8 Normal Inverted 8 Neutrinos Resonance Suppression Antineutrinos Suppression Resonance Normal Δm 31 2 >0 Inverted Δm 31 2 <0 13

14 Three flavor effects: CPV phenomenology

15 Terminology Any value of δ CP (except for 0 and π) violates CP Sensitivity to CPV: Exclude CP-conserving solutions 0 and π for any choice of the other oscillation parameters in their allowed ranges Why interesting? Lecture Xing! 15

16 Three flavor effects Antineutrinos: Magic baseline: Silver: Platinum, T-inv.: (Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004) 16

17 Degeneracies Iso-probability curves Neutrinos Antineutrinos Best-fit 17

18 Intrinsic vs. extrinsic CPV The dilemma: Strong matter effects (high E, long L), but Earth matter violates CP Intrinsic CPV (δ CP ) has to be disentangled from extrinsic CPV (from matter effects) Example: π-transit Fake sign-solution crosses CP conserving solution Typical ways out: T-inverted channel? (e.g. beta beam+superbeam, platinum channel at NF, NF+SB) Second (magic) baseline Fit True δ CP (violates CP maximally) Critical range True NuFact, L=3000 km Degeneracy above 2σ (excluded) (Huber, Lindner, Winter, hep-ph/ ) 18

19 The magic baseline 19

20 CP violation discovery in (true) sin 2 2θ 13 and δ CP Best performance close to max. CPV (δ CP = π/2 or 3π/2) δ CP values now stacked for each θ 13 Sensitive region as a function of true θ 13 and δ CP No CPV discovery if δ CP too close to 0 or π 3σ No CPV discovery for all values of δ CP Read: If sin 2 2θ 13 =10-3, we expect a discovery for 80% of all values of δ CP ~ Cabibbo-angle precision at 2σ BENCHMARK! 20

21 Mass hierarchy measurement

22 Motivation 8 8 Normal Inverted Specific models typically come together with specific MH prediction (e.g. textures are very different) Good model discriminator (Albright, Chen, hep-ph/ ) 22

23 Matter effects (Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004) Magic baseline: Restore two flavor limit (ξ ~ 1 A for small θ 13 ) Resonance: 1-A 0 (NH: ν, IH: anti-ν) Damping: sign(a)=-1 (NH: anti-ν, IH: ν) Energy close to resonance energy helps (~ 7 GeV) To first approximation: P eµ ~ L 2 (e.g. at resonance) Baseline length helps (compensates 1/L 2 flux drop) 23

24 Baseline dependence Comparison matter (solid) and vacuum (dashed) Matter effects (hierarchy dependent) increase with L Event rate (ν, NH) hardly drops with L Go to long L! Event rates (A.U.) Peak neutrino energy ~ 14 GeV (Δm ) NH matter effect Vacuum, NH or IH NH matter effect (Freund, Lindner, Petcov, Romanino, 1999) 24

25 Experiments: The near future

26 Artificial neutrino sources There are three possibilities to artificially produce neutrinos Beta decay: Example: Nuclear reactors Pion decay: From accelerators: Protonen Pions Muons, neutrinos Neutrinos Target Selection, focusing Decay tunnel Absorber Muon decay: Muons produced by pion decays! 26

27 New reactor experiments Examples: Double Chooz, Daya Bay Identical detectors, L ~ 1.1 km (Quelle: S. Peeters, NOW 2008) 27

28 Spin-off: Nuclear monitoring? Idea: The event rate N close to the reactor is high, Ν ~ 1/R 2 A few thousand events/day for small detector ~ 25 m away from reactor core Anticipated precision: ~ O (10) kg for extraction of radioactive material ν 28

29 Narrow band superbeams Off-axis technology to suppress backgrounds Beam spectrum more narrow Examples: T2K NOνA T2K beam OA 1 degree OA 2 degrees OA 3 degrees (hep-ex/ ) 29

30 Simulation of future experiments GLoBES AEDL Abstract Experiment Definition Language Define and modify experiments AEDL files User Interface C library, reads AEDL files Functionality for experiment simulation (Huber, Lindner, Winter, 2004; Huber, Kopp, Lindner, Rolinec, Winter, 2007) lin/globes/ Application software linked with user interface Calculate sensitivities Comes with a 180 pages manual with step-by-step intro! 30

31 Calculation of event rates In practice: Secondary particles integrated out Detector response R(E,E ) E E 31

32 Next generation CPV reach Includes Double Chooz, Daya Bay, T2K, NOvA 90% CL (Huber, Lindner, Schwetz, Winter, arxiv: ) 32

33 Experiments for precision Example: Neutrino factory

34 Neutrino factory: International Design Study (IDS-NF) Muons decay in straight sections of a storage ring (Geer, 1997; de Rujula, Gavela, Hernandez, 1998; Cervera et al, 2000) Signal prop. sin 2 2θ 13 Contamination ISS IDS-NF: Initiative from ~ to present a design report, schedule, cost estimate, risk assessment for a neutrino factory In Europe: Close connection to Euroνus proposal within the FP 07 In the US: Muon collider task force 34

35 IDS-NF baseline setup 1.0 Two decay rings E µ =25 GeV 5x10 20 useful muon decays per baseline (both polarities!) Two baselines: ~ km Two MIND, 50kt each Currently: MECC at shorter baseline 35

36 NF physics potential Excellent θ 13, MH, CPV discovery reaches (IDS-NF, 2007) Robust optimum for ~ km Optimization even robust under non-standard physics (dashed curves) (Kopp, Ota, Winter, arxiv: ; see also: Gandhi, Winter, 2007) 36

37 Steve Geer s vision 37

38 Science fiction or science fact? 38

39 New physics searches (some examples, using neutrino factory near detectors)

40 New physics from heavy mediators Effective operator picture if mediators integrated out: ν mass d=6, 8, 10,...: NSI, NU, CLFV, Describes additions to the SM in a gauge-inv. way! Example: TeV-scale new physics d=6: ~ (100 GeV/1 TeV) 2 ~ 10-2 compared to the SM d=8: ~ (100 GeV/1 TeV) 4 ~ 10-4 compared to the SM Interesting dimension six operators Fermion-mediated Non-unitarity (NU) Scalar or vector mediated Non-standard int. (NSI) 40

41 Example 1: Non-standard interactions Typically described by effective four fermion interactions (here with leptons) May lead to matter NSI (for γ=δ=e) May also lead to source/detector NSI (e.g. NuFact: ε µβ s for α=δ=e, γ=µ) These source/det.nsi are process-dep.! 41

42 Lepton flavor violation and the story of SU(2) gauge invariance Ex.: CLFV e µ NSI (FCNC) ν e ν µ 4ν-NSI ν e (FCNC) ν µ e e e e ν e ν e Strong bounds Affects neutrino oscillations in matter (or neutrino production) Affects environments with high ν densities (supernovae) BUT: These phenomena are connected by SU(2) gauge invariance Difficult to construct large leptonic matter NSI with d=6 operators (Bergmann, Grossman, Pierce, hep-ph/ ; Antusch, Baumann, Fernandez-Martinez, arxiv: ; Gavela, Hernandez, Ota, Winter,arXiv: ) Need d=8 effective operators,! Finding a model with large NSI is not trivial! 42

43 On current NSI bounds (Source NSI for NuFact) The bounds for the d=6 (e.g. scalar-mediated) operators are strong (CLFV, Lept. univ., etc.) (Antusch, Baumann, Fernandez-Martinez, arxiv: ) The model-independent bounds are much weaker (Biggio, Blennow, Fernandez-Martinez, arxiv: ) However: note that here the NSI have to come from d=8 (or loop d=6?) operators ε ~ (v/λ) 4 ~ 10-4 natural? NSI hierarchy problem? 43

44 Source NSI with ν τ at a NuFact Probably most interesting for near detectors: ε eτs, ε µτ s (no intrinsic beam BG) Near detectors measure zero-distance effect ~ ε s 2 Helps to resolve correlations ND5: OPERA-like ND at d=1 km, 90% CL (Tang, Winter, arxiv: ) This correlation is always present if: - NSI from d=6 operators - No CLFV (Gavela et al, arxiv: ; see also Schwetz, Ohlsson, Zhang, arxiv: for a particular model) 44

45 Example 2: also: MUV Non-unitarity of mixing matrix Integrating out heavy fermion fields (such as in a type-i TeV see-saw), one obtains neutrino mass and the d=6 operator (here: fermion singlets) Re-diagonalizing and re-normalizing the kinetic terms of the neutrinos, one has This can be described by an effective (non-unitary) mixing matrix ε with N=(1+ε) U Similar effect to NSI, but source, detector, and matter NSI are correlated in a particular, fundamental way (i.e., processindependent) 45

46 Impact of near detector Example: (Antusch, Blennow, Fernandez-Martinez, Lopez-Pavon, arxiv: ) Curves: 10kt, 1 kt, 100 t, no ND ν τ near detector important to detect zero-distance effect 46

47 Example 3: Search for sterile neutrinos 3+S schemes of neutrinos include (light) sterile states, i.e., neutral fermion states light enough to be produced The mixing with the active states must be small, the mass squared difference can be very different The effects on different oscillation channels depend on the model test all possible twoflavor short baseline (SBL) cases, which are standard oscillation-free Example: ν e disappearance 47

48 SBL ν e disappearance Averaging over straight important (dashed versus solid curves) Location matters: Depends on Δm 2 Two baseline setup? d=50 m d~2 km (as long as possible) 90% CL, 2 d.o.f., No systematics, m=200 kg (Giunti, Laveder, Winter, arxiv: ) 48

49 SBL systematics Systematics similar to reactor experiments: Use two detectors to cancel X-Sec errors 10% shape error arxiv: (Giunti, Laveder, Winter, arxiv: ) 49

50 Summary Matter effects key ingredient to measure the mass ordering How do neutrinos behave in environments with strongly varying matter density (Sun, Supernovae)? Man-made terrestrial sources can measure all of the remaining standard neutrino oscillation properties (θ 13, CPV, MH) even for very small θ 13 Are all parameters best measured using terrestrial sources? Where did the solar sector get its name from? Some new physics neutrino properties can be tested as well Are there neutrino properties which are best tested using astrophysical environments? Lecture 3 Lecture 3 Lecture 3 50

51 Matrix form in flavor space Transition amplitude in matrix form: For instance, φ in = (1,0,0) T for ν e With, we have or 51

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

Neutrino oscillation phenomenology

Neutrino oscillation phenomenology Neutrino oscillation phenomenology Tokyo Metropolitan University Osamu Yasuda INO-KEK meeting 7 November 007@KEK Contents 1. Introduction. Future long baseline experiments 3. Deviation from the standard

More information

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory -- Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory -- Osamu Yasuda Tokyo Metropolitan University 009-1-18 @ Miami009 1 1. Introduction. Light sterile neutrinos 3. Summary 1.

More information

Phenomenology at neutrino oscillation experiments

Phenomenology at neutrino oscillation experiments Phenomenology at neutrino oscillation experiments Tracey Li IPPP, Durham University Supervisor: Dr. Silvia Pascoli LEPP particle theory seminar Cornell University 2nd April 2010 Talk overview Neutrino

More information

LBL projects and neutrino CP violation in Europe

LBL projects and neutrino CP violation in Europe LBL projects and neutrino CP violation in Europe NOW 2012 Conca Specchiulla 12 September 2012 Silvia Pascoli IPPP - Durham University Outline 1. Phenomenology of LBL experiments 2. LBL options in Europe:

More information

Non oscillation flavor physics at future neutrino oscillation facilities

Non oscillation flavor physics at future neutrino oscillation facilities Non oscillation flavor physics at future neutrino oscillation facilities Tokyo Metropolitan University Osamu Yasuda 2 July 2008 @nufact08 (SM+m ν ) + (correction due to New physics) which can be probed

More information

Systematic uncertainties in long baseline neutrino oscillations for large θ 13

Systematic uncertainties in long baseline neutrino oscillations for large θ 13 Systematic uncertainties in long baseline neutrino oscillations for large θ 13 Pilar Coloma Center for Neutrino Physics at Virginia Tech Based on P. Coloma, P. Huber, J. Kopp and W. Winter, 1209.5973 [hep-ph]

More information

arxiv: v3 [hep-ph] 23 Jan 2017

arxiv: v3 [hep-ph] 23 Jan 2017 Effects of Matter in Neutrino Oscillations and Determination of Neutrino Mass Hierarchy at Long-baseline Experiments T. Nosek Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,

More information

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI)

The Daya Bay and T2K results on sin 2 2θ 13 and Non-Standard Neutrino Interactions (NSI) The Daya Bay and TK results on sin θ 13 and Non-Standard Neutrino Interactions (NSI) Ivan Girardi SISSA / INFN, Trieste, Italy Based on: I. G., D. Meloni and S.T. Petcov Nucl. Phys. B 886, 31 (014) 8th

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

PoS(Nufact08)026. Summary of Working Group I: Theory. S. Choubey (a), P. Hernández (b), and C. W. Walter (c)

PoS(Nufact08)026. Summary of Working Group I: Theory. S. Choubey (a), P. Hernández (b), and C. W. Walter (c) Summary of Working Group I: Theory S. Choubey (a),, and C. W. Walter (c) (a) Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 1119, India. (b) IFIC-Universidad de Valencia and CSIC,

More information

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

What If U e3 2 < 10 4? Neutrino Factories and Other Matters What If U e3 < 0 4? Neutrino Factories and Other Matters André de Gouvêa University DUSEL Theory Workshop Ohio State University, April 4 6, 008 April 5, 008 tiny U e3 : now what? Outline. What are We Aiming

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

Outline. (1) Physics motivations. (2) Project status

Outline. (1) Physics motivations. (2) Project status Yu-Feng Li Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration 2014-10-10, Hsinchu/Fo-Guang-Shan 2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck

More information

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector INFN - Sezione di Bologna, I-4017 Bologna, Italy E-mail: matteo.tenti@bo.infn.it The OPERA

More information

Searching for non-standard interactions at the future long baseline experiments

Searching for non-standard interactions at the future long baseline experiments Searching for non-standard interactions at the future long baseline experiments Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 015 1/34 1. Introduction. New Physics in propagation 3. Sensitivity

More information

Complementarity between current and future oscillation experiments

Complementarity between current and future oscillation experiments Complementarity between current and future oscillation experiments IBS - Center for Theoretical Physics of the Universe, Daejeon, South Korea NuHorizons 2018, Allahabad 21 Neutrino Oscillations Standard

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Non-Standard Neutrino Interactions & Non-Unitarity

Non-Standard Neutrino Interactions & Non-Unitarity Non-Standard Neutrino Interactions & Non-Unitarity talk by Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) MPIK Heidelberg, 9. - 12. November 2009 The Standard Model Symmetries of the SM: SU(3)C

More information

1. Neutrino Oscillations

1. Neutrino Oscillations Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

Damping signatures in future neutrino oscillation experiments

Damping signatures in future neutrino oscillation experiments Damping signatures in future neutrino oscillation experiments Based on JHEP 06(2005)049 In collaboration with Tommy Ohlsson and Walter Winter Mattias Blennow Division of Mathematical Physics Department

More information

Neutrino Oscillation and CP violation

Neutrino Oscillation and CP violation Neutrino Oscillation and CP violation Contents. Neutrino Oscillation Experiments and CPV. Possible CP measurements in TK 3. Summary Nov.4, 4 @Nikko K. Nishikawa Kyoto niversity CP Violation Asymmetry between

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

Chart of Elementary Particles

Chart of Elementary Particles Chart of Elementary Particles Chart of Elementary Particles Better Chart! Better Chart! As of today: Oscillation of 3 massive active neutrinos is clearly the dominant effect: If neutrinos have mass: For

More information

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology 1 The neutrino is neutral. The neutrino only interacts weakly. The neutrino has a small non-zero

More information

The future of neutrino physics (at accelerators)

The future of neutrino physics (at accelerators) Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova The future of neutrino physics (at accelerators) Present Status Concepts, strategies, challenges The two players: Dune and Hyper-Kamiokande Conclusions

More information

Overview of Reactor Neutrino

Overview of Reactor Neutrino Overview of Reactor Neutrino Chan-Fai (Steven) Wong, Wei Wang Sun Yat-Sen University 22 September 2016 The 14th International Workshop on Tau Lepton Physics Many thanks to Jia Jie Ling, Liang Jian Wen

More information

Recent Results from T2K and Future Prospects

Recent Results from T2K and Future Prospects Recent Results from TK and Future Prospects Konosuke Iwamoto, on behalf of the TK Collaboration University of Rochester E-mail: kiwamoto@pas.rochester.edu The TK long-baseline neutrino oscillation experiment

More information

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p. Why neutrinos? Patrick Huber Center for Neutrino Physics at Virginia Tech KURF Users Meeting June 7, 2013, Virginia Tech P. Huber VT-CNP p. 1 Neutrinos are massive so what? Neutrinos in the Standard Model

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Sinergie fra ricerche con neutrini da acceleratore e atmosferici Sinergie fra ricerche con neutrini da acceleratore e atmosferici Michele Maltoni International Centre for Theoretical Physics IFAE 26, Pavia 2 Aprile 26 I. Parameter degeneracies and neutrino data II.

More information

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB Neutrino Oscillation Measurements, Past and Present Art McDonald Queen s University And SNOLAB Early Neutrino Oscillation History -1940 s to 1960 s: - Neutrino oscillations were proposed by Pontecorvo

More information

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter Very-Short-BaseLine Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources Jeff Nelson College of William & Mary Outline A highly selective neutrino primer Oscillations (what & why we believe) >

More information

Prospects of Reactor ν Oscillation Experiments

Prospects of Reactor ν Oscillation Experiments Prospects of Reactor ν Oscillation Experiments F.Suekane RCNS, Tohoku Univ. Erice School 3/09/009 1 Contents * Motivation * Physics of Neutrino Oscillation * Accessible Parameters of Reactor Neutrinos

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti C. Giunti Status of Light Sterile Neutrinos EPS-HEP 05 3 July 05 /5 Status of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica, Università di Torino giunti@to.infn.it

More information

Neutrino Physics part2

Neutrino Physics part2 Neutrino Physics part2 M. Lindner Max-Planck-Institut für Kernphysik, Heidelberg CERN School of High Energy Physics 2009 Bautzen, Germany, June 14-27, 2009 4. The Future of Neutrino Oscillations precision

More information

NEUTRINOS II The Sequel

NEUTRINOS II The Sequel NEUTRINOS II The Sequel More About Neutrinos Ed Kearns Boston University NEPPSR V - 2006 August 18, 2006 Ed Kearns Boston University NEPPSR 2006 1 There is something unusual about this neutrino talk compared

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 2: Neutrino mixing and oscillations Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER Bhubaneswar,

More information

Largeθ 13 Challenge and Opportunity

Largeθ 13 Challenge and Opportunity Largeθ 13 Challenge and Opportunity Patrick Huber Center for Neutrino Physics at Virginia Tech Experimental Seminar January 15, 2013, SLAC P. Huber VT-CNP p. 1 θ 13 is large! The Daya Bay result is sin

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

Is nonstandard interaction a solution to the three neutrino tensions?

Is nonstandard interaction a solution to the three neutrino tensions? 1/28 Is nonstandard interaction a solution to the three neutrino tensions? Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 2016 Based on arxiv:1609.04204 [hep-ph] Shinya Fukasawa, Monojit Ghosh,OY

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

GLoBES. Patrick Huber. Physics Department VT. P. Huber p. 1

GLoBES. Patrick Huber. Physics Department VT. P. Huber p. 1 GLoBES Patrick Huber Physics Department VT P. Huber p. 1 P. Huber p. 2 General Long Baseline Experiment Simulator GLoBES is a software package designed for Simulation Analysis Comparison of neutrino oscillation

More information

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1 Neutrino Phenomenology Boris Kayser INSS August, 2013 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer,

More information

- Future Prospects in Oscillation Physics -

- Future Prospects in Oscillation Physics - Measuring θ 13 and the Search for Leptonic CP Violation - Future Prospects in Oscillation Physics - Karsten M. Heeger Lawrence Berkeley National Laboratory ν e flux θ 13 =? P ee, (4 MeV) 1/r 2 Evidence

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

New index of CP phase effect and θ 13 screening in long baseline neutrino experiments

New index of CP phase effect and θ 13 screening in long baseline neutrino experiments Physics Letters B 640 (006) 3 36 www.elsevier.com/locate/physletb New index of CP phase effect and θ 13 screening in long baseline neutrino experiments Keiichi Kimura a,, Akira Takamura a,b, Tadashi Yoshikawa

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan Gianfranca De Rosa Univ. Federico II and INFN Naples On behalf of Hyper-Kamiokande Collaboration Hyper-Kamiokande:

More information

Comparisons and Combinations of Oscillation Measurements

Comparisons and Combinations of Oscillation Measurements Comparisons and Combinations of Oscillation Measurements May 11, 2004 1 Introduction For a three active neutrino scenario, neutrino oscillations are described by six physics parameters: 13 ; 12 ; 23 ;

More information

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION Atsuko K. Ichikawa, Kyoto University Got PhD by detecting doubly-strange nuclei using emulsion After that, working on accelerator-based

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

Test of Non-Standard Interactions at Super-K

Test of Non-Standard Interactions at Super-K Test of Non-Standard Interactions at Super-K G. Mitsuka Nagoya University Now1, Sep. 6th, 1 Otranto Outline Introduction & Physics motivation Expected NSI phenomena at SK Data sets Analysis results Conclusions

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

ν e ν µ Physics with India-based Neutrino Observatory Sandhya Choubey

ν e ν µ Physics with India-based Neutrino Observatory Sandhya Choubey Physics with India-based Neutrino Observatory Sandhya Choubey Harish-Chandra Research Institute, Allahabad, India Max-Planck-Institute for Kernphysik, Heidelberg, May 4, 2009 Plan of Talk Plan of Talk

More information

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006 Unbound Neutrino Roadmaps MARCO LAVEDER Università di Padova e INFN NOW 2006-11 September 2006 Experimental Data : 2006 Experiment Observable (# Data) Measured/SM Chlorine Average Rate (1) [CC]=0.30 ±

More information

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste SNOW 26 Global fits to neutrino oscillation data Thomas Schwetz SISSA, Trieste based on work in collaboration with M. Maltoni, M.A. Tortola, and J.W.F. Valle [hep-ph/3913, hep-ph/45172] T.S. is supported

More information

arxiv: v3 [hep-ph] 11 Sep 2012

arxiv: v3 [hep-ph] 11 Sep 2012 TIFR/TH/12-3 Getting the best out of T2K and NOνA Suprabh Prakash, 1, Sushant K. Raut, 1, and S. Uma Sankar 1, 2, 1 Department of Physics, Indian Institute of Technology Bombay, Mumbai 476, India 2 Department

More information

Mass hierarchy and CP violation with upgraded NOνA and T2K in light of large θ 13

Mass hierarchy and CP violation with upgraded NOνA and T2K in light of large θ 13 Mass hierarchy and CP violation with upgraded NOνA and T2K in light of large θ 13 Suprabh Prakash Department of Physics Indian Institute of Technology Bombay Mumbai, India September 26, 212 Suprabh Prakash

More information

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration Outline Overview of the Main Injector Neutrino Oscillation Search Detector Exciting physics

More information

Updated three-neutrino oscillation parameters from global fits

Updated three-neutrino oscillation parameters from global fits Updated three-neutrino oscillation parameters from fits (Based on arxiv:14.74) Mariam Tórtola IFIC, Universitat de València/CSIC 37th International Conference on High Energy Physics 3th July 214, Valencia.

More information

arxiv: v1 [hep-ex] 11 May 2017

arxiv: v1 [hep-ex] 11 May 2017 LATEST RESULTS FROM TK arxiv:1705.0477v1 [hep-ex] 11 May 017 Marcela Batkiewicz a, for the TK collaboration Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland Abstract. The TK (Tokai

More information

Long Baseline Neutrinos

Long Baseline Neutrinos Long Baseline Neutrinos GINA RAMEIKA FERMILAB SLAC SUMMER INSTITUTE AUGUST 5-6, 2010 Lecture 1 Outline Defining Long Baseline Experiment Ingredients Neutrino Beams Neutrino Interactions Neutrino Cross

More information

arxiv: v3 [hep-ph] 21 Apr 2014

arxiv: v3 [hep-ph] 21 Apr 2014 Non-standard interaction effect on CP violation in neutrino oscillation with super-beam Zini Rahman, 1, Arnab Dasgupta, 1, and Rathin Adhikari 1, 1 Centre for Theoretical Physics, Jamia Millia Islamia

More information

Phenomenology of neutrino mixing in vacuum and matter

Phenomenology of neutrino mixing in vacuum and matter Phenomenology of neutrino mixing in vacuum and matter A Upadhyay 1 and M Batra 1 School of Physics and Material Science Thapar University, Patiala-147004. E-mail:mbatra310@gmail.com Abstract: During last

More information

Particle Physics: Neutrinos part I

Particle Physics: Neutrinos part I Particle Physics: Neutrinos part I José I. Crespo-Anadón Week 8: November 10, 2017 Columbia University Science Honors Program Course policies Attendance record counts Up to four absences Lateness or leaving

More information

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration The T2K experiment Results and Perspectives PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration 1 Overview Neutrino oscillations The T2K off-axis experiment Oscillation results

More information

Long baseline experiments

Long baseline experiments Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova Long baseline experiments Present Status Concepts, strategies, challenges The two players: Dune and Hyper-Kamiokande Conclusions M. Mezzetto,

More information

A study on different configurations of Long Baseline Neutrino Experiment

A study on different configurations of Long Baseline Neutrino Experiment A study on different configurations of Long Baseline Neutrino Experiment Mehedi Masud HRI, Allahabad (With V.Barger, A.Bhattacharya, A.Chatterjee, R.Gandhi and D.Marfatia Phys.Rev. D89 (2014) 1, 011302

More information

Neutrinos From The Sky and Through the Earth

Neutrinos From The Sky and Through the Earth Neutrinos From The Sky and Through the Earth Kate Scholberg, Duke University DNP Meeting, October 2016 Neutrino Oscillation Nobel Prize! The fourth Nobel for neutrinos: 1988: neutrino flavor 1995: discovery

More information

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH The Solar Neutrino Day-Night Effect Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH 1 Why This Interest in Neutrinos? Massless in SM of particle physics

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Application of GLoBES: GLACIER on conventional neutrino beams

Application of GLoBES: GLACIER on conventional neutrino beams Application of GLoBES: GLACIER on conventional neutrino beams A.Meregaglia, A.Rubbia (ETH Zürich) Workshop on Physics and Applications!of the GLoBES software - Heidelberg 26-01-07 Introduction GLoBES was

More information

Beyond Standard Model Effects in Flavour Physics: p.1

Beyond Standard Model Effects in Flavour Physics: p.1 Beyond Standard Model Effects in Flavour Physics: Alakabha Datta University of Mississippi Feb 13, 2006 Beyond Standard Model Effects in Flavour Physics: p.1 OUTLINE Standard Model (SM) and its Problems.

More information

The NuMI Off-axis ν e Appearance Experiment (NOνA)

The NuMI Off-axis ν e Appearance Experiment (NOνA) The NuMI Off-axis ν e Appearance Experiment (NOνA) THE FIRST NEUTRINO INTERACTION WAS OFFICIALLY OBSERVED DEC. 15, 2010. Xinchun Tian Department of Physics and Astronomy Maimi 2010, 2010/17 Xinchun Tian

More information

arxiv:hep-ph/ v1 29 Jul 2004

arxiv:hep-ph/ v1 29 Jul 2004 TUM-HEP-553/4 Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator) P. Huber a, M. Lindner b, and W. Winter c arxiv:hep-ph/47333 v1 29 Jul

More information

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Solar neutrinos and the MSW effect

Solar neutrinos and the MSW effect Chapter 12 Solar neutrinos and the MSW effect The vacuum neutrino oscillations described in the previous section could in principle account for the depressed flux of solar neutrinos detected on Earth.

More information

Theory and Phenomenology of neutrino oscillations: Lecture II. GIF School LES NEUTRINOS. APC Paris September 2011

Theory and Phenomenology of neutrino oscillations: Lecture II. GIF School LES NEUTRINOS. APC Paris September 2011 Theory and Phenomenology of neutrino oscillations: Lecture II GIF School LES NEUTRINOS APC Paris 12-16 September 2011 Silvia Pascoli IPPP - Durham U. What have we learnt yesterday? We have looked at the

More information

Role of high energy beam tunes at DUNE

Role of high energy beam tunes at DUNE Role of high energy beam tunes at DUNE Poonam Mehta School of Physical Sciences, Jawaharlal Nehru University, New Delhi based on work with Mehedi Masud (IFIC), Jogesh Rout (JNU), Samiran Roy (HRI), and

More information

Non-unitary lepton mixing in an inverse seesaw and its impact on the physics potential of long-baseline experiments. Abstract

Non-unitary lepton mixing in an inverse seesaw and its impact on the physics potential of long-baseline experiments. Abstract Non-unitary lepton mixing in an inverse seesaw and its impact on the physics potential of long-baseline experiments Soumya C. and Rukmani Mohanta School of Physics, University of Hyderabad, Hyderabad -

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Neutrino Physics: Lecture 12

Neutrino Physics: Lecture 12 Neutrino Physics: Lecture 12 Sterile neutrinos Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Apr 5, 2010 Outline 1 Short baseline experiments and LSND anomaly 2 Adding

More information

Neutrino Physics. NASA Hubble Photo. Boris Kayser PASI March 14-15, 2012 Part 1

Neutrino Physics. NASA Hubble Photo. Boris Kayser PASI March 14-15, 2012 Part 1 Neutrino Physics NASA Hubble Photo Boris Kayser PASI March 14-15, 2012 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Long-Range Forces in Long-Baseline Neutrino Oscillation Experiments

Long-Range Forces in Long-Baseline Neutrino Oscillation Experiments Long-Range Forces in Long-Baseline Neutrino Oscillation Experiments Sabya Sachi Chatterjee sabya@iopb.res.in Institute of Physics, Bhubaneswar, India. XXI DAE-BRNS High Energy Physics Symposium 2014 8-12

More information

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Camillo Mariani Center for Neutrino Physics, Virginia Tech Camillo Mariani Center for Neutrino Physics, Virginia Tech Motivation and Contents Determination of neutrino oscillation parameters requires knowledge of neutrino energy Modern experiments use complicated

More information

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future Karsten M. Heeger Lawrence Berkeley National Laboratory 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 0 0 1 2 3 4 5 6

More information

arxiv: v1 [hep-ph] 17 Sep 2014

arxiv: v1 [hep-ph] 17 Sep 2014 Can the hint of δ CP from TK also indicate the hierarchy and octant? Monojit Ghosh and Srubabati Goswami Physical Research Laboratory, Navrangpura, Ahmedabad 3 9, India Sushant K. Raut Physical Research

More information

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 Masses and constants 02.03.2010 Walter Winter Universität Würzburg ν Contents (overall) Lecture 1: Testing

More information

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda Neutrino mixing and oscillations mixing of flavor and mass eigenstates PMNS matrix parametrized as ( )( cxy = cosθxy

More information

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010 DAEδALUS Janet Conrad LNS Seminar March 16, 2010 Decay At rest Experiment for δ cp studies At the Laboratory for Underground Science Use decay-at-rest neutrino beams, and the planned 300 kton H 2 O detector

More information