Math 2C03 - Differential Equations. Slides shown in class - Winter Laplace Transforms. March 4, 5, 9, 11, 12, 16,

Size: px
Start display at page:

Download "Math 2C03 - Differential Equations. Slides shown in class - Winter Laplace Transforms. March 4, 5, 9, 11, 12, 16,"

Transcription

1 Math 2C03 - Differential Equations Slides shown in class - Winter 2015 Laplace Transforms March 4, 5, 9, 11, 12, 16,

2 Laplace Transform used to solve linear ODEs and systems of linear ODEs with constant coefficients especially useful if the RHS has a jump discontinuity involves ideas similar to using log and antilog OR differentiation and integration i.e., inverse process useful in the study of delay differential equations (an advanced topic beyond the scope of this course)

3 Laplace Transform Definition Assume that f (t) is a function defined for t 0. The Laplace transform of f (t) is the function F(s) = L {f } = 0 e st f (t) dt, s > a (1) provided the integral exists for all s > a for some a R. Convention: lower case used for function: g(t) upper case used for its Laplace transform: G(s), with s as the independent variable.

4 Linearity of the Laplace Transform Theorem (Linearity) Let f (t) and g(t) be functions that have a Laplace transform that exists for s > a, for some a R. Let α and β be any constants (real or complex). Denote, L{f (t)} = F(s) & L{g(t)} = G(s). Then, L{αf (t) + βg(t)} = αf(s) + βg(s), for s > a Proof: Follows because integration is linear. Can be used to find the Laplace transform of cos(kt) & of sin(kt).

5 Preliminary Definitions Definition (Piecewise Continuous) (a) f (t) is piecewise continuous on an interval [a, b], if [a, b] can be subdivided into a finite number of subintervals, and in each subinterval f (t) is continuous and has a finite left- and right-hand limit. (b) f (t) is piecewise continuous on [0, ), if it is piecewise continuous on [0, b] for every b > 0. No vertical asymptotes Only jump discontinuities.

6 Definition (Exponential Order) f (t) is of exponential order α R a t, if there exist positive constants K and M such that or equivalently, if f (t) Ke αt whenever t > M. f (t) lim t e αt = L, where L 0 is finite, f (t) is called O(e αt ) ( big Oh of e αt ) if L>0. f (t) is called o(e αt ), ( little oh of e αt ) if L=0.

7 Existence of the Laplace Transform Theorem Assume f (t) is piecewise continuous on [0, ) and of exponential order α as t. Then L{f } exists for s > α. Therefore, F(s) = 0 T e st f (t) dt = lim T 0 an improper integral, that converges for s > α. e st f (t) dt,

8 Inverse Laplace Transform Definition Given a function F(s), if there is a function f (t) that is continuous on [0, ) and satisfies L{f (t)} = F(s) ( ) then we say that f (t) is the inverse Laplace transform of F(s), and we write f (t) = L 1 {F(s)}. Note: If every function that satisfies ( ) is piecewise continuous, then one can choose any one of the functions as the inverse Laplace transform. Two piecewise continuous functions satisfying ( ) will only differ at a finite number of points.

9 Example (Inverse Laplace Transforms Several Examples) { 1 L 1 s { } s L 1 s 2 + k 2 } { } 1 = 1, L 1 = e kt, s k } = cos(kt), L 1 { k s 2 + k 2 = sin(kt). Proposition The inverse Laplace transform L 1 is a linear transformation, i.e. for any constants α, β, we have L 1 {α F(s) + βg(s)} = α L 1 {F(s)} + β L 1 {G(s)}

10 Laplace Transform of mth Derivative: f (m) = d m dt m f (t) Theorem Assume that f (t), f (t),... f (m) (t) are all continuous on [0, ) and of some exponential order. Let F(s) = L {f }. Then, { L f (m)} = s m F(s) s m 1 f (0) s m 2 f (0) f (m 1) (0). Therefore, L { f } = sf (s) f (0). L { f } = s 2 F(s) sf (0) f (0). L { f } = s 3 F(s) s 2 f (0) sf (0) f (0).

11 Shift Property or Translation in s Theorem (Translation on the s-axis) If k R and then L {f (t)} = F(s) { } L e kt f (t) = F(s k) Proof. L { e kt f (t) } = 0 e st e kt f (t) dt = 0 e (s k)t f (t) dt = F(s k).

12 Derivatives of Laplace Transforms Theorem (Derivatives of transforms) If F(s) = L {f (t)}, then L {t n f (t)} = ( 1) n d n F(s), n 0. dsn Therefore, It follows that, L {t f (t)} = F (s). { } L t 2 f (t) = F (s). L {t n } = L {t n 1} = ( 1) n d n ds n ( ) 1 = n! s s n+1

13 Methods to Compute L 1 {F (s)} 1 Directly from a table or memory in combination with properties of L 1, including linearity. 2 Completing the square and using the shift property: L{e kt f (t)} = F (s k) L 1 {F (s k)} = e kt f (t) = e kt L 1 F(s) 3 Partial fraction decomposition. 4 Convolution.

14 Partial Fraction Decomposition Consider a rational function P(s) Q(s) where P(s) and Q(s) are polynomials with reals coefficients and: degree of P(s) < degree of Q(s) If not, use polynomial division, i.e. divide P(s) by Q(s). Factor & cancel common factors of P(s) & Q(s). For each linear term (s a) m, a R, in the denominator we include terms of the form A 1 s a + A 2 (s a) A m (s a) m. For each irreducible quadratic term (s α) 2 + β 2 ) p, α, β R, in the denominator we include terms of the form B 1 s + C 1 ((s α) 2 + β 2 ) + B 2 s + C 2 ((s α) 2 + β 2 ) B p s + C p ((s α) 2 + β 2 ) p.

15 Set P(s) Q(s) equal to the sum of all of these terms. Put over a common denominator. Equate numerators. To find the constants A i, B i & C i, Method I: Equate coefficients of s k, k = 0, 1, 2,..., n and solve the resulting system of equations. Method II: Evaluate both sides at the roots. If necessary differentiate both sides and then evaluate again at the roots, etc. until you obtain enough equations and unknowns to solve uniquely for the constants.

16 Finding Inverse Laplace Transforms after Partial Fraction Decomposition { } Use: shift L 1 {F(s a)} = e at f (t); L 1 (m 1)! s = t m 1 ; & m linearity: { } { } A A L 1 = A; L 1 = Ae at s s a { } L 1 Am s m = A mt m 1 L 1 { B1 s + C 1 (s α) 2 + β 2 (m 1)! ; L 1 } { } Am (s a) m = A me at t m 1 (m 1)! { } = L 1 B1 (s α) + B 1 α + C 1 (s α) 2 + β 2 ) sin(βt) β } = use CONVOLUTION = e αt B 1 cos(βt) + e αt ( αb1 + C 1 { L 1 B m s + C m ((s α) 2 + β 2 ) m

17 The Convolution Definition (Convolution) Let f (t) and g(t) be piecewise continuous for t 0. The convolution of f (t) and g(t), donoted (f g)(t), is (f g)(t) = t 0 f (t τ) g(τ) dτ. Properties f g = g f f (g + h) = (f g) + (f h) (f g) h = f (g h) f 0 = 0

18 The Convolution Theorem Theorem (Convolution theorem) If f (t) and g(t) are piecewise continuous and of exponential order for t 0, then so is (f g)(t) and, furthermore, L {f g} = F(s) G(s). where F(s) = L {f } and G(s) = L {g}.

19 Solving a Volterra Integral Equation Definition (Volterra integral equation) A Volterra integral equation involving the unknown function f (t) is an equation of the form t f (t) = g(t) + 0 f (τ) h(t τ) dτ, where g(t) and h(t) are given functions. This equation can be written f (t) = g(t) + (f h)(t), t 0, and can be solved by taking the Laplace transform of both sides.

20 Unit Step or Heaviside Function, u(t τ) place Transforms Definition For τ 0, the Heaviside { or unit step function, u(t τ) is 0, t < τ defined by u(t τ) = 1, t τ y t τ t piecewise continuous function (8.4.1) Figure Graph y = of u(t τ) u(t τ)

21 Theorem (Translation in t) Let F (s) = L{f (t)} and assume τ > 0. Then, L{u(t τ)f (t τ)} = e τs F(s). Proof. L {u(t τ) f (t τ)} = = e st f (t τ) dt τ }{{} v=t τ,dv=dt 0 e s(v+τ) f (v) dv = e sτ e sv f (v) dv 0 } {{ } F (s) = e τ s F(s).

22 L {u(t τ) f (t τ)} = e τ s F (s) Corollary 1 L 1 {e τs F(s)} = u(t τ)f (t τ) 2 L{u(t τ)} = e τs s 3 L{u(t τ)f (t)} = e τs L{f (t + τ)} Can express piecwise continuous functions using the step function. Useful to find the Laplace transform of piecewise continuous functions. Especially useful to solve IVPs with piecewise continuous functions on the RHS.

23 Table of Laplace Transforms, L{f (t)} = F (s) L{1} = 1 s L{e kt } = 1 s k L{sin(βt)} = β L{cos(βt)} = s s 2 +β 2 s 2 +β 2 L{t n } = n!, n 1 integer s n+1 L{e kt f (t)} = F (s k) L{t n f (t)} = ( 1) n F (n) (s) L{δ(t a)} = e as, a 0 L{f (n) (t)} = s n F(s) s n 1 f (0) s n 2 f (0) sf (n 2) (0) f (n 1) (0) L{u(t τ)f (t τ)} = e τs { F(s), τ 0, 0, t < τ, where u(t τ) = 1, t τ. is the unit step function or Heaviside function. If f (t + T ) = f (t) for all t, L{f (t)} = L{(f g)(t)} = L{ t o L{t r } = Γ(r+1) s r+1 T 0 e st f (t) dt 1 e st f (t v)g(v) dv} = F(s)G(s), r > 1 real, where Γ(t) = 0 e u u t 1 du, t > 0

Laplace Transform Theory - 1

Laplace Transform Theory - 1 Laplace Transform Theory - 1 Existence of Laplace Transforms Before continuing our use of Laplace transforms for solving DEs, it is worth digressing through a quick investigation of which functions actually

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

Computing inverse Laplace Transforms.

Computing inverse Laplace Transforms. Review Exam 3. Sections 4.-4.5 in Lecture Notes. 60 minutes. 7 problems. 70 grade attempts. (0 attempts per problem. No partial grading. (Exceptions allowed, ask you TA. Integration table included. Complete

More information

Ordinary Differential Equations. Session 7

Ordinary Differential Equations. Session 7 Ordinary Differential Equations. Session 7 Dr. Marco A Roque Sol 11/16/2018 Laplace Transform Among the tools that are very useful for solving linear differential equations are integral transforms. An

More information

Differential Equations

Differential Equations Differential Equations Math 341 Fall 21 MWF 2:3-3:25pm Fowler 37 c 21 Ron Buckmire http://faculty.oxy.edu/ron/math/341/1/ Worksheet 29: Wednesday December 1 TITLE Laplace Transforms and Introduction to

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method David Levermore Department of Mathematics University of Maryland

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method David Levermore Department of Mathematics University of Maryland HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method David Levermore Department of Mathematics University of Maryland 9 December Because the presentation of this material in

More information

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method. David Levermore Department of Mathematics University of Maryland

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method. David Levermore Department of Mathematics University of Maryland HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IV: Laplace Transform Method David Levermore Department of Mathematics University of Maryland 6 April Because the presentation of this material in lecture

More information

Math 3313: Differential Equations Laplace transforms

Math 3313: Differential Equations Laplace transforms Math 3313: Differential Equations Laplace transforms Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Introduction Inverse Laplace transform Solving ODEs with Laplace

More information

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes, Dolors Roselló Ecuaciones diferenciales y transformadas de Laplace con aplicaciones L.M. Sánchez, M.P. Legua Ref.: 211-798 Capítulo

More information

Laplace Transform. Chapter 4

Laplace Transform. Chapter 4 Chapter 4 Laplace Transform It s time to stop guessing solutions and find a systematic way of finding solutions to non homogeneous linear ODEs. We define the Laplace transform of a function f in the following

More information

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is,

(f g)(t) = Example 4.5.1: Find f g the convolution of the functions f(t) = e t and g(t) = sin(t). Solution: The definition of convolution is, .5. Convolutions and Solutions Solutions of initial value problems for linear nonhomogeneous differential equations can be decomposed in a nice way. The part of the solution coming from the initial data

More information

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions.

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. COLOR LAYER red LAPLACE TRANSFORM Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. + Differentiation of Transforms. F (s) e st f(t)

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

(an improper integral)

(an improper integral) Chapter 7 Laplace Transforms 7.1 Introduction: A Mixing Problem 7.2 Definition of the Laplace Transform Def 7.1. Let f(t) be a function on [, ). The Laplace transform of f is the function F (s) defined

More information

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals

Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals Math 353 Lecture Notes Week 6 Laplace Transform: Fundamentals J. Wong (Fall 217) October 7, 217 What did we cover this week? Introduction to the Laplace transform Basic theory Domain and range of L Key

More information

Chemical Engineering 436 Laplace Transforms (1)

Chemical Engineering 436 Laplace Transforms (1) Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations- facilitates combination of multiple components in a system to get the total

More information

Lecture 29. Convolution Integrals and Their Applications

Lecture 29. Convolution Integrals and Their Applications Math 245 - Mathematics of Physics and Engineering I Lecture 29. Convolution Integrals and Their Applications March 3, 212 Konstantin Zuev (USC) Math 245, Lecture 29 March 3, 212 1 / 13 Agenda Convolution

More information

The Laplace Transform

The Laplace Transform C H A P T E R 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive forcing terms. For such problems the methods described

More information

Chapter 6 The Laplace Transform

Chapter 6 The Laplace Transform Ordinary Differential Equations (Math 2302) 2017-2016 Chapter 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40. 28 CHAPTER 7 THE LAPLACE TRANSFORM EXERCISES 7 In Problems 8 use Definition 7 to find {f(t)} 2 3 4 5 6 7 8 9 f (t),, f (t) 4,, f (t) t,, f (t) 2t,, f (t) sin t,, f (t), cos t, t t t 2 t 2 t t t t t t t

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Math 308 Exam II Practice Problems

Math 308 Exam II Practice Problems Math 38 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Chapter 6: The Laplace Transform 6.3 Step Functions and

Chapter 6: The Laplace Transform 6.3 Step Functions and Chapter 6: The Laplace Transform 6.3 Step Functions and Dirac δ 2 April 2018 Step Function Definition: Suppose c is a fixed real number. The unit step function u c is defined as follows: u c (t) = { 0

More information

Ch 6.2: Solution of Initial Value Problems

Ch 6.2: Solution of Initial Value Problems Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) Lecture 19 Lecture 19 MA 201, PDE (2018) 1 / 24 Application of Laplace transform in solving ODEs ODEs with constant coefficients

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Math 307 Lecture 19. Laplace Transforms of Discontinuous Functions. W.R. Casper. Department of Mathematics University of Washington.

Math 307 Lecture 19. Laplace Transforms of Discontinuous Functions. W.R. Casper. Department of Mathematics University of Washington. Math 307 Lecture 19 Laplace Transforms of Discontinuous Functions W.R. Casper Department of Mathematics University of Washington November 26, 2014 Today! Last time: Step Functions This time: Laplace Transforms

More information

Ch 6.4: Differential Equations with Discontinuous Forcing Functions

Ch 6.4: Differential Equations with Discontinuous Forcing Functions Ch 6.4: Differential Equations with Discontinuous Forcing Functions! In this section focus on examples of nonhomogeneous initial value problems in which the forcing function is discontinuous. Example 1:

More information

MA 201, Mathematics III, July-November 2016, Laplace Transform

MA 201, Mathematics III, July-November 2016, Laplace Transform MA 21, Mathematics III, July-November 216, Laplace Transform Lecture 18 Lecture 18 MA 21, PDE (216) 1 / 21 Laplace Transform Let F : [, ) R. If F(t) satisfies the following conditions: F(t) is piecewise

More information

ODEs Cathal Ormond 1

ODEs Cathal Ormond 1 ODEs Cathal Ormond 2 1. Separable ODEs Contents 2. First Order ODEs 3. Linear ODEs 4. 5. 6. Chapter 1 Separable ODEs 1.1 Definition: An ODE An Ordinary Differential Equation (an ODE) is an equation whose

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 7

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 7 MS&E 321 Spring 12-13 Stochastic Systems June 1, 213 Prof. Peter W. Glynn Page 1 of 7 Section 9: Renewal Theory Contents 9.1 Renewal Equations..................................... 1 9.2 Solving the Renewal

More information

20. The pole diagram and the Laplace transform

20. The pole diagram and the Laplace transform 95 0. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

Laplace Transform Introduction

Laplace Transform Introduction Laplace Transform Introduction In many problems, a function is transformed to another function through a relation of the type: where is a known function. Here, is called integral transform of. Thus, an

More information

MATH CALCULUS I 1.5: Continuity

MATH CALCULUS I 1.5: Continuity MATH 12002 - CALCULUS I 1.5: Continuity Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12 Definition of Continuity Intuitively,

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Introduction There are two common approaches to the developing and understanding the Laplace transform It can be viewed as a generalization of the CTFT to include some signals with

More information

MATH 312 Section 7.1: Definition of a Laplace Transform

MATH 312 Section 7.1: Definition of a Laplace Transform MATH 312 Section 7.1: Definition of a Laplace Transform Prof. Jonathan Duncan Walla Walla University Spring Quarter, 2008 Outline 1 The Laplace Transform 2 The Theory of Laplace Transforms 3 Conclusions

More information

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have Math 090 Midterm Exam Spring 07 S o l u t i o n s. Results of this problem will be used in other problems. Therefore do all calculations carefully and double check them. Find the inverse Laplace transform

More information

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division.

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Prerequisites: olving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Maths Applications: Integration; graph sketching. Real-World Applications:

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff

Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff Partial Fractions and the Coverup Method 8.03 Haynes Miller and Jeremy Orloff *Much of this note is freely borrowed from an MIT 8.0 note written by Arthur Mattuck. Heaviside Cover-up Method. Introduction

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

Second Order Linear ODEs, Part II

Second Order Linear ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Non-homogeneous Linear Equations 1 Non-homogeneous Linear Equations

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information

The Laplace Transform and the IVP (Sect. 6.2).

The Laplace Transform and the IVP (Sect. 6.2). The Laplace Transform and the IVP (Sect..2). Solving differential equations using L ]. Homogeneous IVP. First, second, higher order equations. Non-homogeneous IVP. Recall: Partial fraction decompositions.

More information

Math 205, Winter 2018, Assignment 3

Math 205, Winter 2018, Assignment 3 Math 05, Winter 08, Assignment 3 Solutions. Calculate the following integrals. Show your steps and reasoning. () a) ( + + )e = ( + + )e ( + )e = ( + + )e ( + )e + e = ( )e + e + c = ( + )e + c This uses

More information

Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels

Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels Volterra Integral Equations of the First Kind with Jump Discontinuous Kernels Denis Sidorov Energy Systems Institute, Russian Academy of Sciences e-mail: contact.dns@gmail.com INV Follow-up Meeting Isaac

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

Ordinary differential equations

Ordinary differential equations Class 11 We will address the following topics Convolution of functions Consider the following question: Suppose that u(t) has Laplace transform U(s), v(t) has Laplace transform V(s), what is the inverse

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Chapter. Part 1: Consider the function

Chapter. Part 1: Consider the function Chapter 9 9.2 Analysing rational Functions Pages 446 456 Part 1: Consider the function a) What value of x is important to consider when analysing this function? b) Now look at the graph of this function

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

18.03 Class 23, Apr 2. Laplace Transform: Second order equations; completing the square; t-shift; step and delta signals. Rules:

18.03 Class 23, Apr 2. Laplace Transform: Second order equations; completing the square; t-shift; step and delta signals. Rules: 18.03 Class 23, Apr 2 Laplace Transform: Second order equations; completing the square; t-shift; step and delta signals. Rules: L is linear: af(t) + bg(t) ----> af(s) + bg(s) F(s) essentially determines

More information

Study guide - Math 220

Study guide - Math 220 Study guide - Math 220 November 28, 2012 1 Exam I 1.1 Linear Equations An equation is linear, if in the form y + p(t)y = q(t). Introducing the integrating factor µ(t) = e p(t)dt the solutions is then in

More information

Advanced Engineering Mathematics

Advanced Engineering Mathematics Advanced Engineering Mathematics Note 6 Laplace Transforms CHUNG, CHIH-CHUNG Outline Introduction & Partial Fractions Laplace Transform. Linearity. First Shifting Theorem (s-shifting) Transforms of Derivatives

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Scope and Sequence Mathematics Algebra 2 400

Scope and Sequence Mathematics Algebra 2 400 Scope and Sequence Mathematics Algebra 2 400 Description : Students will study real numbers, complex numbers, functions, exponents, logarithms, graphs, variation, systems of equations and inequalities,

More information

The Laplace Transform. Background: Improper Integrals

The Laplace Transform. Background: Improper Integrals The Laplace Transform Background: Improper Integrals Recall: Definite Integral: a, b real numbers, a b; f continuous on [a, b] b a f(x) dx 1 Improper integrals: Type I Infinite interval of integration

More information

Systems Engineering/Process Control L4

Systems Engineering/Process Control L4 1 / 24 Systems Engineering/Process Control L4 Input-output models Laplace transform Transfer functions Block diagram algebra Reading: Systems Engineering and Process Control: 4.1 4.4 2 / 24 Laplace transform

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] = Chapter 3 The Laplace Transform 3. The Laplace Transform The Laplace transform of the function f(t) is defined L[f(t)] = e st f(t) dt, for all values of s for which the integral exists. The Laplace transform

More information

Applied Differential Equation. October 22, 2012

Applied Differential Equation. October 22, 2012 Applied Differential Equation October 22, 22 Contents 3 Second Order Linear Equations 2 3. Second Order linear homogeneous equations with constant coefficients.......... 4 3.2 Solutions of Linear Homogeneous

More information

A sufficient condition for the existence of the Fourier transform of f : R C is. f(t) dt <. f(t) = 0 otherwise. dt =

A sufficient condition for the existence of the Fourier transform of f : R C is. f(t) dt <. f(t) = 0 otherwise. dt = Fourier transform Definition.. Let f : R C. F [ft)] = ˆf : R C defined by The Fourier transform of f is the function F [ft)]ω) = ˆfω) := ft)e iωt dt. The inverse Fourier transform of f is the function

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

CHAPTER 8 Laplace Transforms

CHAPTER 8 Laplace Transforms CHAPTER Laplace Transforms IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic problem solving techniques in mathematics: transform a difficult problem into an

More information

Math Exam 3 Solutions

Math Exam 3 Solutions Math 6 - Exam 3 Solutions Thursday, July 3rd, 0 Recast the following higher-order differential equations into first order systems If the equation is linear, be sure to give the coefficient matrix At and

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Definition and Properties

Definition and Properties 1. Definition The convolution of two functions f and g is a third function which we denote f g. It is defined as the following integral ( f g)(t) = t + f (τ)g(t τ) dτ for t >. (1) We will leave this unmotivated

More information

Partial Fractions Jeremy Orloff

Partial Fractions Jeremy Orloff Partial Fractions Jeremy Orloff *Much of this note is freely borrowed from an MIT 8.0 note written by Arthur Mattuck. Partial fractions and the coverup method. Heaviside Cover-up Method.. Introduction

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Generalizing the Fourier Transform The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the

More information

Chapter 7: The Laplace Transform

Chapter 7: The Laplace Transform Chapter 7: The Laplace Tranform 王奕翔 Department of Electrical Engineering National Taiwan Univerity ihwang@ntu.edu.tw November 2, 213 1 / 25 王奕翔 DE Lecture 1 Solving an initial value problem aociated with

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Background LTI Systems (4A) Young Won Lim 4/20/15

Background LTI Systems (4A) Young Won Lim 4/20/15 Background LTI Systems (4A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Short Solutions to Review Material for Test #2 MATH 3200

Short Solutions to Review Material for Test #2 MATH 3200 Short Solutions to Review Material for Test # MATH 300 Kawai # Newtonian mechanics. Air resistance. a A projectile is launched vertically. Its height is y t, and y 0 = 0 and v 0 = v 0 > 0. The acceleration

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Linear Systems Theory

Linear Systems Theory ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system? -- Time domain -- Frequency domain (Laplace

More information

CLTI System Response (4A) Young Won Lim 4/11/15

CLTI System Response (4A) Young Won Lim 4/11/15 CLTI System Response (4A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information

The Laplace Transform. Background: Improper Integrals

The Laplace Transform. Background: Improper Integrals The Laplace Transform Background: Improper Integrals Recall: Definite Integral: a, b real numbers, a b; f continuous on [a, b] b a f(x) dx 1 Improper integrals: Type I Infinite interval of integration

More information

The Laplace Transform (Sect. 4.1). The Laplace Transform (Sect. 4.1).

The Laplace Transform (Sect. 4.1). The Laplace Transform (Sect. 4.1). The Laplace Transform (Sect. 4.1). s of Laplace Transforms. The Laplace Transform (Sect. 4.1). s of Laplace Transforms. The definition of the Laplace Transform. Definition The function F : D F R is the

More information

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information