The Laplace Transform

Size: px
Start display at page:

Download "The Laplace Transform"

Transcription

1 The Laplace Transform

2 Generalizing the Fourier Transform The CTFT expresses a time-domain signal as a linear combination of complex sinusoids of the form e jωt. In the generalization of the CTFT to the Laplace transform, the complex sinusoids become complex exponentials of the form e st where s can have any complex value. Replacing the complex sinusoids with complex exponentials leads to this definition of the Laplace transform. L( x( t) ) = X s L x t = x t X s e st dt 1/13/11 M. J. Roberts - All Rights Reserved 2

3 Generalizing the Fourier Transform The variable s is viewed as a generalization of the variable ω of the form s = σ + jω. Then, when σ, the real part of s, is zero, the Laplace transform reduces to the CTFT. Using s = σ + jω the Laplace transform is = x t X s e ( σ + jω )t dt = F x( t)e σt which is the Fourier transform of x( t)e σt 1/13/11 M. J. Roberts - All Rights Reserved 3

4 Generalizing the Fourier Transform The extra factor e σt is sometimes called a convergence factor because, when chosen properly, it makes the integral converge for some signals for which it would not otherwise converge. For example, strictly speaking, the signal Au t does not have a CTFT because the integral does not converge. But if it is multiplied by the convergence factor, and the real part of s is chosen appropriately, the CTFT integral will converge. Au( t)e jωt dt Ae σt u( t)e jωt dt 0 = A e jωt dt Does not converge = A e ( σ + jω )t dt Converges (if σ > 0) 0 1/13/11 M. J. Roberts - All Rights Reserved 4

5 Complex Exponential Excitation If a continuous-time LTI system is excited by a complex exponential x t = Ae st, where A and s can each be any complex number, the system response is also a complex exponential of the same functional form except multiplied by a complex constant. The response is the convolution of the excitation with the impulse response and that is = h τ y t x( t τ )dτ = h τ The quantity H s of h( t). = h τ Ae s t τ dτ = Ae st h( τ )e sτ dτ 1/13/11 M. J. Roberts - All Rights Reserved 5 x( t) e sτ dτ is called the Laplace transform

6 Complex Exponential Excitation Let x t = ( 6 + j3) e 3 j 2 A ( s ) t = ( )e ( 3 j 2)t and let h( t) = e 4t u( t). Then H( s) = 1, σ > 4 and, s + 4 in this case, s = 3 j2 = σ + jω with σ = 3 > 4 and ω = 2. y( t) = x( t)h( s) = 6 + j3 3 j2 + 4 e ( 3 j 2)t = ( )e ( 3 j 2)t. The response is the same functional form as the excitation but multiplied by a different complex constant. This only happens when the excitation is a complex exponential and that is what makes complex exponentials unique. 1/13/11 M. J. Roberts - All Rights Reserved 6

7 Pierre-Simon Laplace 3/23/1749-3/2/1827 1/13/11 M. J. Roberts - All Rights Reserved 7

8 The Transfer Function Let x( t) be the excitation and let y( t) be the response of a system with impulse response h( t). The Laplace transform of y( t) is Y s = y t Y s e st dt = h( t) x t = h τ Y s = h τ x( t τ )dτ e st dt dτ x( t τ )e st dt e st dt 1/13/11 M. J. Roberts - All Rights Reserved 8

9 The Transfer Function Y s = h τ dτ Let λ = t τ dλ = dt. Then Y s = h τ x( t τ )e st dt dτ x( s( λ+τ ) λ)e dλ = h( τ )e sτ dτ x( λ)e sλ dλ H( s) X( s) Y( s) = H( s)x( s) H( s) is called the transfer function. y( t) = x( t) h( t) L Y( s) = H( s)x( s) 1/13/11 M. J. Roberts - All Rights Reserved 9

10 The Transfer Function Let x( t) = u( t) and let h( t) = e 4t u( t). Find y( t). y( t) = x( t) h( t) = x τ y( t) = y t h( t τ )dτ = u τ ( 4 t τ )e u ( t τ )dτ t t 4( t τ ) e 4t 1 1 e dτ = e 4t e 4τ dτ = e 4t e 4t =, t > , t < 0 ( 1 e 4t )u( t) = 1/ 4 X( s) = 1/ s, H( s) = 1 s + 4 Y ( s ) = 1 s 1 s + 4 = 1/ 4 s x( t) = ( 1/ 4) 1 e 4t u t 1/ 4 s + 4 1/13/11 M. J. Roberts - All Rights Reserved 10

11 Cascade-Connected Systems If two systems are cascade connected the transfer function of the overall system is the product of the transfer functions of the two individual systems. 1/13/11 M. J. Roberts - All Rights Reserved 11

12 Direct Form II Realization A very common form of transfer function is a ratio of two polynomials in s, = Y( s) X( s) = N b k s k=0 H s N k=0 k a k s k = b N s N + b N 1 s N b 1 s + b 0 a N s N + a N 1 s N a 1 s + a 0 1/13/11 M. J. Roberts - All Rights Reserved 12

13 The transfer function can be conceived as the product of two transfer functions, and Direct Form II Realization H 1 H 2 ( s) = Y s 1 X s ( s) = Y s s Y 1 = 1 a N s N + a N 1 s N a 1 s + a 0 = b s N N + b N 1 s N b 1 s + b 0 1/13/11 M. J. Roberts - All Rights Reserved 13

14 From we get or X s H 1 ( s) = Y s 1 X s = 1 a N s N + a N 1 s N a 1 s + a 0 X( s) = a N s N + a N 1 s N a 1 s + a 0 Y 1 ( s) = a N s N Y 1 ( s) + a N 1 s N 1 Y 1 ( s) + + a 1 s Y 1 ( s) + a 0 Y 1 ( s) Rearranging s N Y 1 Direct Form II Realization ( s) = 1 a N { X( s) a N 1 s N 1 Y 1 ( s) + + a 1 s Y 1 ( s) + a 0 Y 1 ( s) } 1/13/11 M. J. Roberts - All Rights Reserved 14

15 Direct Form II Realization 1/13/11 M. J. Roberts - All Rights Reserved 15

16 Direct Form II Realization 1/13/11 M. J. Roberts - All Rights Reserved 16

17 Direct Form II Realization A system is defined by y H( s) = ( t) + 3 y t s 5 s 2 + 3s y( t) = x ( t) 5x t. 1/13/11 M. J. Roberts - All Rights Reserved 17

18 Inverse Laplace Transform There is an inversion integral y( t) = 1 j2π σ + j Y( s)e st ds, s = σ + jω σ j for finding y( t) from Y( s), but it is rarely used in practice. Usually inverse Laplace transforms are found by using tables of standard functions and the properties of the Laplace transform. 1/13/11 M. J. Roberts - All Rights Reserved 18

19 If x t Existence of the Laplace Transform Time Limited Signals = 0 for t < t 0 and t > t 1 it is a time limited signal. If is also bounded for all t, the Laplace transform integral x t converges and the Laplace transform exists for all s. 1/13/11 M. J. Roberts - All Rights Reserved 19

20 Existence of the Laplace Transform Let x( t) = rect ( t) = u( t +1/ 2) u( t 1/ 2). X s = rect t e st dt = e st dt = e s/2 e s/2 s 1/2 1/2 = es/2 e s/2 s, All s 1/13/11 M. J. Roberts - All Rights Reserved 20

21 Existence of the Laplace Transform Right- and Left-Sided Signals Right-Sided Left-Sided 1/13/11 M. J. Roberts - All Rights Reserved 21

22 Existence of the Laplace Transform Right- and Left-Sided Exponentials = e αt u t t 0 x t Right-Sided, α x t Left-Sided = eβt u t 0 t, β 1/13/11 M. J. Roberts - All Rights Reserved 22

23 Existence of the Laplace Right-Sided Exponential x( t) = e αt u( t t 0 ), α = e αt e st dt X s If Re s t 0 Transform = e ( α σ )t e jωt dt = σ > α the asymptotic behavior of e ( α σ )t e jωt as t is to approach zero and the Laplace transform integral converges. t 0 1/13/11 M. J. Roberts - All Rights Reserved 23

24 Existence of the Laplace Left-Sided Exponential x( t) = e βt u t 0 t = e βt e st dt X s, β Transform t 0 = e ( β σ )t e jωt dt t 0 If σ < β the asymptotic behavior of e ( β σ )t e jωt as t is to approach zero and the Laplace transform integral converges. 1/13/11 M. J. Roberts - All Rights Reserved 24

25 Existence of the Laplace Transform The two conditions σ > α and σ < β define the region of convergence (ROC) for the Laplace transform of right- and left-sided signals. 1/13/11 M. J. Roberts - All Rights Reserved 25

26 Existence of the Laplace Transform Any right-sided signal that grows no faster than an exponential in positive time and any left-sided signal that grows no faster than an exponential in negative time has a Laplace transform. = x r ( t) + x l ( t) where x r ( t) is the right-sided part and ( t) is the left-sided part and if x r ( t) < K r e αt and x l ( t) < K l e βt If x t x l and α and β are as small as possible, then the Laplace-transform integral converges and the Laplace transform exists for α < σ < β. Therefore if α < β the ROC is the region α < β. If α > β, there is no ROC and the Laplace transform does not exist. 1/13/11 M. J. Roberts - All Rights Reserved 26

27 Laplace Transform Pairs The Laplace transform of g 1 G 1 ( s) = Ae αt u( t)e st dt ( t) = Ae αt u( t) is 0 = A e ( s α )t dt = A e ( α σ )t e jωt dt = A s α This function has a pole at s = α and the ROC is the region to the right of that point. The Laplace transform of g 2 ( t) = Ae βt u t G 2 0 is ( s) = Ae βt u( t)e st dt = A e ( β s)t dt = A e ( β σ )t e jωt dt = A s β 0 This function has a pole at s = β and the ROC is the region to the left of that point. 0 1/13/11 M. J. Roberts - All Rights Reserved 27

28 Region of Convergence The following two Laplace transform pairs illustrate the importance of the region of convergence. e αt u t L 1 s + α, σ > α e αt L u( t) 1 s + α, σ < α The two time-domain functions are different but the algebraic expressions for their Laplace transforms are the same. Only the ROC s are different. 1/13/11 M. J. Roberts - All Rights Reserved 28

29 Region of Convergence Some of the most common Laplace transform pairs (There is more extensive table in the book.) ramp t u( t) L = t u( t) L e αt u( t) L L δ ( t) 1, All σ u( t) L = t u( t) L, σ > α e αt u( t) L 1/ s, σ > 0 1/ s 2, σ > 0 ramp t 1/ s + α 1/ s, σ < 0 1/ s 2, σ < 0 1/ s + α, σ < α e αt sin( ω 0 t)u t e αt cos( ω 0 t)u t L L ω 0 ( s + α ) ω 0 s + α ( s + α ) ω 0, σ > α e αt sin( ω 0 t)u t, σ > α e αt cos( ω 0 t)u t L L ω 0 ( s + α ) ω 0 s + α ( s + α ) ω 0, σ < α, σ < α

30 Laplace Transform Example Find the Laplace transform of = e t u( t) + e 2t u( t) x t e t u t e 2t u t L 1 s +1, σ > 1 L 1 s 2, σ < 2 e t u( t) + e 2t L u( t) 1 s +1 1 s 2, 1 < σ < 2 1/13/11 M. J. Roberts - All Rights Reserved 30

31 Laplace Transform Example Find the inverse Laplace transform of The ROC tells us that right-sided signal and that a left-sided signal. X( s) = 4 s s 6, 3 < σ < 6 x t 4 must inverse transform into a s must inverse transform into s 6 = 4e 3t u( t) +10e 6t u( t) 1/13/11 M. J. Roberts - All Rights Reserved 31

32 Laplace Transform Example Find the inverse Laplace transform of X( s) = 4 s s 6, σ > 6 The ROC tells us that both terms must inverse transform into a right-sided signal. = 4e 3t u( t) 10e 6t u( t) x t 1/13/11 M. J. Roberts - All Rights Reserved 32

33 Laplace Transform Example Find the inverse Laplace transform of X( s) = 4 s s 6, σ < 3 The ROC tells us that both terms must inverse transform into a left-sided signal. = 4e 3t u( t) +10e 6t u( t) x t 1/13/11 M. J. Roberts - All Rights Reserved 33

34 MATLAB System Objects A MATLAB system object is a special kind of variable in MATLAB that contains all the information about a system. It can be created with the tf command whose syntax is sys = tf(num,den) where num is a vector of numerator coefficients of powers of s, den is a vector of denominator coefficients of powers of s, both in descending order and sys is the system object. 1/13/11 M. J. Roberts - All Rights Reserved 34

35 MATLAB System Objects For example, the transfer function H 1 ( s) = can be created by the commands s s 5 + 4s 4 + 7s 3 +15s s + 75»num = [1 0 4] ; den = [ ] ;»H1 = tf(num,den) ;»H1 Transfer function: s ^ s ^ s ^ s ^ s ^ s /13/11 M. J. Roberts - All Rights Reserved 35

36 Partial-Fraction Expansion The inverse Laplace transform can always be found (in principle at least) by using the inversion integral. But that is rare in engineering practice. The most common type of Laplace-transform expression is a ratio of polynomials in s, G( s) = b s M M + b M 1 s M b 1 s + b 0 s N + a N 1 s N 1 + a 1 s + a 0 The denominator can be factored, putting it into the form, G s = b M s M + b M 1 s M b 1 s + b 0 ( s p 1 )( s p 2 ) s p N 1/13/11 M. J. Roberts - All Rights Reserved 36

37 Partial-Fraction Expansion For now, assume that there are no repeated poles and that N > M, making the fraction proper in s. Then it is possible to write the expression in the partial fraction form, where G( s) = K 1 + K s p 1 s p 2 K N s p N b M s M + b M 1 s M 1 + b 1 s + b 0 = K 1 + K ( s p 1 )( s p 2 ) ( s p N ) s p 1 s p 2 The K s can be found be any convenient method. K N s p N 1/13/11 M. J. Roberts - All Rights Reserved 37

38 Partial-Fraction Expansion Multiply both sides by s p 1 ( s p 1 ) b s M M + b M 1 s M b 1 s + b 0 ( s p 1 )( s p 2 ) ( s p N ) = K 1 + ( s p 1 ) + ( s p 1 ) K 2 + s p 2 K N s p N K 1 = b p M M M 1 + b M p b 1 p 1 + b 0 ( p 1 p 2 ) ( p 1 p N ) All the K s can be found by the same method and the inverse Laplace transform is then found by table look-up. 1/13/11 M. J. Roberts - All Rights Reserved 38

39 H( s) = Partial-Fraction Expansion 10s s + 4 K 1 = s + 4 ( s + 9) = K 1 K 2 = s + 9 H( s) = 8 s s s ( s + 4) s + 9 s K 2 s + 9, σ > 4 10s ( s + 4) s + 9 h( t) = ( 8e 4t +18e 9t )u( t) = s= 4 = s= 9 10s s s s + 4 8s s + 72 = s + 4 ( s + 9) = 40 s= 4 5 = 8 = 90 s= 9 5 = 18 = 10s s + 4 ( s + 9). Check. 1/13/11 M. J. Roberts - All Rights Reserved 39

40 Partial-Fraction Expansion If the expression has a repeated pole of the form, = b M s M + b M 1 s M b 1 s + b 0 G s ( s p 1 ) 2 ( s p 3 ) ( s p N ) the partial fraction expansion is of the form, G( s) = K 12 K N ( s p 1 ) + K 11 + K s p 1 s p 3 s p N and K 12 can be found using the same method as before. But K 11 cannot be found using the same method. 1/13/11 M. J. Roberts - All Rights Reserved 40

41 Partial-Fraction Expansion Instead K 11 can be found by using the more general formula K qk = 1 ( m k)! d m k ds m k ( s p ) m q H s s pq, k = 1,2,, m where m is the order of the qth pole, which applies to repeated poles of any order. If the expression is not a proper fraction in s the partialfraction method will not work. But it is always possible to synthetically divide the numerator by the denominator until the remainder is a proper fraction and then apply partial-fraction expansion. 1/13/11 M. J. Roberts - All Rights Reserved 41

42 Partial-Fraction Expansion H( s) = 10s ( s + 4) 2 s + 9 Repeated Pole K 12 = s + 4 Using K qk = K 11 = = K 12 ( s + 4) + K s ( s + 4) 2 ( s + 9) 1 d m k ( m k)! ds m k 1 ( 2 1)! d 2 1 s + 4 ds 2 1 s= 4 ( s p ) m q H s 2 H( s) s K 2 s + 9, σ > 4 = 40 5 = 8 s pq = d s 4 ds, k = 1,2,, m 10s s + 9 s 4 1/13/11 M. J. Roberts - All Rights Reserved 42

43 Partial-Fraction Expansion 1/13/11 M. J. Roberts - All Rights Reserved 43

44 H( s) = H( s) = Partial-Fraction Expansion 10s 2 s + 4 ( s + 9) 10s 2 s 2 +13s + 36, σ > 4, σ > 4 Improper in s Synthetic Division s 2 +13s s 2 H( s) = s s + 4 ( s + 9) h( t) = 10δ ( t) 162e 9t 32e 4t 10 10s s = 10 s s + 9 u t 130s 360, σ > 4 1/13/11 M. J. Roberts - All Rights Reserved 44

45 Inverse Laplace Transform Example G( s) = G( s) = G( s) = 3 / 2 g t Method 1 s ( s 3) s 2 4s + 5 s ( s 3) s 2 + j ( s 2 j) / 4 / 4 s j s 2 + j = 3 2 e3t j 3 j s 2 j, σ < 2 4 e ( 2 j )t + 3 j 4 e 2+ j t, σ < 2, σ < 2 u( t) 1/13/11 M. J. Roberts - All Rights Reserved 45

46 Inverse Laplace Transform Example = 3 2 e3t j g t 4 e ( 2 j )t + 3 j 4 e 2+ j t u( t) This looks like a function of time that is complex-valued. But, with the use of some trigonometric identities it can be put into the form = ( 3 / 2) e 2t cos( t) + 1/ 3 g t which has only real values. { sin( t) e3t }u t 1/13/11 M. J. Roberts - All Rights Reserved 46

47 Inverse Laplace Transform Example G( s) = G( s) = G( s) = 3 / 2 Method 2 s ( s 3) s 2 4s + 5 s ( s 3) s 2 + j ( s 2 j) / 4 / 4 s j s 2 + j 3 j s 2 j, σ < 2, σ < 2, σ < 2 Getting a common denominator and simplifying G( s) = 3 / 2 s s 10 s 2 4s + 5 = 3 / 2 s s 5 / 3 ( s 2) 2 + 1, σ < 2 1/13/11 M. J. Roberts - All Rights Reserved 47

48 Inverse Laplace Transform Example Method 2 G( s) = 3 / 2 s s 5 / 3 ( s 2) 2 +1, σ < 2 The denominator of the second term has the form of the Laplace transform of a damped cosine or damped sine but the numerator is not yet in the correct form. But by adding and subtracting the correct expression from that term and factoring we can put it into the form G( s) = 3 / 2 s s 2 ( s 2) / 3 s , σ < 2 1/13/11 M. J. Roberts - All Rights Reserved 48

49 Inverse Laplace Transform Example Method 2 G( s) = 3 / 2 s 3 3 s 2 2 ( s 2) / 3 ( s 2) 2, σ < 2 +1 This can now be directly inverse Laplace transformed into g( t) = ( 3 / 2) { e 2t cos( t) + ( 1/ 3)sin( t) e3t }u( t) which is the same as the previous result. 1/13/11 M. J. Roberts - All Rights Reserved 49

50 Inverse Laplace Transform Example Method 3 When we have a pair of poles p 2 and p 3 that are complex conjugates we can convert the form G( s) = A s 3 + K 2 + K 3 s p 2 s p 3 K 3 p 2 K 2 p 3 into the form G( s) = A s 3 + s K 2 + K 3 = A s 2 ( p 1 + p 2 )s + p 1 p 2 s 3 + Bs + C s 2 ( p 1 + p 2 )s + p 1 p 2 In this example we can find the constants A, B and C by realizing that G( s) = s ( s 3) ( s 2 4s + 5) A s 3 + Bs + C s 2 4s + 5, σ < 2 is not just an equation, it is an identity. That means it must be an equality for any value of s. 1/13/11 M. J. Roberts - All Rights Reserved 50

51 Inverse Laplace Transform Example Method 3 A can be found as before to be 3 / 2. Letting s = 0, the identity becomes 0 3 / C and C = 5 / 2. Then, letting 5 s = 1, and solving we get B = 3 / 2. Now G( s) = 3 / 2 s 3 + ( 3 / 2)s + 5 / 2, σ < 2 s 2 4s + 5 or G( s) = 3 / 2 s 3 3 s 5 / 3 2 s 2 4s + 5, σ < 2 This is the same as a result in Method 2 and the rest of the solution is also the same. The advantage of this method is that all the numbers are real. 1/13/11 M. J. Roberts - All Rights Reserved 51

52 Use of MATLAB in Partial Fraction Expansion MATLAB has a function residue that can be very helpful in partial fraction expansion. Its syntax is [r,p,k] = residue(b,a) where b is a vector of coefficients of descending powers of s in the numerator of the expression and a is a vector of coefficients of descending powers of s in the denominator of the expression, r is a vector of residues, p is a vector of finite pole locations and k is a vector of so-called direct terms which result when the degree of the numerator is equal to or greater than the degree of the denominator. For our purposes, residues are simply the numerators in the partial-fraction expansion. 1/13/11 M. J. Roberts - All Rights Reserved 52

53 Let g t and h t Laplace Transform Properties L and h( t) form the transform pairs, g( t) G( s) L H( s) with ROC's, ROC G and ROC H respectively. Linearity L α g( t) + β h( t) α G s + β H( s) ROC ROC G ROC H L Time Shifting g( t t 0 ) G( s)e st 0 s-domain Shift ROC = ROC G L e s0t g t G s s 0 ROC = ROC G shifted by s 0, (s is in ROC if s s 0 is in ROC G ) 1/13/11 M. J. Roberts - All Rights Reserved 53

54 Laplace Transform Properties Time Scaling Time Differentiation s-domain Differentiation L g at ( 1/ a )G s / a ROC = ROC G scaled by a (s is in ROC if s / a is in ROC G ) d dt g( t) L ROC ROC G t g t L sg( s) d ds G( s) ROC = ROC G 1/13/11 M. J. Roberts - All Rights Reserved 54

55 Laplace Transform Properties Convolution in Time Time Integration g( t) h t L G( s)h( s) ROC ROC G ROC H t L g( τ )dτ G( s) / s ROC ROC G σ > 0 If g( t) = 0, t < 0 and there are no impulses or higher-order singularities at t = 0 then Initial Value Theorem: g( 0 + ) = lim sg s s Final Value Theorem: lim g t t = lim s 0 sg s if lim t g t exists 1/13/11 M. J. Roberts - All Rights Reserved 55

56 Laplace Transform Properties Final Value Theorem = lim limg t sg s t s 0 This theorem only applies if the limit lim g t t It is possible for the limit lim sg s s 0 limit lim g t t does not exist. For example x( t) = cos ω 0 t L actually exists. to exist even though the X( s) = s lim s X s s 0 2 = lim s 0 s 2 + ω = but lim cos ω 0 t t does not exist. s s 2 + ω 0 2 1/13/11 M. J. Roberts - All Rights Reserved 56

57 Laplace Transform Properties Final Value Theorem if all the lie in the open left half of the s plane. Be sure must could have a single The final value theorem applies to a function G s poles of sg s to notice that this does not say that all the poles of G s lie in the open left half of the s plane. G s pole at s = 0 and the final value theorem would still apply. 1/13/11 M. J. Roberts - All Rights Reserved 57

58 Use of Laplace Transform Properties = u( t) u( t a) and L L L Find the Laplace transforms of x t x( 2t) = u( 2t) u( 2t a). From the table u t Then, using the time-shifting property u t a Using the linearity property u( t) u t a Using the time-scaling property L u( 2t) u( 2t a) e as s s s/2 = 1 / s, σ > 0. e as / s, σ > 0. ( 1 e as ) / s, σ > 0. 1 e as/2 s, σ > 0 1/13/11 M. J. Roberts - All Rights Reserved 58

59 Use of Laplace Transform Properties Use the s-domain differentiation property and L u t 1 / s, σ > 0 to find the inverse Laplace transform of 1 / s 2. The s-domain differentiation property is t g t L d ( ds G( s) ). Then t u t L d ds 1 s = 1. Then using the linearity property 2 s t u t L 1 s. 2 1/13/11 M. J. Roberts - All Rights Reserved 59

60 The Unilateral Laplace Transform In most practical signal and system analysis using the Laplace transform a modified form of the transform, called the unilateral Laplace transform, is used. The unilateral Laplace transform is defined by G s = g t 0 e st dt. The only difference between this version and the previous definition is the change of the lower integration limit from to 0. With this definition, all the Laplace transforms of causal functions are the same as before with the same ROC, the region of the s plane to the right of all the finite poles. 1/13/11 M. J. Roberts - All Rights Reserved 60

61 The Unilateral Laplace Transform The unilateral Laplace transform integral excludes negative time. If a function has non-zero behavior in negative time its unilateral and bilateral transforms will be different. Also functions with the same positive time behavior but different negative time behavior will have the same unilateral Laplace transform. Therefore, to avoid ambiguity and confusion, the unilateral Laplace transform should only be used in analysis of causal signals and systems. This is a limitation but in most practical analysis this limitation is not significant and the unilateral Laplace transform actually has advantages. 1/13/11 M. J. Roberts - All Rights Reserved 61

62 The Unilateral Laplace Transform The main advantage of the unilateral Laplace transform is that the ROC is simpler than for the bilateral Laplace transform and, in most practical analysis, involved consideration of the ROC is unnecessary. The inverse Laplace transform is unchanged. It is g( t) = 1 j2π σ + j σ j G( s)e + st ds 1/13/11 M. J. Roberts - All Rights Reserved 62

63 The Unilateral Laplace Transform Some of the properties of the unilateral Laplace transform are different from the bilateral Laplace transform. Time-Shifting L g( t t 0 ) G( s)e 0, t 0 > 0 Time Scaling L g( at) ( 1 / a )G s / a First Time Derivative Nth Time Derivative Time Integration d N dt N t 0 d dt g t L ( g( t) L ) sg( s) g( 0 ) s N G s L g( τ )dτ G( s) / s, a > 0 N d n 1 s N n n=1 dt n 1 ( g( t) ) t =0 1/13/11 M. J. Roberts - All Rights Reserved 63

64 The Unilateral Laplace Transform The time shifting property applies only for shifts to the right because a shift to the left could cause a signal to become non-causal. For the same reason scaling in time must only be done with positive scaling coefficients so that time is not reversed producing an anti-causal function. The derivative property must now take into account the initial value of the function at time t = 0 and the integral property applies only to functional behavior after time t = 0. Since the unilateral and bilateral Laplace transforms are the same for causal functions, the bilateral table of transform pairs can be used for causal functions. 1/13/11 M. J. Roberts - All Rights Reserved 64

65 The Unilateral Laplace Transform The Laplace transform was developed for the solution of differential equations and the unilateral form is especially well suited for solving differential equations with initial conditions. For example, d 2 dt 2 x t + 7 d dt with initial conditions x 0 x t = 2 and d dt + 12 x( t) = 0 ( x( t) ) t =0 = 4. Laplace transforming both sides of the equation, using the new derivative property for unilateral Laplace transforms, s 2 X( s) s x( 0 ) d dt ( x( t) ) t =0 + 7 s X( s) x X s = 0 1/13/11 M. J. Roberts - All Rights Reserved 65

66 The Unilateral Laplace Transform Solving for X( s) or X( s) = x t =2 =2 = 4 s x( 0 ) + 7x( 0 ) + d ( x( t) ) dt t =0 s 2 + 7s s + 10 s 2 + 7s + 12 = 4 s The inverse transform yields s + 4. This solution solves the differential equation X( s) = u t = 4e 3t 2e 4t with the given initial conditions. 1/13/11 M. J. Roberts - All Rights Reserved 66

67 Pole-Zero Diagrams and Frequency Response If the transfer function of a stable system is H(s), the frequency response is H(jω). The most common type of transfer function is of the form, H s Therefore H(jω) is H jω = A s z 1 s z 2 ( s p 1 ) s p 2 = A jω z 1 s z M s p N jω z 2 ( jω p 1 ) jω p 2 jω z M jω p N 1/13/11 M. J. Roberts - All Rights Reserved 67

68 Let H( s) = 3s s + 3. H( jω ) = 3 jω jω + 3 The numerator jω and the denominator jω + 3 can be conceived as vectors in the s plane. H( jω ) = 3 Pole-Zero Diagrams and Frequency Response jω jω + 3 H jω = 3 =0 + jω ( jω + 3 ) 1/13/11 M. J. Roberts - All Rights Reserved 68

69 Pole-Zero Diagrams and Frequency Response lim ω 0 H( jω ) = lim 3 ω 0 jω jω + 3 = 0 lim ω 0 + H( jω ) = lim 3 ω 0 + jω jω + 3 = 0 lim H( jω ) = lim 3 ω ω jω jω + 3 = 3 lim H( jω ) = lim 3 ω + ω + jω jω + 3 = 3 1/13/11 M. J. Roberts - All Rights Reserved 69

70 Pole-Zero Diagrams and Frequency Response lim H ( jω ) = π ω = π 2 lim H ( jω ) = π + ω = π 2 lim H jω ω = π 2 π 2 = 0 lim H jω ω + = π 2 π 2 = 0 1/13/11 M. J. Roberts - All Rights Reserved 70

71 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 71

72 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 72

73 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 73

74 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 74

75 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 75

76 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 76

77 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 77

78 Pole-Zero Diagrams and Frequency Response 1/13/11 M. J. Roberts - All Rights Reserved 78

The Laplace Transform

The Laplace Transform The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Introduction There are two common approaches to the developing and understanding the Laplace transform It can be viewed as a generalization of the CTFT to include some signals with

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Generalizing the DTFT!

Generalizing the DTFT! The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discrete-time radian frequency, a real variable. The quantity e jωn is then a complex sinusoid

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology. Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

ELG 3150 Introduction to Control Systems. TA: Fouad Khalil, P.Eng., Ph.D. Student

ELG 3150 Introduction to Control Systems. TA: Fouad Khalil, P.Eng., Ph.D. Student ELG 350 Introduction to Control Systems TA: Fouad Khalil, P.Eng., Ph.D. Student fkhalil@site.uottawa.ca My agenda for this tutorial session I will introduce the Laplace Transforms as a useful tool for

More information

CHAPTER 5: LAPLACE TRANSFORMS

CHAPTER 5: LAPLACE TRANSFORMS CHAPTER 5: LAPLACE TRANSFORMS SAMANTHA RAMIREZ PREVIEW QUESTIONS What are some commonly recurring functions in dynamic systems and their Laplace transforms? How can Laplace transforms be used to solve

More information

z Transform System Analysis

z Transform System Analysis z Transform System Analysis Block Diagrams and Transfer Functions Just as with continuous-time systems, discrete-time systems are conveniently described by block diagrams and transfer functions can be

More information

Chap. 3 Laplace Transforms and Applications

Chap. 3 Laplace Transforms and Applications Chap 3 Laplace Transforms and Applications LS 1 Basic Concepts Bilateral Laplace Transform: where is a complex variable Region of Convergence (ROC): The region of s for which the integral converges Transform

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

CH.6 Laplace Transform

CH.6 Laplace Transform CH.6 Laplace Transform Where does the Laplace transform come from? How to solve this mistery that where the Laplace transform come from? The starting point is thinking about power series. The power series

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

Signals and Systems. Spring Room 324, Geology Palace, ,

Signals and Systems. Spring Room 324, Geology Palace, , Signals and Systems Spring 2013 Room 324, Geology Palace, 13756569051, zhukaiguang@jlu.edu.cn Chapter 10 The Z-Transform 1) Z-Transform 2) Properties of the ROC of the z-transform 3) Inverse z-transform

More information

Representing a Signal

Representing a Signal The Fourier Series Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity and timeinvariance of the system and represents the

More information

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Transform Solutions to LTI Systems Part 3

Transform Solutions to LTI Systems Part 3 Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised

More information

7.2 Relationship between Z Transforms and Laplace Transforms

7.2 Relationship between Z Transforms and Laplace Transforms Chapter 7 Z Transforms 7.1 Introduction In continuous time, the linear systems we try to analyse and design have output responses y(t) that satisfy differential equations. In general, it is hard to solve

More information

Notes for ECE-320. Winter by R. Throne

Notes for ECE-320. Winter by R. Throne Notes for ECE-3 Winter 4-5 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................

More information

ECE 3793 Matlab Project 3

ECE 3793 Matlab Project 3 ECE 3793 Matlab Project 3 Spring 2017 Dr. Havlicek DUE: 04/25/2017, 11:59 PM What to Turn In: Make one file that contains your solution for this assignment. It can be an MS WORD file or a PDF file. Make

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

Numeric Matlab for Laplace Transforms

Numeric Matlab for Laplace Transforms EE 213 Spring 2008 LABORATORY # 4 Numeric Matlab for Laplace Transforms Objective: The objective of this laboratory is to introduce some numeric Matlab commands that are useful with Laplace transforms

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing The -Transform and Its Application to the Analysis of LTI Systems Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Cech

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. Mark Fowler Note Set #9 C-T Systems: Laplace Transform Transfer Function Reading Assignment: Section 6.5 of Kamen and Heck /7 Course Flow Diagram The arrows here show conceptual

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

INTRODUCTION TO TRANSFER FUNCTIONS

INTRODUCTION TO TRANSFER FUNCTIONS INTRODUCTION TO TRANSFER FUNCTIONS The transfer function is the ratio of the output Laplace Transform to the input Laplace Transform assuming zero initial conditions. Many important characteristics of

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) =

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) = Z-Transform The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = Z : G(z) = It is Used in Digital Signal Processing n= g(t)e st dt g[n]z n Used to Define Frequency

More information

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals

Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties

More information

The z-transform Part 2

The z-transform Part 2 http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

More information

Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions

Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions Objectives Scope of this Lecture: Previously we understood the meaning of causal systems, stable systems

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

EE Control Systems LECTURE 9

EE Control Systems LECTURE 9 Updated: Sunday, February, 999 EE - Control Systems LECTURE 9 Copyright FL Lewis 998 All rights reserved STABILITY OF LINEAR SYSTEMS We discuss the stability of input/output systems and of state-space

More information

SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB

SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB INTRODUCTION SIGNALS AND SYSTEMS LABORATORY 4: Polynomials, Laplace Transforms and Analog Filters in MATLAB Laplace transform pairs are very useful tools for solving ordinary differential equations. Most

More information

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms. Process Dynamics and Control Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

More information

Poles, Zeros and System Response

Poles, Zeros and System Response Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Circuit Analysis Using Fourier and Laplace Transforms

Circuit Analysis Using Fourier and Laplace Transforms EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November

More information

ELEC2400 Signals & Systems

ELEC2400 Signals & Systems ELEC2400 Signals & Systems Chapter 7. Z-Transforms Brett Ninnes brett@newcastle.edu.au. School of Electrical Engineering and Computer Science The University of Newcastle Slides by Juan I. Yu (jiyue@ee.newcastle.edu.au

More information

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z).

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z). Page no: 1 UNIT-II Z-TRANSFORM The Z-Transform The direct -transform, properties of the -transform, rational -transforms, inversion of the transform, analysis of linear time-invariant systems in the -

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

EE Homework 5 - Solutions

EE Homework 5 - Solutions EE054 - Homework 5 - Solutions 1. We know the general result that the -transform of α n 1 u[n] is with 1 α 1 ROC α < < and the -transform of α n 1 u[ n 1] is 1 α 1 with ROC 0 < α. Using this result, the

More information

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions.

+ + LAPLACE TRANSFORM. Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. COLOR LAYER red LAPLACE TRANSFORM Differentiation & Integration of Transforms; Convolution; Partial Fraction Formulas; Systems of DEs; Periodic Functions. + Differentiation of Transforms. F (s) e st f(t)

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Chapter 13 Z Transform

Chapter 13 Z Transform Chapter 13 Z Transform 1. -transform 2. Inverse -transform 3. Properties of -transform 4. Solution to Difference Equation 5. Calculating output using -transform 6. DTFT and -transform 7. Stability Analysis

More information

Formulation of Linear Constant Coefficient ODEs

Formulation of Linear Constant Coefficient ODEs E E 380 Linear Control Systems Supplementary Reading Methods for Solving Linear Constant Coefficient ODEs In this note, we present two methods for solving linear constant coefficient ordinary differential

More information

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

3.4. ZEROS OF POLYNOMIAL FUNCTIONS 3.4. ZEROS OF POLYNOMIAL FUNCTIONS What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions. Find rational zeros of polynomial functions. Find

More information

Z-Transform. 清大電機系林嘉文 Original PowerPoint slides prepared by S. K. Mitra 4-1-1

Z-Transform. 清大電機系林嘉文 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Chapter 6 Z-Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 z-transform The DTFT provides a frequency-domain representation of discrete-time

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Explanations and Discussion of Some Laplace Methods: Transfer Functions and Frequency Response. Y(s) = b 1

Explanations and Discussion of Some Laplace Methods: Transfer Functions and Frequency Response. Y(s) = b 1 Engs 22 p. 1 Explanations Discussion of Some Laplace Methods: Transfer Functions Frequency Response I. Anatomy of Differential Equations in the S-Domain Parts of the s-domain solution. We will consider

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 230 SIGNALS AND SYSTEMS LABORATORY MODULE LAB 5 : LAPLACE TRANSFORM & Z-TRANSFORM 1 LABORATORY OUTCOME Ability to describe

More information

Line Spectra and their Applications

Line Spectra and their Applications In [ ]: cd matlab pwd Line Spectra and their Applications Scope and Background Reading This session concludes our introduction to Fourier Series. Last time (http://nbviewer.jupyter.org/github/cpjobling/eg-47-

More information

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

More information

Chapter 7. Digital Control Systems

Chapter 7. Digital Control Systems Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

More information

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse

STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion EE 102 spring 2001-2002 Handout #10 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS i SYLLABUS osmania university UNIT - I CHAPTER - 1 : TRANSIENT RESPONSE Initial Conditions in Zero-Input Response of RC, RL and RLC Networks, Definitions of Unit Impulse, Unit Step and Ramp Functions,

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

X (z) = n= 1. Ã! X (z) x [n] X (z) = Z fx [n]g x [n] = Z 1 fx (z)g. r n x [n] ª e jnω

X (z) = n= 1. Ã! X (z) x [n] X (z) = Z fx [n]g x [n] = Z 1 fx (z)g. r n x [n] ª e jnω 3 The z-transform ² Two advantages with the z-transform:. The z-transform is a generalization of the Fourier transform for discrete-time signals; which encompasses a broader class of sequences. The z-transform

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information