Programming Languages

Size: px
Start display at page:

Download "Programming Languages"

Transcription

1 CSE 230: Winter 2008 Principles of Programming Languages Lecture 7: Axiomatic Semantics Axiomatic Semantics over low Graphs c {P} if P P {P } {Q} c if Q Q {Q} {Q } Ranjit Jhala UC San Diego Relaxing specifications via rule of consequence Sequential Composition Conditionals C 1 C 2 {P} {Q} {R} {x-1 y} y-1} {x y} x:= x-1 {x y-1} { x 0. x 0 y y:= y-1 Æ x=x 0-1} {x y} Backwards using weakest preconditions orwards using strongest postconditions { y 0 x 0. x 0 y 0 Æ x=x 0-1 Æ y=y 0-1} {P} E {PÆE} { PÆ E} { x 0 } x=0 {x 0Æx=0} { x 0 {x 1} Æ x=0 } orwards {(P 1 ÆE)Ç(P 2 Æ E)} E {P 1 } { P 2 } { x=0 Ç x 1} x=0 {x=0} {x 1} Backwards

2 Joins Conditional+Join: orward { x 0 Ç a = 0 } {P 1 } {P 2 } {P} {P} { x 0 } a := 2*x x<>0 { x=0 Æ a=0 } { x 0 Ç a = 2*x} {P 1 Ç P 2 } {P} { a == 2*x } orwards Backwards Check the implications (simplifications) Conditionals+Joins: Backward { (x 0 Æ true) Ç (x = 0 Æ a = 2*x) } x<>0 { 2*x = 2*x } { a = 2*x } { a = 2*x} a := 2*x { a = 2*x } orward or Backward? orward reasoning Know the precondition Want to know what postcond the code guarantees Backward reasoning Know what we want to code to establish Want to know under what preconditions this happens

3 Another Example: Double Locking lock Locking Rules Boolean variable locked = lock is held or not unlock unlock lock { locked Æ P[true/locked] } lock { P } lock behaves as assert(!locked);locked:=true An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock. { locked Æ P[false/locked] } unlock { P } unlock behaves as assert(locked);locked:=false Calls to lock and unlock must alternate. Locking Example { locked Æ x = 0 } { locked Æ x = 0 } { locked Æ x = 0 } lock x=0 { locked } { locked Æ x 0 } {lockedæx=0 Ç lockedæ x 0) } x=0 { locked Æ x = 0 } { locked Æ x 0 } { locked Æ (x = 0) } unlock { locked } Review x:=e { Q } { P } if Q P[E\x] } { P } { P 1 } { P 2 } { P } if P 1 P and P 2 P E { P 1 } { P 2 } if PÆE P 1 if PÆ E P 2 Implication is always in the direction of the control flow

4 What about real languages? Loops unction calls Pointers Reasoning about loops: Rules ` {A Æ b} c {A} ` {A} while b do c {AÆ b} Rewrite A with I : Loop Invariant P I ` {I Æ b} c {I} ` {I} while b do c {IÆ b} ` {P} while b do c {Q} Rule of Consequence IÆ b Q Reasoning about loops: low Graphs Loops can be handled using conditionals and joins Consider the while b do S statement { P } { I } Loop invariant { I } S b { Q } { I Æ E } if P I (loop invariant holds initially) and IÆ b Q (loop establishes the postcondition) and { I Æ b } S { I } (loop invariant is preserved) Loop Example Verify: {x=8 Æ y=16} while(x>0){x--; y-=2;} {y=0} x--; y-=2 { I } { I Æ x>0 } x>0 { x = 8 Æ y = 16 } { I } ind an appropriate invariant I Holds initially x = 8 Æ y = 16 Holds at the end y == 0 { y = 0 }

5 Loop Example (II) Guess invariant y = 2*x { y = 2*x } x--; y-=2 { x = 8 Æ y = 16 } { y = 2*x } x>0 { y = 0 } { y = 2*x Æ x > 0 } Check : Initial: x = 8 Æ y = 16 y = 2*x Preservation: y = 2*x Æ x>0 y 2 = 2*(x 1) inal: y = 2*x Æ x 0 y = 0 Invalid Loop Example (III) Guess invariant y = 2*x Æ x 0 { y=2*x Æ x 0} { x = 8 Æ y = 16 } { y = 2*x Æ x 0} x>0 { y = 0 } x--; y-=2 { y = 2*x Æ x 0 Æ x>0 } Check Initial: x = 8 Æ y = 16 y = 2*x Æ x 0 Preservation: y = 2*x Æ x 0 Æ x>0 y 2 = 2*(x 1) Æ x 1 0 inal: y = 2*x Æ x 0 Æ x 0 y = 0 Loops Discussion Simple forward/backward propagation fails Require loop invariants Hardest part of program verification Guess the invariants (existing programs) Write the invariants (new programs) Note: Invariant depends on what you want to prove! Verification Example int square(int n) { int k=0, r=0, s=1; while(k!= n) { { true } r = r + s; k:=0 s=s+2; Pick I: r = k r:=0 2 k=k + 1; s:=1 } { r=0 Æ k=0} return r;??? } I : {r = k 2 } r:=r+s s:=s+2 k!=n k:=k+1 k {r=n 2 } {r=k 2 {r=k Æ k=n} 2 Æk=n} Need: {r=k 2 Æ k=n} c {r=k 2 } i.e. {r=k 2 Æ k=n} WP(c,{r=k 2 }) i.e. {r=k 2 Æ k=n} {r+s=(k+1) 2 } Invalid

6 Verification Example Need: {r=k 2 Æ s=2k+1 Æ } c {r=k 2 Æ s=2k+1} i.e. {r=k 2 Æ s=2k+1 } WP(c,{r=k 2 Æs=2k+1}) i.e. {r=k 2 Æ s=2k+1 } {r+s=(k+1) 2 Æ (s+2) = 2(k+1)+1}??? { true } Valid k:=0 r:=0 s:=1 { r=0 Æ k=0 Æ s=0} I : {r=k 2 Æ s=2k+1} r:=r+s s:=s+2 k!=n {r=k 2 k:=k+1 {r=n 2 } {r=k 2 Æs=2k+1Æ } Æs=2k+1 Æk=n} What about real languages? Loops unction calls Pointers unctions are big instructions Suppose we have verified bsearch int bsearch(int a[], int p) { { sorted(a) } Precondition { r=-1 Ç (r 0 Æ r < a.length Æ a[r]=p)} return res; Postcondition } unction spec = precondition i + postconditon Also called a contract unction Calls Consider a call to function y:=f(int E) return variable r precondition Pre, postcondition Post Rule for function call: ` P Pre[E/x] `{Pre} f {Post} ` Post[E/x,y/r] Q ` {P} y:=f(e){q}

7 unction Calls Consider a call to function y:=f(int x) return variable r precondition Pre, postcondition Post Rule for function call: y = (E) { P } if P Pre[E/x] } { Q } and Post[E/x,y/r] Q unction Call: Example int bsearch(int a[],int p) { Consider the call { sorted(a) } {sorted(arr) } { r=-1ç(r 0 Æ r<a.lengthæ a[r]=p)} [] y:=bsearch(arr,5) return res; {y=-1 Ç arr[y]=5} } if(y!=-1){ {y!=-1 Æ (y=-1çarr[y]=5} {arr[y]=5} sorted[array] ay] Pre[a := array] ay] Post[y/r,arr/a, 5/p] (y=-1 Ç arr[y]=5) What about real languages? Loops unction calls Pointers Assignment and Aliasing Does assignment rule work with aliasing? If *x and *y are aliased then: {x=y} *x:=5 {*x+*y=10}

8 Hoare Rules: Assignment and References When is the following Hoare triple valid? { A } *x := 5 { *x + *y = 10 } Ashould be *y = 5 or x = y but Hoare rule for assignment gives: [5/*x](*x + *y = 10) = 5 + *y = 10 = *y = 5 (uh oh! we lost one case! What gives?) Hoare Rules: Assignment and References Modeling writes with memory expressions reat memory as a whole w/ memory variables (M) upd(m,e 1,E 2 ) : update M at addr E 1 with value E 2 sel(m,e 1 ) : read M at address E 1 Reason about memory expressions with McCarthy s rule sel(upd(m, E 1, E 2 ), E 3 ) = E 2 if E 1 = E 3 sel(m, E 3 ) if E 1 E 3 Assignment (update) changes the value of memory {B[upd(M, E 1 1, E 2 2) )/M]} *E 1:=E 2 {B} Memory Aliasing Consider again: {A} *x:=5 {*x+*y=10 {x+y=10} We obtain: A = [upd(m, x, 5)/M] (*x+*y=10) = [upd(m, x, 5)/M] (sel(m,x) + sel(m,y) = 10) = sel(upd(m, x, 5), x) + sel(upd(m, x, 5), y) = 10 = 5 + sel(upd(m, x, 5), y) = 10 = if x = y then = 10 else 5 + sel(m, y) = 10 = x=y or *y = 5 Program Verification ools Semi-automated You write some invariants and specifications ool tries to fill in the other invariants And to prove all implications Explains when implication is invalid: counterexample for your specification ESC/Java is one of the best tools

9 Algorithmic Program Verification or how does ESC/Java work? Q: How to algorithmically i ll prove {P} c {Q}? If no loops: 1. Compute: WP(c,Q) 2. Prove: P WP(c,Q) Verification Condition Discharged using Auto. heorem Prover VC Generation for Loops Suppose all loops annotated with Invariant while I b do c Again, lets compute a VC such that: if VC is valid (true) then {P} c {Q} Q: Why not iff? as the loop invariants i may be bogus VCGen We will write a function VCG: comm (pred pred list) (pred pred list) Suppose (Q,L ) = VCG(c,(Q,L)) hen VC for {P} c {Q} is: P Q Æ {f in L } f L : the set of conditions that must be true rom loops (init,preservation,final) Q : precondition modulo invariants VCGen VCG: comm (pred pred list) (pred pred list) VCG(c,(Q,L)) (Q = (Q,L L ) hen VC for {P} c {Q} is: P Q Æ {f in L } f let rec VCG(c,(Q,L)) = match c with x:= e -> (Q[e/x], L) c1;c2 -> VCG(c1,VCG(c2,(Q, L))) c1;c2 > VCG(c1,VCG(c2,(Q, L))) if b then c1 else c2 -> let (Q1,L1) = VCG( c1,(q, L)) (Q2 L2) VCG( 2 (Q L)) (Q2,L2) = VCG( c2,(q, L)) in ((bæq1)ç( bæq2), L1 L2 ) while I b do c -> let (Q,L ) = VCG(c,(Q, L)) in (I, L {IÆb Q } {IÆ b Q} )

10 ESC/Java Semi-automated You write the invariants ESC/Java: VCGen: Simplify: heoremprover to prove VC Explains when implication is invalid: counterexample for your specification

Programming Languages

Programming Languages CSE 230: Winter 2008 Principles of Programming Languages Lecture 6: Axiomatic Semantics Deriv. Rules for Hoare Logic `{A} c {B} Rules for each language construct ` {A} c 1 {B} ` {B} c 2 {C} ` {A} skip

More information

Axiomatic Semantics. Operational semantics. Good for. Not good for automatic reasoning about programs

Axiomatic Semantics. Operational semantics. Good for. Not good for automatic reasoning about programs Review Operational semantics relatively l simple many flavors (small vs. big) not compositional (rule for while) Good for describing language implementation reasoning about properties of the language eg.

More information

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples Hoare Logic I Introduction to Deductive Program Verification Işıl Dillig Program Spec Deductive verifier FOL formula Theorem prover valid contingent Example specs: safety (no crashes), absence of arithmetic

More information

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements

Axiomatic Semantics: Verification Conditions. Review of Soundness and Completeness of Axiomatic Semantics. Announcements Axiomatic Semantics: Verification Conditions Meeting 12, CSCI 5535, Spring 2009 Announcements Homework 4 is due tonight Wed forum: papers on automated testing using symbolic execution 2 Questions? Review

More information

Program verification. 18 October 2017

Program verification. 18 October 2017 Program verification 18 October 2017 Example revisited // assume(n>2); void partition(int a[], int n) { int pivot = a[0]; int lo = 1, hi = n-1; while (lo

More information

Axiomatic Semantics. Lecture 9 CS 565 2/12/08

Axiomatic Semantics. Lecture 9 CS 565 2/12/08 Axiomatic Semantics Lecture 9 CS 565 2/12/08 Axiomatic Semantics Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine Denotational semantics

More information

Program Analysis Part I : Sequential Programs

Program Analysis Part I : Sequential Programs Program Analysis Part I : Sequential Programs IN5170/IN9170 Models of concurrency Program Analysis, lecture 5 Fall 2018 26. 9. 2018 2 / 44 Program correctness Is my program correct? Central question for

More information

Lecture Notes: Axiomatic Semantics and Hoare-style Verification

Lecture Notes: Axiomatic Semantics and Hoare-style Verification Lecture Notes: Axiomatic Semantics and Hoare-style Verification 17-355/17-665/17-819O: Program Analysis (Spring 2018) Claire Le Goues and Jonathan Aldrich clegoues@cs.cmu.edu, aldrich@cs.cmu.edu It has

More information

Axiomatic Semantics: Verification Conditions. Review of Soundness of Axiomatic Semantics. Questions? Announcements

Axiomatic Semantics: Verification Conditions. Review of Soundness of Axiomatic Semantics. Questions? Announcements Axiomatic Semantics: Verification Conditions Meeting 18, CSCI 5535, Spring 2010 Announcements Homework 6 is due tonight Today s forum: papers on automated testing using symbolic execution Anyone looking

More information

Soundness and Completeness of Axiomatic Semantics

Soundness and Completeness of Axiomatic Semantics #1 Soundness and Completeness of Axiomatic Semantics #2 One-Slide Summary A system of axiomatic semantics is sound if everything we can prove is also true: if ` { A } c { B } then ² { A } c { B } We prove

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics #1 Introduction to Axiomatic Semantics #2 How s The Homework Going? Remember that you can t just define a meaning function in terms of itself you must use some fixed point machinery. #3 Observations A

More information

Floyd-Hoare Style Program Verification

Floyd-Hoare Style Program Verification Floyd-Hoare Style Program Verification Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 9 Feb 2017 Outline of this talk 1 Overview 2 Hoare Triples 3

More information

Program verification using Hoare Logic¹

Program verification using Hoare Logic¹ Program verification using Hoare Logic¹ Automated Reasoning - Guest Lecture Petros Papapanagiotou Part 2 of 2 ¹Contains material from Mike Gordon s slides: Previously on Hoare Logic A simple while language

More information

Hoare Calculus and Predicate Transformers

Hoare Calculus and Predicate Transformers Hoare Calculus and Predicate Transformers Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.uni-linz.ac.at

More information

Axiomatic semantics. Semantics and Application to Program Verification. Antoine Miné. École normale supérieure, Paris year

Axiomatic semantics. Semantics and Application to Program Verification. Antoine Miné. École normale supérieure, Paris year Axiomatic semantics Semantics and Application to Program Verification Antoine Miné École normale supérieure, Paris year 2015 2016 Course 6 18 March 2016 Course 6 Axiomatic semantics Antoine Miné p. 1 /

More information

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and shows how a program can sometimes be systematically constructed

More information

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE

Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 CSE 6341 1 Outline Introduction What are axiomatic semantics? First-order logic & assertions about states Results (triples)

More information

The Assignment Axiom (Hoare)

The Assignment Axiom (Hoare) The Assignment Axiom (Hoare) Syntax: V := E Semantics: value of V in final state is value of E in initial state Example: X:=X+ (adds one to the value of the variable X) The Assignment Axiom {Q[E/V ]} V

More information

COP4020 Programming Languages. Introduction to Axiomatic Semantics Prof. Robert van Engelen

COP4020 Programming Languages. Introduction to Axiomatic Semantics Prof. Robert van Engelen COP4020 Programming Languages Introduction to Axiomatic Semantics Prof. Robert van Engelen Assertions and Preconditions Assertions are used by programmers to verify run-time execution An assertion is a

More information

A Short Introduction to Hoare Logic

A Short Introduction to Hoare Logic A Short Introduction to Hoare Logic Supratik Chakraborty I.I.T. Bombay June 23, 2008 Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 1 / 34 Motivation Assertion checking

More information

Deductive Verification

Deductive Verification Deductive Verification Mooly Sagiv Slides from Zvonimir Rakamaric First-Order Logic A formal notation for mathematics, with expressions involving Propositional symbols Predicates Functions and constant

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11.

CSC 7101: Programming Language Structures 1. Axiomatic Semantics. Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11. Axiomatic Semantics Stansifer Ch 2.4, Ch. 9 Winskel Ch.6 Slonneger and Kurtz Ch. 11 1 Overview We ll develop proof rules, such as: { I b } S { I } { I } while b do S end { I b } That allow us to verify

More information

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Winter Term 2016/17

Decision Procedures. Jochen Hoenicke. Software Engineering Albert-Ludwigs-University Freiburg. Winter Term 2016/17 Decision Procedures Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Winter Term 2016/17 Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 1 / 436 Program

More information

Formal Reasoning CSE 331. Lecture 2 Formal Reasoning. Announcements. Formalization and Reasoning. Software Design and Implementation

Formal Reasoning CSE 331. Lecture 2 Formal Reasoning. Announcements. Formalization and Reasoning. Software Design and Implementation CSE 331 Software Design and Implementation Lecture 2 Formal Reasoning Announcements Homework 0 due Friday at 5 PM Heads up: no late days for this one! Homework 1 due Wednesday at 11 PM Using program logic

More information

CSE 331 Software Design & Implementation

CSE 331 Software Design & Implementation CSE 331 Software Design & Implementation Kevin Zatloukal Summer 2017 Lecture 2 Reasoning About Code With Logic (Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock) Recall

More information

CSE 331 Winter 2018 Reasoning About Code I

CSE 331 Winter 2018 Reasoning About Code I CSE 331 Winter 2018 Reasoning About Code I Notes by Krysta Yousoufian Original lectures by Hal Perkins Additional contributions from Michael Ernst, David Notkin, and Dan Grossman These notes cover most

More information

Solutions to exercises for the Hoare logic (based on material written by Mark Staples)

Solutions to exercises for the Hoare logic (based on material written by Mark Staples) Solutions to exercises for the Hoare logic (based on material written by Mark Staples) Exercise 1 We are interested in termination, so that means we need to use the terminology of total correctness, i.e.

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 2b Andrew Tolmach Portland State University 1994-2017 Semantics Informal vs. Formal Informal semantics Descriptions in English (or other natural language)

More information

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z )

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z ) Starter Questions Feel free to discuss these with your neighbour: Consider two states s 1 and s 2 such that s 1, x := x + 1 s 2 If predicate P (x = y + 1) is true for s 2 then what does that tell us about

More information

Hoare Logic: Reasoning About Imperative Programs

Hoare Logic: Reasoning About Imperative Programs Hoare Logic: Reasoning About Imperative Programs COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2018 Programming Paradigms Functional. (Haskell, SML, OCaml,... ) main paradigm:

More information

Spring 2015 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University

Spring 2015 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University Spring 2015 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University Tentative syllabus Semantics Static Analysis Abstract Interpretation fundamentals Analysis

More information

Programming Languages and Compilers (CS 421)

Programming Languages and Compilers (CS 421) Programming Languages and Compilers (CS 421) Sasa Misailovic 4110 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421a Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul

More information

INVARIANT RELATIONS: A CONCEPT FOR ANALYZING WHILE LOOPS. Ali Mili, NJIT NII, Tokyo, Japan December 20, 2011

INVARIANT RELATIONS: A CONCEPT FOR ANALYZING WHILE LOOPS. Ali Mili, NJIT NII, Tokyo, Japan December 20, 2011 INVARIANT RELATIONS: A CONCEPT FOR ANALYZING WHILE LOOPS Ali Mili, NJIT NII, Tokyo, Japan December 20, 2011 PLAN 2 Motivation Relational Mathematics Invariant Relations Invariant Relations and Loop Functions

More information

Formal Specification and Verification. Specifications

Formal Specification and Verification. Specifications Formal Specification and Verification Specifications Imprecise specifications can cause serious problems downstream Lots of interpretations even with technicaloriented natural language The value returned

More information

Hoare Logic (I): Axiomatic Semantics and Program Correctness

Hoare Logic (I): Axiomatic Semantics and Program Correctness Hoare Logic (I): Axiomatic Semantics and Program Correctness (Based on [Apt and Olderog 1991; Gries 1981; Hoare 1969; Kleymann 1999; Sethi 199]) Yih-Kuen Tsay Dept. of Information Management National Taiwan

More information

Spring 2014 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University

Spring 2014 Program Analysis and Verification. Lecture 6: Axiomatic Semantics III. Roman Manevich Ben-Gurion University Spring 2014 Program Analysis and Verification Lecture 6: Axiomatic Semantics III Roman Manevich Ben-Gurion University Syllabus Semantics Static Analysis Abstract Interpretation fundamentals Analysis Techniques

More information

Review. Principles of Programming Languages. Equality. The Diamond Property. The Church-Rosser Theorem. Corollaries. CSE 230: Winter 2007

Review. Principles of Programming Languages. Equality. The Diamond Property. The Church-Rosser Theorem. Corollaries. CSE 230: Winter 2007 CSE 230: Winter 2007 Principles of Programming Languages Lecture 12: The λ-calculus Ranjit Jhala UC San Diego Review The lambda calculus is a calculus of functions: e := x λx. e e 1 e 2 Several evaluation

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation Page 1 of 61 CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 5: Program Correctness: Mechanics Page 2 of 61 Program A: LinearSearch with function specification @pre 0 l u < a @post rv

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Formal Methods in Software Engineering An Introduction to Model-Based Analyis and Testing Vesal Vojdani Department of Computer Science University of Tartu Fall 2014 Vesal Vojdani (University of Tartu)

More information

5. Program Correctness: Mechanics

5. Program Correctness: Mechanics 5. Program Correctness: Mechanics Program A: LinearSearch with function specification @pre 0 l u < a @post rv i. l i u a[i] = e bool LinearSearch(int[] a, int l, int u, int e) { for @ (int i := l; i u;

More information

Program Analysis and Verification

Program Analysis and Verification Program Analysis and Verification 0368-4479 Noam Rinetzky Lecture 4: Axiomatic Semantics Slides credit: Tom Ball, Dawson Engler, Roman Manevich, Erik Poll, Mooly Sagiv, Jean Souyris, Eran Tromer, Avishai

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

Reasoning About Imperative Programs. COS 441 Slides 10b

Reasoning About Imperative Programs. COS 441 Slides 10b Reasoning About Imperative Programs COS 441 Slides 10b Last time Hoare Logic: { P } C { Q } Agenda If P is true in the initial state s. And C in state s evaluates to s. Then Q must be true in s. Program

More information

CSE 331 Winter 2018 Homework 1

CSE 331 Winter 2018 Homework 1 Directions: - Due Wednesday, January 10 by 11 pm. - Turn in your work online using gradescope. You should turn in a single pdf file. You can have more than one answer per page, but please try to avoid

More information

Probabilistic Guarded Commands Mechanized in HOL

Probabilistic Guarded Commands Mechanized in HOL Probabilistic Guarded Commands Mechanized in HOL Joe Hurd joe.hurd@comlab.ox.ac.uk Oxford University Joint work with Annabelle McIver (Macquarie University) and Carroll Morgan (University of New South

More information

Hoare Logic and Model Checking

Hoare Logic and Model Checking Hoare Logic and Model Checking Kasper Svendsen University of Cambridge CST Part II 2016/17 Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft Introduction In the

More information

CS156: The Calculus of Computation Zohar Manna Autumn 2008

CS156: The Calculus of Computation Zohar Manna Autumn 2008 Page 3 of 52 Page 4 of 52 CS156: The Calculus of Computation Zohar Manna Autumn 2008 Lecturer: Zohar Manna (manna@cs.stanford.edu) Office Hours: MW 12:30-1:00 at Gates 481 TAs: Boyu Wang (wangboyu@stanford.edu)

More information

Programming Languages

Programming Languages CSE 230: Winter 2010 Principles of Programming Languages Lecture 10: Programming in λ-calculusc l l Ranjit Jhala UC San Diego Review The lambda calculus is a calculus of functions: e := x λx. e e 1 e 2

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Proofs of Correctness: Introduction to Axiomatic Verification

Proofs of Correctness: Introduction to Axiomatic Verification Proofs of Correctness: Introduction to Axiomatic Verification Introduction Weak correctness predicate Assignment statements Sequencing Selection statements Iteration 1 Introduction What is Axiomatic Verification?

More information

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2015 Program Analysis and Verification Lecture 4: Axiomatic Semantics I Roman Manevich Ben-Gurion University Agenda Basic concepts of correctness Axiomatic semantics (pages 175-183) Hoare Logic

More information

Weakest Precondition Calculus

Weakest Precondition Calculus Weakest Precondition Calculus COMP2600 Formal Methods for Software Engineering Rajeev Goré Australian National University Semester 2, 2016 (Most lecture slides due to Ranald Clouston) COMP 2600 Weakest

More information

Softwaretechnik. Lecture 13: Design by Contract. Peter Thiemann University of Freiburg, Germany

Softwaretechnik. Lecture 13: Design by Contract. Peter Thiemann University of Freiburg, Germany Softwaretechnik Lecture 13: Design by Contract Peter Thiemann University of Freiburg, Germany 25.06.2012 Table of Contents Design by Contract Contracts for Procedural Programs Contracts for Object-Oriented

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2016 Program Analysis and Verification Lecture 3: Axiomatic Semantics I Roman Manevich Ben-Gurion University Warm-up exercises 1. Define program state: 2. Define structural semantics configurations:

More information

SMT-based Verification of Heap-manipulating Programs

SMT-based Verification of Heap-manipulating Programs SMT-based Verification of Heap-manipulating Programs Ruzica Piskac VTSA 2016 Maiden Flight of Ariane 5 Rocket Ariane 5 exploded on its first test flight in 1996 Cause: failure of flight-control software

More information

Hoare Logic: Reasoning About Imperative Programs

Hoare Logic: Reasoning About Imperative Programs Hoare Logic: Reasoning About Imperative Programs COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2017 Catch Up / Drop in Lab When Fridays, 15.00-17.00 Where N335, CSIT Building

More information

First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods

First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods First Order Logic vs Propositional Logic CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures

More information

Softwaretechnik. Lecture 13: Design by Contract. Peter Thiemann University of Freiburg, Germany

Softwaretechnik. Lecture 13: Design by Contract. Peter Thiemann University of Freiburg, Germany Softwaretechnik Lecture 13: Design by Contract Peter Thiemann University of Freiburg, Germany 25.06.2012 Table of Contents Design by Contract Contracts for Procedural Programs Contracts for Object-Oriented

More information

Hoare Logic: Part II

Hoare Logic: Part II Hoare Logic: Part II COMP2600 Formal Methods for Software Engineering Jinbo Huang Australian National University COMP 2600 Hoare Logic II 1 Factorial {n 0} fact := 1; i := n; while (i >0) do fact := fact

More information

Verification and Validation

Verification and Validation 2010-2011 Cycle Ingénieur 2 ème année Département Informatique Verification and Validation Part IV : Proof-based Verification (III) Burkhart Wolff Département Informatique Université Paris-Sud / Orsay

More information

Proof Calculus for Partial Correctness

Proof Calculus for Partial Correctness Proof Calculus for Partial Correctness Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 7, 2016 Bow-Yaw Wang (Academia Sinica) Proof Calculus for Partial Correctness September

More information

Software Engineering

Software Engineering Software Engineering Lecture 07: Design by Contract Peter Thiemann University of Freiburg, Germany 02.06.2014 Table of Contents Design by Contract Contracts for Procedural Programs Contracts for Object-Oriented

More information

Loop Invariants and Binary Search. Chapter 4.4, 5.1

Loop Invariants and Binary Search. Chapter 4.4, 5.1 Loop Invariants and Binary Search Chapter 4.4, 5.1 Outline Iterative Algorithms, Assertions and Proofs of Correctness Binary Search: A Case Study Outline Iterative Algorithms, Assertions and Proofs of

More information

Last Time. Inference Rules

Last Time. Inference Rules Last Time When program S executes it switches to a different state We need to express assertions on the states of the program S before and after its execution We can do it using a Hoare triple written

More information

Axiomatic Semantics. Hoare s Correctness Triplets Dijkstra s Predicate Transformers

Axiomatic Semantics. Hoare s Correctness Triplets Dijkstra s Predicate Transformers Axiomatic Semantics Hoare s Correctness Triplets Dijkstra s Predicate Transformers Goal of a program = IO Relation Problem Specification Properties satisfied by the input and expected of the output (usually

More information

IC3 and Beyond: Incremental, Inductive Verification

IC3 and Beyond: Incremental, Inductive Verification IC3 and Beyond: Incremental, Inductive Verification Aaron R. Bradley ECEE, CU Boulder & Summit Middle School IC3 and Beyond: Incremental, Inductive Verification 1/62 Induction Foundation of verification

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

SAT-Based Verification with IC3: Foundations and Demands

SAT-Based Verification with IC3: Foundations and Demands SAT-Based Verification with IC3: Foundations and Demands Aaron R. Bradley ECEE, CU Boulder & Summit Middle School SAT-Based Verification with IC3:Foundations and Demands 1/55 Induction Foundation of verification

More information

Lecture 2: Axiomatic semantics

Lecture 2: Axiomatic semantics Chair of Software Engineering Trusted Components Prof. Dr. Bertrand Meyer Lecture 2: Axiomatic semantics Reading assignment for next week Ariane paper and response (see course page) Axiomatic semantics

More information

Lecture Notes on Compositional Reasoning

Lecture Notes on Compositional Reasoning 15-414: Bug Catching: Automated Program Verification Lecture Notes on Compositional Reasoning Matt Fredrikson Ruben Martins Carnegie Mellon University Lecture 4 1 Introduction This lecture will focus on

More information

Program Verification as Probabilistic Inference

Program Verification as Probabilistic Inference Program Verification as Probabilistic Inference Sumit Gulwani Microsoft Research, Redmond sumitg@microsoft.com Nebojsa Jojic Microsoft Research, Redmond jojic@microsoft.com Abstract In this paper, we propose

More information

Introduction. Pedro Cabalar. Department of Computer Science University of Corunna, SPAIN 2013/2014

Introduction. Pedro Cabalar. Department of Computer Science University of Corunna, SPAIN 2013/2014 Introduction Pedro Cabalar Department of Computer Science University of Corunna, SPAIN cabalar@udc.es 2013/2014 P. Cabalar ( Department Introduction of Computer Science University of Corunna, SPAIN2013/2014

More information

CIS 500: Software Foundations

CIS 500: Software Foundations CIS 500: Software Foundations Midterm II November 8, 2016 Directions: This exam booklet contains both the standard and advanced track questions. Questions with no annotation are for both tracks. Other

More information

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55 Understanding IC3 Aaron R. Bradley ECEE, CU Boulder & Summit Middle School Understanding IC3 1/55 Further Reading This presentation is based on Bradley, A. R. Understanding IC3. In SAT, June 2012. http://theory.stanford.edu/~arbrad

More information

Design of Distributed Systems Melinda Tóth, Zoltán Horváth

Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Publication date 2014 Copyright 2014 Melinda Tóth, Zoltán Horváth Supported by TÁMOP-412A/1-11/1-2011-0052

More information

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem CS 276 Cryptography Oct 8, 2014 Lecture 11: Non-Interactive Zero-Knowledge II Instructor: Sanjam Garg Scribe: Rafael Dutra 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian

More information

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program Program verification Assertional semantics of a program Meaning of a program: relation between its inputs and outputs; specified by input assertions (pre-conditions) and output assertions (post-conditions)

More information

Problem Sheet 1: Axiomatic Semantics

Problem Sheet 1: Axiomatic Semantics Problem Sheet 1: Axiomatic Semantics Chris Poskitt ETH Zürich Starred exercises ( ) are more challenging than the others. 1 Partial and Total Correctness Recall the Hoare triple from lectures, {pre} P

More information

SMT and Its Application in Software Verification

SMT and Its Application in Software Verification SMT and Its Application in Software Verification Yu-Fang Chen IIS, Academia Sinica Based on the slides of Barrett, Sanjit, Kroening, Rummer, Sinha, Jhala, and Majumdar Assertion in C int main(){ int x;

More information

Deterministic Program The While Program

Deterministic Program The While Program Deterministic Program The While Program Shangping Ren Department of Computer Science Illinois Institute of Technology February 24, 2014 Shangping Ren Deterministic Program The While Program February 24,

More information

Disjunctive relational abstract interpretation for interprocedural program analysis

Disjunctive relational abstract interpretation for interprocedural program analysis Disjunctive relational abstract interpretation for interprocedural program analysis Nicolas Halbwachs, joint work with Rémy Boutonnet Verimag/CNRS, and Grenoble-Alpes University Grenoble, France R. Boutonnet,

More information

Complexity and algorithms for monomial and clausal predicate abstraction

Complexity and algorithms for monomial and clausal predicate abstraction Complexity and algorithms for monomial and clausal predicate abstraction Shuvendu K. Lahiri and Shaz Qadeer Microsoft Research Abstract. In this paper, we investigate the asymptotic complexity of various

More information

Verifying Properties of Parallel Programs: An Axiomatic Approach

Verifying Properties of Parallel Programs: An Axiomatic Approach Verifying Properties of Parallel Programs: An Axiomatic Approach By Susan Owicki and David Gries (1976) Nathan Wetzler nwetzler@cs.utexas.edu University of Texas, Austin November 3, 2009 Outline Introduction

More information

Null Dereference Verification Via Over-approximated Weakest Precondition analysis

Null Dereference Verification Via Over-approximated Weakest Precondition analysis Null Dereference Verification Via Over-approximated Weakest Precondition analysis Ravichandhran Madhavan Microsoft Research, India Joint work with Raghavan Komondoor, Indian Institute of Science Problem

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2019 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

Strength; Weakest Preconditions

Strength; Weakest Preconditions 12/14: solved Strength; Weakest Preconditions CS 536: Science of Programming, Spring 2018 A. Why To combine correctness triples, we need to weaken and strengthen conditions. A weakest precondition is the

More information

Program Verification Using Separation Logic

Program Verification Using Separation Logic Program Verification Using Separation Logic Cristiano Calcagno Adapted from material by Dino Distefano Lecture 1 Goal of the course Study Separation Logic having automatic verification in mind Learn how

More information

Loop Convergence. CS 536: Science of Programming, Fall 2018

Loop Convergence. CS 536: Science of Programming, Fall 2018 Solved Loop Convergence CS 536: Science of Programming, Fall 2018 A. Why Diverging programs aren t useful, so it s useful to know how to show that loops terminate. B. Objectives At the end of this lecture

More information

Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft)

Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft) Bilateral Proofs of Safety and Progress Properties of Concurrent Programs (Working Draft) Jayadev Misra December 18, 2015 Contents 1 Introduction 3 2 Program and Execution Model 4 2.1 Program Structure..........................

More information

Proof Rules for Correctness Triples

Proof Rules for Correctness Triples Proof Rules for Correctness Triples CS 536: Science of Programming, Fall 2018 A. Why? We can t generally prove that correctness triples are valid using truth tables. We need proof axioms for atomic statements

More information

Axiomatic Semantics. Semantics of Programming Languages course. Joosep Rõõmusaare

Axiomatic Semantics. Semantics of Programming Languages course. Joosep Rõõmusaare Axiomatic Semantics Semantics of Programming Languages course Joosep Rõõmusaare 2014 Direct Proofs of Program Correctness Partial correctness properties are properties expressing that if a given program

More information

Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions

Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions Chapter 1 Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions 1.1 The IMP Language IMP is a programming language with an extensible syntax that was developed in the late 1960s. We will

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics Introduction to Axiomatic Semantics Meeting 9, CSCI 5535, Spring 2009 Announcements Homework 3 is out, due Mon Feb 16 No domain theory! Homework 1 is graded Feedback attached 14.2 (mean), 13 (median),

More information

Asynchronous Communication 2

Asynchronous Communication 2 Asynchronous Communication 2 INF4140 22.11.12 Lecture 11 INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 1 / 37 Overview: Last time semantics: histories and trace sets specification: invariants

More information

Predicate Transforms I

Predicate Transforms I Predicate Transforms I Software Testing and Verification Lecture Notes 19 Prepared by Stephen M. Thebaut, Ph.D. University of Florida Predicate Transforms I 1. Introduction: weakest pre-conditions (wp

More information

Introduction to Permission-Based Program Logics Part II Concurrent Programs

Introduction to Permission-Based Program Logics Part II Concurrent Programs Introduction to Permission-Based Program Logics Part II Concurrent Programs Thomas Wies New York University Example: Lock-Coupling List 2 3 5 7 8 9 There is one lock per node; threads acquire locks in

More information

An Introduction to Symbolic Trajectory Evaluation. Koen Lindström Claessen Chalmers University / Jasper AB Gothenburg, Sweden

An Introduction to Symbolic Trajectory Evaluation. Koen Lindström Claessen Chalmers University / Jasper AB Gothenburg, Sweden An Introduction to Symbolic Trajectory Evaluation Koen Lindström Claessen Chalmers University / Jasper AB Gothenburg, Sweden An Example A 7-input AND gate? in in1 in2 in3 OR out in4 in5 in6 OR Verification

More information

Central Algorithmic Techniques. Iterative Algorithms

Central Algorithmic Techniques. Iterative Algorithms Central Algorithmic Techniques Iterative Algorithms Code Representation of an Algorithm class InsertionSortAlgorithm extends SortAlgorithm { void sort(int a[]) throws Exception { for (int i = 1; i < a.length;

More information