An Electron-Nucleon Collider at FAIR

Size: px
Start display at page:

Download "An Electron-Nucleon Collider at FAIR"

Transcription

1 An Electron-Nucleon Collider at FAIR Wolfgang Gradl for the study group Institut für Kernphysik Physics at a High Energy Electron Ion Collider Seattle, 19 th October 009

2 Outline FAIR and PANDA Accelerator considerations Physics studies Gluon helicity g DVCS Using material from A. Jankowiak, A. Lehrach and J. Pretz W. Gradl ENC at FAIR

3 FAIR Facility for Antiproton and Ion Research p Linac SIS 100/300 UNILAC SIS 18 Radioactive Ion Production Target HESR Ring/Device Beam Energie Intensity SIS100 protons 30 GeV 4x10 13 Super FRS Antiproton Production Target 38 U 1 GeV/u 5x10 11 intensity increase factor CR FLAIR 100 m CR/RESR/NESR ion and antiproton storage and experiment rings RESR NESR HESR antiprotons 14 GeV ~10 11 Super-FRS rare-isotope beams 1 GeV/u <10 9 W. Gradl ENC at FAIR 3

4 HESR layout p ring, high-intensity or high-precision modes Momentum range: GeV/c Circumference: 575 m Straight sections: electron cooler, target section W. Gradl ENC at FAIR 4

5 Experimental setup PANDA detector Magnet system Chicane dipole Compensation solenoid PANDA solenoid PANDA dipole Chicane dipole Main quadrupoles W. Gradl ENC at FAIR 5 β x,y *= 1 to 10m

6 An easy idea: ENC at HESR P HESR pring Idea emerged Aug 008 s > 10 GeV 3.3 GeV/c e on 15 GeV/c p polarised e (> 80%) 8MV ecool e -pol. e- -inj. ering PANDA polarised p, d (> 80%) (transversal & longitudinal) use PANDA detector as much as possible Double polarised Electron Nucleon Collider Luminosity: 8 HERA (unpol.) Common effort of German universities (Bonn, Mainz, Dortmund) in collaboration with Research Centres Jülich, DESY, GSI,... W. Gradl ENC at FAIR 6

7 Accelerator considerations W. Gradl ENC at FAIR 7

8 Accelerator Working Group K. Aulenbacher, D. Barber, O. Boldt, R. Heine, W. Hillert, A.Jankowiak, A. Lehrach, Chr. Montag, P. Schnizer, T. Weis W. Gradl ENC at FAIR 8

9 Requirements for Interaction Region Acceptance angles in proton direction: 0 to 5 : detection and momentum resolution of protons in forward direction 5 to 155 : particle detection in target spectrometer 175 to 180 : detection of electrons scattered at small angles Preserve PANDA geometry and PANDA central detector, other than inner tracker (r = 30 cm, l = 1.5 m) β x,y 0.3 m for high luminosity Aperture radii: 6σ p cm for protons, 10σ p cm for electrons W. Gradl ENC at FAIR 9

10 IR design Sufficient separation at s = 1.44 m for 00 bunches β x,y = 0.3 m [Chr. Montag (BNL)] W. Gradl ENC at FAIR 10

11 HESR electron cooler Momentum range (Antiprotons): GeV/c Electron energy: MeV Electron current: 0 1 A Electron radius: 5 mm Temperature of electron beam (t,l): 1eV, 0.5 mev Magnetic field (cooling section): 0. T Field qualtiy (rms): B r /B < 10 5 rad Length of cooling section: L eff = 4 m The Svedberg Laboratory Uppsala University needs upgrade for ENC A. Lehrach W. Gradl ENC at FAIR 11

12 Machine parameters, luminosity Baseline design (protons) ecooler parameters: E = 8 MeV, I = 3 A, B = 0. T, T T = 1 ev, T L = 0.5 mev, B r /B < 10 5, L = 4 m RF parameters: f = 5 MHz, U = 300 kv HESR / 15GeV p L [ring circumference, m] ~ 575 ε norm / ε geo [mm mrad, rms].1 / 0.13 p/p (rms) ~ β IP [m] 0.3 r IP [mm, rms] 0. ering / 3GeV l (bunch length) [m] n (particle / bunch) h (number of bunches) f coll (collision freq) [MHz] ~ 5 l coll (bunch distance) [m] ~ 5.76 Q sc (space charge) 0.05 ξ (beam-beam parameter) L (luminosity) [cm - s -1 ] ~ 10 3 W. Gradl ENC at FAIR 1 A. Lehrach; BetaCool program, JINR Dubna

13 Machine parameters, luminosity Advanced design (protons) ecooler parameters: E = 8 MeV, I = 3 A, B = 0. T, T T = 1 ev, T L = 0.5 mev, B r /B < 10 5, L = 4 m RF parameters: f = 104 MHz, U = 300 kv HESR / 15GeV p L [ring circumference, m] ~ 575 ε norm / ε geo [mm mrad, rms].3 / 0.14 p/p (rms) ~ β IP [m] 0.1 r IP [mm, rms] 0.1 ering / 3GeV l (bunch length) [m] n (particle / bunch) h (number of bunches) f coll (collision freq) [MHz] ~ 104 l coll (bunch distance) [m] ~.88 Q sc (space charge) 0.1 ξ (beam-beam parameter) L (luminosity) [cm - s -1 ] ~ W. Gradl ENC at FAIR 13 A. Lehrach; BetaCool program, JINR Dubna

14 Machine open questions / to do list Upgrade of the electron cooler Lattice for the electron ring Preservation of electron polarisation Modification of interaction region for high luminosity Deuterons: need β IP < 0.1 m to reach 103 cm s 1 IR needs modifying See A. Lehrach s talk at EINN workshop 009 at Milos for complete overview W. Gradl ENC at FAIR 14

15 Physics studies W. Gradl ENC at FAIR 15

16 Physics channels under study Gluon helicity DVCS Transversity Factorisation in fragmentation W. Gradl ENC at FAIR 16

17 Kinematic region covered /GeV 10 Q p = 3.0 GeV, p =15.0 GeV e p W=4GeV x=1,w=m_p x=0.1 x=0.01 ϑ=0.1 4 x=10 6 x=10 E =GeV ϑ=0 ϑ=π/ ϑ=0 muon y E =1GeV E =10GeV E =0.5GeV W=13GeV ϑ=3 Playground in Q y plane (Pol(γ ) y) Blue band: acceptance hole from 5-5 Higher Q min for µ W. Gradl ENC at FAIR 17

18 Gluon helicity g Study by J. Pretz W. Gradl ENC at FAIR 18

19 How to access the gluon distribution? Use hadronic final state in deep inelastic scattering: e + N e + hadrons + X d p u u q q g q hadrons * γ µ hadrons q µ How to tag Photon -Gluon- Fusion sub-process γ g q q? W. Gradl ENC at FAIR 19

20 How to access the gluon distribution? Use hadronic final state in deep inelastic scattering: e + N e + hadrons + X d p u u q q g g q hadrons * γ µ hadrons q µ How to tag Photon -Gluon- Fusion sub-process γ g q q? W. Gradl ENC at FAIR 19

21 How to tag γ g q q? Cleanest way: Look at charmed particles resulting from the fragmentation of the process γ g c c: c 0 D N g (p = x g p ) * g N γ c c 0 D = c u K π + x g x Bj no intrinsic charm, no charm quarks in string fragmentation If both charmed particles are reconstructed, one has access to x g W. Gradl ENC at FAIR 0

22 Results on g from DIS g/g COMPASS, open charm, prel., 0 06 COMPASS, high p, Q >1 (GeV/c), prel., 0 04 T COMPASS, high p, Q <1 (GeV/c), prel., 0 04 T HERMES, high p, all Q T HERMES, single high p hadrons, all Q, prel. T SMC, high p, Q >1 (GeV/c) T GRSV at µ =3 GeV fit with G>0, µ =3(GeV/c) fit with G<0, µ =3(GeV/c) 1 10 G =.5 x g Data show small values of g/g at x g 0.1 confirmed by indirect measurements Scaling violation of g p,n,d 1 structure function p p scattering at RHIC all measurements are concentrated around x g = 0.1, little is known about g(x g ) only COMPASS point is obtained with the (least model dependent) open charm method this result is obtained in 00 days of running W. Gradl ENC at FAIR 1

23 Results on g from DIS g/g COMPASS, open charm, prel., 0 06 COMPASS, high p, Q >1 (GeV/c), prel., 0 04 T COMPASS, high p, Q <1 (GeV/c), prel., 0 04 T HERMES, high p, all Q T HERMES, single high p hadrons, all Q, prel. T SMC, high p, Q >1 (GeV/c) T GRSV at µ =3 GeV fit with G>0, µ =3(GeV/c) fit with G<0, µ =3(GeV/c) 1 10 G =.5 x g Data show small values of g/g at x g 0.1 confirmed by indirect measurements Scaling violation of g p,n,d 1 structure function p p scattering at RHIC all measurements are concentrated around x g = 0.1, little is known about g(x g ) only COMPASS point is obtained with the (least model dependent) open charm method this result is obtained in 00 days of running W. Gradl ENC at FAIR 1

24 QCD analysis on g(x) xf(x) Q =10 GeV u u - 10 g x de Florian, Sassot, Stratmann, Vogelsang largest error in the region x g < 0.1 RHIC covers and will cover 0.01 < x g < 0. on the other hand: all spin effects are observed at large x W. Gradl ENC at FAIR

25 Better Reconstruction of x g At collider, can reconstruct both D using information of one D 0 (5% corr.) hout recontructed x g hout Entries 5347 Mean x Mean y RMS x RMS y both D 0 (70% corr.) hout recontructed x g hout Entries 5347 Mean x Mean y RMS x RMS y true x g true x g W. Gradl ENC at FAIR 3

26 Diluting factors More interesting than L alone: FOM = (diluting factors) L diluting factor ratio COMPASS ENC unpolarised single spin target (P T f ) a) (3 b) ) double spin asymmetries (P T fp B ) a) (3 b) ) reconstruction of hadronic? final state mass resolution displaced vertices target fragmentation a) for 6 LID target b) for NH 3 target Huge potential for polarisation observables! W. Gradl ENC at FAIR 4

27 Summary g(x) Increase of FOM compared to fixed target experiment by two orders of magnitude possible (16 from f P T P B, > 7 from D 0 reconstruction)! Not only increase in FOM but also qualitative improvements (reconstruction of x g ) in parallel measurement of helicity distributions W. Gradl ENC at FAIR 5

28 Deep Virtual Compton Scattering Studies done by D. Kang, M. Fritsch & W. Gradl W. Gradl ENC at FAIR 6

29 Cross Section dσ = DVCS + BH Bethe-Heitler (BH) contributes as background dσ = (dσ BH + dσunpol DVCS + e l a BH Re(A DVCS )) cos(nφ) + (P l dσpol DVCS + e l P l a BH Im(A DVCS )) sin(nφ) e l : lepton charge, P l : lepton polarisation, A 1 H(x,ξ,t) dx 1 x ξ+iɛ, Φ : (l, l plane, γ, p plane) Exploit angular dependence, σ e+ σ e, σ σ,... access to various contributions, handle on GPDs W. Gradl ENC at FAIR 7

30 Deep Virtual Compton Scattering using PANDA setup θ p /degree W. Gradl ENC at FAIR 8

31 Reconstruction efficiency using PANDA setup particle efficiency resolution δp/p resolution δθ/θ e 83% < % < % γ 93% < % < 5% p 64% < 1% < 10% combined efficiency 43% W. Gradl ENC at FAIR 9

32 Kinematic range [D. Kang] W. Gradl ENC at FAIR 30

33 Summary DVCS already with present PANDA setup good acceptance forward tracking to be improved further studies needed (ensure exclusivity, backgrounds,... ) W. Gradl ENC at FAIR 31

34 Summary A polarised electron-nucleon collider with L > 10 3 cm s 1 and s 00 GeV has great potential in helping to understand nucleon structure ENC is interesting extension to FAIR programme Accelerator working group established First designs for machine and interaction zone look promising but a lot of detailed work to be done Spin and beam dynamics in e ring Beam dynamics in HESR, bunch formation Electron cooler... Physics studies gaining momentum W. Gradl ENC at FAIR 3

The polarized electron-nucleon collider project ENC at GSI/FAIR

The polarized electron-nucleon collider project ENC at GSI/FAIR The polarized electron-nucleon collider project ENC at GSI/FAIR A Lehrach 1, K Aulenbacher 2, O Boldt 3, R Heine 2, W Hillert 3, C Montag 4, P Schnizer 5 and T Weis 6 1 Institut für Kernphysik, Forschungzsentrum

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon

HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon HERMES at HERA: Quark-Gluon Spin Structure of the Nucleon Introduction The year 2002, marked the 75th anniversary of Dennison s discovery that the proton, just like the electron, carries spin. The electron

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Advanced Design of the FAIR Storage Ring Complex

Advanced Design of the FAIR Storage Ring Complex Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC

More information

Towards Polarized Antiprotons at FAIR

Towards Polarized Antiprotons at FAIR Towards Polarized Antiprotons at FAIR http://www.fz-juelich.de/ikp/pax Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Kyoto, October 3, 2006 Outline PAX physics program Accelerator configuration

More information

Nucleon polarised parton distribution functions

Nucleon polarised parton distribution functions Nucleon polarised parton distribution functions Gerhard K. Mallot CERN, 111 Geneva 3, Switzerland Abstract An introduction to the present status of spin-dependent parton distribution functions is given.

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Spin-physics with Polarized Antiprotons at GSI

Spin-physics with Polarized Antiprotons at GSI http://www.fz-juelich.de/ikp/pax Spin-physics with Polarized Antiprotons at GSI Frank Rathmann Forschungszentrum JülichJ Spin Physics and Beyond, Madison, June 10, 2005 QCD Physics at FAIR (CDR): unpolarized

More information

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14

Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 Polarized deuterium physics with EIC C. Weiss (JLab), Tensor Polarized Solid Target Workshop, JLab, 11 Mar 14 1 e e x, 0000000 1111111 D pol. Q 2 X p, n Electron-Ion Collider overview Design specifications

More information

Nucleon spin in perspective

Nucleon spin in perspective Nucleon spin in perspective Barbara Badelek University of Warsaw and University of Uppsala Epiphany 009 Cracow, January 5 7, 009 B. Badelek (Warsaw ) Nucleon spin in perspective Epiphany 009 1 / 47 Introduction

More information

Tagging with Roman Pots at RHIC. Proton tagging at STAR

Tagging with Roman Pots at RHIC. Proton tagging at STAR Tagging with Roman Pots at RHIC Proton tagging at STAR Elastic and Diffractive Processes in High Energy Proton Scattering Elastic scattering Detect protons in very forward direction with Roman Pots (RPs)

More information

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions

Outline. Generalized Parton Distributions. Elastic Form Factors and Charge Distributions in Space. From Form Factors to Quark Spin Distributions Outline Generalized Parton Distributions in lepton scattering and antiproton annihilation experiments Michael DürenD Universität Gießen en The structure of the proton: From form factors to uark spin distributions

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES David Mahon On behalf of the HERMES Collaboration DIS 2010 - Florence, Italy Overview Mahon DIS

More information

The PANDA experiment at FAIR

The PANDA experiment at FAIR The PANDA experiment at FAIR Helmholtz-Institut Mainz, Germany On behalf of the PANDA collaboration Facility for Antiproton and Ion Research (FAIR) PANDA physics program PANDA spectrometer PANDA phases

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

PANDA. antiproton Annihilation at DArmstadt

PANDA. antiproton Annihilation at DArmstadt antiproton Annihilation at DArmstadt Physics programme Quark confinement: Charmonium spectroscopy Excited gluons: Exotic hybrid mesons & glueballs Nucleon spin puzzle: transverse quark spin distribution

More information

Spin physics at COMPASS p. 1/43

Spin physics at COMPASS p. 1/43 Spin physics at Jan Friedrich Physik Department, TU München on behalf of the collaboration Spin physics at p. 1/43 In R. Hofstadter s footsteps... 5 years ago: At SLAC, few-hundred-mev electron scattering

More information

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY

ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY ERHIC - A PRECISION ELECTRON-PROTON/ION COLLIDER FACILITY AT BROOKHAVEN NATIONAL LABORATORY B. SURROW Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA E-mail: surrow@mit.edu

More information

Status and Perspectives of Hadron Physics in Europe. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Status and Perspectives of Hadron Physics in Europe. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft Hans Ströher Status and Perspectives of Hadron Physics in Europe Forschungszentrum Jülich in der Helmholtz-Gemeinschaft Europe We are here: Tbilisi (Georgia) Area (EU 15): ~ π x 10 6 km 2 (EU 25): 1.25

More information

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany FAIR AT GSI P. Spiller, GSI, Darmstadt, Germany Abstract Based on the experience of the existing GSI facility and with the aim to apply new technical concepts in phase space cooling and fast ramping of

More information

Perspectives with PANDA. The new accelerator complex of GSI The antiproton s s activity The PANDA scientific program Paola Gianotti LNF

Perspectives with PANDA. The new accelerator complex of GSI The antiproton s s activity The PANDA scientific program Paola Gianotti LNF Perspectives with PANDA The new accelerator complex of GSI The antiproton s s activity The PANDA scientific program Paola Gianotti LNF FAIR The GSI future facility FAIR Facility for Antiproton and Ion

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

Polarized Structure Functions

Polarized Structure Functions Polarized Structure Functions Gerard van der Steenhoven (NIKHEF) JLab, Newport News, 4 March 22 u u d 9 th Int. Conference on the Structure of Baryons Introduction The origin of spin in the baryon octet:

More information

GENERALIZED PARTON DISTRIBUTIONS

GENERALIZED PARTON DISTRIBUTIONS Exploring fundamental questions of NUCLEON STRUCTURE with GENERALIZED PARTON DISTRIBUTIONS Florian Herrmann 16.9.2012 Corfu Summer School LHC COMPASS SPS Versatile facility for hadron structure studies

More information

PANDA Experiment. Nordic Winter Meeting on FAIR Björkliden Department of Physics and Astronomy Uppsala University

PANDA Experiment. Nordic Winter Meeting on FAIR Björkliden Department of Physics and Astronomy Uppsala University Department of Physics and Astronomy Uppsala University Nordic Winter Meeting on Phyics @ FAIR Björkliden 1-3-6 1 3 pp Λ c Λ + c 4 5 pp ȲY What are the relevant degrees of freedom to describe a process?

More information

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008

Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Progress on the DVCS program at Compass E. Burtin CEA Saclay Irfu/SPhN GDR nucléon, Ecole Polytechnique, 12 décembre 2008 Today and tomorrow 2010 and beyond 2008 (Today) : Target region Ring B Ring A 2008

More information

erhic: Science and Perspective

erhic: Science and Perspective erhic: Science and Perspective Study of the Fundamental Structure of Matter with an Electron-Ion Collider A. Deshpande, R. Milner, R. Venugopalan, W. Vogelsang hep-ph/0506148, Ann. Rev. Nucl. Part. Sci.

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

a medium energy collider taking nucleon structure beyond the valence region

a medium energy collider taking nucleon structure beyond the valence region EIC@JLAB a medium energy collider taking nucleon structure beyond the valence region Tanja Horn INT09-43W, Seattle, WA 19 October 2009 Tanja Horn, CUA Colloquium 1 A high-luminosity EIC at JLab Use CEBAF

More information

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR C. Dimopoulou B. Franzke, T. Katayama, D. Möhl, G. Schreiber, M. Steck DESY Seminar, 20 November 2007

More information

COMPASS results on inclusive and semi inclusive polarised DIS

COMPASS results on inclusive and semi inclusive polarised DIS COMPASS results on inclusive and semi inclusive polarised DIS Helena Santos LIP - Lisboa on behalf of the COMPASS Collaboration The nucleon spin The COMPASS experiment Longitudinal spin structure functions

More information

Physics Opportunities at the MEIC at JLab

Physics Opportunities at the MEIC at JLab Physics Opportunities at the MEIC at JLab Pawel Nadel-Turonski Jefferson Lab QCD Evolution Workshop, JLab, May 16, 2012 1 The physics program of an EIC Map the spin and spatial structure of sea quarks

More information

Study of the hadron structure using the polarised Drell-Yan process at COMPASS

Study of the hadron structure using the polarised Drell-Yan process at COMPASS Study of the hadron structure using the polarised Drell-Yan process at COMPASS Márcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration 7 th July 6, MENU 6 Kyoto COMPASS CERN/FIS-NUC/7/5 Márcia

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS

Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS Anna Martin Trieste University and INFN on behalf of the COMPASS Collaboration SPIN-Praha Praha-009 ADVANCED STUDIES INSTITUTE

More information

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting

MEIC Physics. Tanja Horn for the MEIC group. Jlab Users Meeting MEIC Physics Tanja Horn for the MEIC group Jlab Users Meeting The Structure of the Proton Naïve Quark Model: proton = uud (valence quarks) QCD: proton = uud + uu + dd + ss + The proton sea has a non-trivial

More information

Gluon Polarisation COMPASS

Gluon Polarisation COMPASS Gluon Polarisation Measurements @ COMPASS LIP Lisbon lsilva@lip.pt Outline: Brief Motivation High pt analysis Open Charm (LO and NLO) analyses G/G results Summary and Conclusion On behalf of the COMPASS

More information

Spin dependent en cross section at small and medium Q2

Spin dependent en cross section at small and medium Q2 NuInt04@Gran Sasso, 004/03/18 Session 3, Talk ID 3.5 Spin dependent en cross section at small and medium Q Contents: Introduction Kinematic DIS Regime (Q>1GeV, W>4GeV) Small Q Limit (Q=0 GeV) GDH sum rule

More information

HERA II Physics. Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full.

HERA II Physics. Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full. HERA II Physics Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full. 1 HERA II Physics The upgrades concentrate mainly on the following areas: - Vertex

More information

HERMES status and future running

HERMES status and future running HERMES status and future running Benedikt Zihlmann University of Gent on behalf of the collaboration DESY PRC Mai 24 p.1/18 Access to Transversity Single spin azimuthal asymmetries on a transverse polarized

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

DVCS Measurement and Luminosity Determination at COMPASS

DVCS Measurement and Luminosity Determination at COMPASS .. EPJ manuscript No. Will be inserted by the editor (will be inserted by the editor) DVCS Measurement and Luminosity Determination at COMPASS Nicolas du Fresne von Hohenesche for the COMPASS collaboration,,a

More information

Lepton beam polarisation for the HERA experiments ZEUS and H1

Lepton beam polarisation for the HERA experiments ZEUS and H1 Lepton beam polarisation for the HERA experiments ZEUS and H1 Polarisation at collider machines The HERA storage ring The HERA polarimeters The collider experiments ZEUS and H1 The HERA II upgrade Data

More information

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S.

DVCS with CLAS. Elton S. Smith. Jefferson Lab. Conference on Intersections of Particle and Nuclear Physics New York, Elton S. DVCS with CLAS Elton S. Smith Jefferson Lab Conference on Intersections of Particle and Nuclear Physics New York, 2003 Elton S. Smith 1 Deeply Virtual Compton Scattering Inclusive Scattering Forward Compton

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

Charmonium Physics with PANDA at FAIR. FZ-Juelich & Uni Bochum

Charmonium Physics with PANDA at FAIR. FZ-Juelich & Uni Bochum Charmonium Physics with PANDA at FAIR Contents Overview of PANDA Physics program Charmonium Physics Issues with PANDA FAIR Accelerator Facility PANDA Detector Summary Hadron Structure with Precision Measurements

More information

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei

High-energy ea scattering. Spectator nucleon tagging. Future facilities. Energy, luminosity, polarization. Physics objectives with light nuclei High-energy nuclear physics with spectator tagging A. Deshpande, D. Higinbotham, Ch. Hyde, S. Kuhn, M. Sargsian, C. Weiss Topical Workshop, Old Dominion U., 9 11 March 015 High-energy ea scattering e e

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility 1 Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility Motivation Quantum Chromo Dynamics Proton=uud Visible Universe Galaxies, stars, people, Silent Partners: Protons & Neutrons

More information

Tensor Polarized Deuteron at and EIC

Tensor Polarized Deuteron at and EIC Tensor Polarized Deuteron at and EIC Tensor Polarized Observables Workshop March 10-12, 2014 Narbe Kalantarians Hampton University Outline Background/Motivation Spin-1/Tensor-Polarization Concept Starting

More information

Simulation of measured DVCS cross-section on STAR Detector

Simulation of measured DVCS cross-section on STAR Detector Simulation of measured DVCS cross-section on STAR Detector XXX October 0, 01 Abstract Cross-section measurements of DVCS process in a proposed electron ion collider (EIC at RHIC are simulated. The acceptance

More information

PoS(EPS-HEP2011)301. COMPASS results on gluon polarisation. Luis SILVA LIP Lisbon

PoS(EPS-HEP2011)301. COMPASS results on gluon polarisation. Luis SILVA LIP Lisbon LIP Lisbon E-mail: lsilva@lip.pt One of the missing keys in the present understanding of the spin structure of the nucleon is the contribution from the gluons: the so-called gluon polarisation. his uantity

More information

Neutron structure with spectator tagging at MEIC

Neutron structure with spectator tagging at MEIC Neutron structure with spectator tagging at MEIC C. Weiss (JLab), Users Group Workshop 2014, JLab, 03 Jun 14 Light ion physics with EIC e D pol. e p, n High energy process Forward spectators detected Physics

More information

HERMES Status Report

HERMES Status Report HERMES Status Report Sergey Yaschenko for the Collaboration DESY PRC, Hamburg, April 1, 008 Outline Introduction Physics Highlights from HERMES Isoscalar extraction of ΔS Model-dependent constraint on

More information

Neutrons in a Spin: Nucleon Structure at Jefferson Lab

Neutrons in a Spin: Nucleon Structure at Jefferson Lab Neutrons in a Spin: Nucleon Structure at Jefferson Lab Daria Sokhan University of Glasgow, UK on behalf of the CLAS Collaboration IoP Nuclear Physics Group Conference, York 8 th April 2013 Nucleon structure

More information

QCD and the Spin Structure of the Nucleon

QCD and the Spin Structure of the Nucleon Graduiertenkolleg: Physik an Hadronbeschleunigern QCD and the Spin Structure of the Nucleon Gerhard K. Mallot CERN/PH 16 January 2013 Plan Introduction Tools: DIS SIDIS pp, Experiments Helicity structure

More information

A method to polarise antiprotons in storage rings and create polarised antineutrons

A method to polarise antiprotons in storage rings and create polarised antineutrons EPJ manuscript No. (will be inserted by the editor) A method to polarise antiprotons in storage rings and create polarised antineutrons Berthold Schoch Physikalisches Institut, Universität, Bonn, D-53115

More information

Exclusive Physics with the HERMES Recoil Detector

Exclusive Physics with the HERMES Recoil Detector Exclusive Physics with the HERMES Recoil Detector Erik Etzelmüller on behalf of the HERMES Collaboration!!! workshop on! Exploring Hadron Structure with Tagged Structure Functions! Thomas Jefferson National

More information

SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010

SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010 Forschungszentrum Juelich GmbH SPIN200 9th International Spin Physics Symposium September 27 October 2, 200 Jülich, Germany Polarized Hadron Beams in NICA Project I.Meshkov, Yu.Filatov,2 JINR, Dubna 2

More information

Status report of Hermes

Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/28 2004 Spin physics: finalised and new results on: inclusive, semi-inclusive and exclusive measurements nuclear effects data

More information

International Workshop on Heavy Quarkonium Oct. 2007, DESY Hamburg. Prospects for Panda. Charmonium Spectroscopy

International Workshop on Heavy Quarkonium Oct. 2007, DESY Hamburg. Prospects for Panda. Charmonium Spectroscopy International Workshop on Heavy Quarkonium 17 20 Oct. 2007, DESY Hamburg Prospects for Panda Charmonium Spectroscopy M. Pelizäus (Ruhr Universität Bochum) for the Panda Collaboration 1 FAIR accelerator

More information

PoS(DIS2018)216. W Measurement at PHENIX. Chong Kim

PoS(DIS2018)216. W Measurement at PHENIX. Chong Kim University of California, Riverside Department of Physics & Astronomy, Riverside CA 92521 USA E-mail: ckim.phenix@gmail.com The W measurement at RHIC (Relativistic Heavy Ion Collider) provides unique access

More information

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider Workshop on Precision Radiative Corrections for Next Generation Experiments 6 9 May 6, Jefferson Lab, Newport News VA 3-D Imaging and the Generalized Parton Distribution Program at an Electron Ion Collider

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

SSA Measurements with Primary Beam at J-PARC

SSA Measurements with Primary Beam at J-PARC SSA Measurements with Primary Beam at J-PARC Joint UNM/RBRC Workshop on Orbital Angular Momentum in Albuquerque February 25 th, 2006 Yuji Goto (RIKEN/RBRC) February 25, 2006 Yuji Goto (RIKEN/RBRC) 2 Introduction

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

JLEIC forward detector design and performance

JLEIC forward detector design and performance Jefferson Lab E-mail: ryoshida@jlab.org A major part of the physics program at the Electron-Ion Collider being planned in the US is the exploration of nucleon and nuclear structure. This program means

More information

Project. 1 Introduction. EPJ Web of Conferences 66, (2014)

Project. 1 Introduction. EPJ Web of Conferences 66, (2014) EPJ Web of Conferences 66, 6 (4) DOI:.5/ epjconf/ 4666 C Owned by the authors, published by EDP Sciences, 4 Probing Sea Quarks and Gluons: Project The Electron-Ion Collider Tanja Horn,a Catholic University

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

First results of W ± boson production in high-energy polarized p+p collisions at RHIC at BNL

First results of W ± boson production in high-energy polarized p+p collisions at RHIC at BNL 1 First results of W ± boson production in high-energy polarized p+p collisions at RHIC at BNL Outline 2 W production - Recent Results First W + /W - Cross-section and A L Measurement at STAR Experimental

More information

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Introduction Present: Photoproduction of Mesons at ELSA and MAMI CB-ELSA/TAPS Experiment Crystal Ball/TAPS

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

A High Luminosity Electron-Ion Collider to Study the Structure of Matter

A High Luminosity Electron-Ion Collider to Study the Structure of Matter A High Luminosity Electron-Ion Collider to Study the Structure of Matter Introduction Scientific motivation Realization Summary Study of the Fundamental Structure of Matter with an Electron-Ion Collider

More information

Future prospects of di-jet production at. forward rapidity constraining Δg(x) at low x in. polarized p+p collisions at RHIC

Future prospects of di-jet production at. forward rapidity constraining Δg(x) at low x in. polarized p+p collisions at RHIC Future prospects of di-jet production at forward rapidity constraining Δg(x at low x in polarized p+p collisions at RHIC Bernd Surrow QCD Evolution Workshop - QCD! Santa Fe, NM, May, Bernd Surrow Outline

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

Q 2 =4 GeV 2. -x d. x u. -x s. x g

Q 2 =4 GeV 2. -x d. x u. -x s. x g E161 MEASUREMENT OF GLUON SPIN DISTRIBUTION IN NUCLEONS USING POLARIZED OPEN CHARM PHOTOPRODUCTION æ WHY MEASURE THIS æ SOME THEORY æ EXPERIMENTAL SETUP æ PROJECTED RESULTS æ OTHER EXPERIMENTS E161 COLLABORATION

More information

Hadron Physics with Real and Virtual Photons at JLab

Hadron Physics with Real and Virtual Photons at JLab Hadron Physics with Real and Virtual Photons at JLab Elton S. Smith Jefferson Lab Virtual photons shape of the nucleon Elastic scattering (form factors) Inelastic scattering (uark distributions) Exclusive

More information

Summer Students 2003

Summer Students 2003 Welcome to Where are you? What do we do? What will you do? DORIS/PETRA HERA TESLA/FEL Summer Students 2003 1 DESY - Overview Mission: Development, construction and running of accelerators Exploit the accelerators

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

CMS Conference Report

CMS Conference Report Available on CMS information server CMS CR 2001/004 CMS Conference Report April 13, 2001 Prospects of B-Physics with CMS a) Sunanda Banerjee 1) Abstract Prospects of studies of properties of b flavoured

More information

FAIR. Reiner Krücken for the NUSTAR collaboration

FAIR. Reiner Krücken for the NUSTAR collaboration NUSTAR @ FAIR Reiner Krücken for the NUSTAR collaboration Physik Department E12 Technische Universität München & Maier-Leibnitz-Laboratory for Nuclear and Particle Physics NUSTAR @ FAIR Nuclear Structure

More information

Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES

Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES Target single- and double-spin asymmetries in DVCS off a longitudinal polarized hydrogen target at HERMES David Mahon University of Glasgow E-mail: d.mahon@physics.gla.ac.uk Caroline Riedl DESY, Zeuthen

More information

Beauty contribution to the proton structure function and charm results

Beauty contribution to the proton structure function and charm results and charm results Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati E-mail: andrea.longhin@lnf.infn.it Recent heavy quark production results in deep inelastic scattering and photoproduction

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

Forward nucleon tagging at EIC. J.H. Lee BNL

Forward nucleon tagging at EIC. J.H. Lee BNL Forward nucleon tagging at EIC J.H. Lee BNL EIC User Group Meeting 218 Outline EIC physics with (far-)forward nucleon tagging focusing on protons with Roman Pots Interaction Region integration Requirement

More information